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Preface

Auditory localization cues play a crucial role in everyday life. They increase aware-

ness of surroundings, improve visual attention, and convey complex information about the

spatial structure of an acoustic scene. People in music and cinematography have long rec-

ognized the aesthetic importance of the spatiality of sound to evoke ambience and focused

attention, thus motivating challenging projects of architectural acoustics and also studies

on human spatial hearing. It was during the last decades, thanks to the progress on the

synthesis of binaural localization cues and the development of multichannel audio tech-

niques, when 3D audio systems started to emerge, covering demanding applications on

telecommunications such as the transmission of auditory scenes and the generation of vir-

tual acoustic spaces. The motivation of this study stems from this growing demand of 3D

audio systems for the re-creation of auditory scenes with high levels of realism.

Among 3D audio systems, binaural synthesis aims to reproduce auditory scenes with

high levels of realism by endowing the auditory display with spatial hearing information.

Basic perceptual cues for a spatial listening experience arise from the scattering, reflections

and resonances introduced by the pinnae, head and torso of the listener. These phenom-

ena can be described by the so-called head-related transfer functions (HRTFs). Typical

measured sets of HRTFs, though, neither include the motion of the head nor provide the

listener with enough spatial accuracy, characteristics that are required, for example, in the

accurate synthesis of moving sound sources. Several approaches that sidestep these two

limitations have been proposed. They are based on the recordings made with microphones

placed on the surface of a rigid sphere, and the angular interpolation of HRTFs from a
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representative set of sound sources in the distal region (beyond one meter distance from

the head). However, the optimal arrangement of the representative sound sources, and the

binaural synthesis of sources in the proximal region (less than one meter distance from the

head) has not yet been addressed.

Therefore, this thesis provides a novel method to synthesize the binaural signals for

sound sources in both the distal and proximal regions, starting from a sound field captured

by spherical microphone arrays. The present proposal exploits the directional structure of

the captured sound field by means of the spherical harmonics analysis with high directivity

(high order). To make it applicable for the practical applications, the improvement and

evaluation of the proposed method are carried out by computer simulations.

Chapter 1 introduces the motivation of this study. A survey on related systems for the

synthesis of binaural signals by spherical microphone arrays is carried out, highlighting

the use of the spherical harmonic functions for the analysis of the captured sound pressure

field. Lastly, the objective of this thesis is presented.

Chapter 2 introduces an ideal scenario for the binaural synthesis of sound sources in the

distal region, assuming the sound field is captured by an infinite number of microphones,

so as to focus the discussion on the required order of the spherical harmonic functions to

cover the full audible frequency range.

Chapter 3 continues the evaluation in the ideal scenario, now to discuss about the opti-

mal arrangement of the representative sound sources for an accurate synthesis. A practical

scenario for the binaural synthesis is subsequently introduced, where the synthesis accu-

racy for distal sound sources is evaluated assuming a finite number of microphones.

Chapter 4 proposes an extension of the method described in Chapter 3 for the binau-

ral synthesis of sound sources in the proximal region. The recorded sound field is now

analyzed with multipoles, an extension of spherical harmonics that allows the radial prop-

agation of the sound field.

Finally, the main conclusions of this thesis are given on chapter 5.
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Chapter 1

Introduction

1.1 Conventional binaural systems

It is quite remarkable how well humans can separate and selectively attend to individ-

ual sound sources in a cluttered acoustical environment. The term "cocktail party process-

ing" was coined in an early study on how the perception of sound with both ears enables

to selectively attend to individual conversations when many are present, as in a cocktail

party [1]. This phenomenon illustrates the importance of binaural hearing to localize and

separate sound sources. Although the understanding of such complex phenomena involves

cognitive processing in the auditory pathway, the externals facts of the perception of sound

sources in the real world can be simplified and interpreted as signals that are acoustically

filtered by the pinna, head and torso of the listener. The complex shapes of the human body

cause scattering, reflections and resonances on the arriving sound wave. These acoustic in-

teractions modify the sound pressure field at the entrance of the ear canal, giving rise to

differences between the signals at both ears: the interaural time difference (ITD) and the

interaural level difference (ILD), which are the primary perceptual cues for the localization

of sound [2, 3].
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Figure 1.1: A conventional binaural system. An audio signal is filtered with the head-
related transfer functions (HRTFs) for the left and right ears. The HRTFs are previously
measured with two microphones placed on each listener’s ear, for a loudspeaker in a fixed
position emitting signals in the full audible frequency range. The reproduction is done over
headphones. Ideally, the listener perceives the audio signal as if it was comming from a
virtual loudspeaker, at the same position of the loudspeaker used to measure the HRTFs.

The external facts of human spatial hearing have inspired a sound reproduction system

for which sound is recorded by using two microphones mounted at the ears of a listener.

In an ideal binaural transmission system, both the amplitude and phase of the sound waves

incident on the listener’s ears are duplicated. A natural extension of this method is to

characterize a listener’s head beforehand, in the full-audible frequency range, using a loud-

speaker at a given position, so as to compute the left and right filters that contains the

acoustic transmission path from the given source position to both ears. Such filters con-

form the so-called head-related transfer functions (HRTFs), which can be used to filter an

arbitrary audio signal so as to synthesize the binaural signals. When reproduced over head-

phones, the binaural signals give the impression of a sound source arriving from a virtual

loudspeaker at the given location (see Figure 1.1).

In practice, the synthesis of the binaural signals, produced by an arbitrary sound source

at a particular location, requires the HRTFs for a representative set of sound source po-

sitions, and the equivalent sound pressure field at the representative positions due to the
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source signal. The sound pressure signals are filtered with the representative HRTFs at the

corresponding positions, and subsequently combined to produce the desired left and right

ear signals. The resulting binaural signals can thus be reproduced through headphones (see

Figure 1.2) or loudspeakers (see Figure 1.3). When the reproduction is done through real

headphones, the sound field is characterized as coming from a set of virtual loudspeakers

surrounding the listener. On the other hand, when an array of real loudspeakers are used

during the reproduction, the synthesized binaural signals are understood as a pair of virtual

headphones. Both approaches rely on the accurate acquisition of both the sound pressure

field and the representative set of head-related transfer functions (HRTFs). The scope of

the present proposal is limited to the virtual loudspeaker approach.

1.2 Head-related transfer functions

The head-related transfer functions (HRTFs) characterizes how the external ears receive

a sound from a point space. They depend on the shape of the pinna, head and torso of

each individual human listener, and on the frequency and position of the sound sources

surrounding the listener. The geometry for the computation of the HRTFs using an artificial

head is shown in Figure 1.4. The left ear HRTFs for sources on the horizontal plane at a

1.5 m distance are shown on Figure 1.5. In general, high intensities appear for sound

sources on the same side of the ear (the ipsilateral side), and lower intensities for sound

sources on the opposite side of the ear (the contralateral side). A detailed view shows that

the HRTFs contain the auditory spectral cues that arise from the shadowing, diffractions

and reflections of the sound waves due to the pinna, head and torso. Therefore, the HRTFs

characterize the binaural localization of sound sources.

The HRTFs must preferably be measured for each individual listener, but they can also

be measured using an artificial head and torso, namely a dummyhead. In both cases, typi-

cal measurements only considere a reduced number of sound source positions surrounding

the listener’s head. More recently, numerical solutions from a 3D model of the torso and
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Figure 1.2: Binaural rendering based on weighted sums of filtered versions of an audio
signal with a set of HRTFs. The HRTFs are measured for a representative set of sound
source positions surrounding the listener, where an array of virtual loudspeakers is assumed
to be placed. The binaural signals for an arbitrary position are synthesized by adjusting
the complex weights (gains and delays) for each virtual loudspeaker. The reproduction
is finally done over headphones. Our proposal follows this scheme: the so-called virtual
loudspeaker approach.

Figure 1.3: Binaural rendering based on weighted sums of filtered versions of an audio sig-
nal with a set of HRTFs. The HRTFs are measured for a representative set of sound source
positions surrounding the listener, where a loudspeaker array is placed for reproduction.
Based on crosstalk canceling techniques, the binaural signals for an arbitrary position are
synthesized by adjusting the complex weights (gains and delays) for each loudspeaker.

4



Figure 1.4: Top view of the geometry for the measurement of HRTFs for the left and
right ears using an artificial head. The sound sources are equiangularly distributed in the
horizontal plane. Assuming high levels of symmetry the discussion is limited to the left
ear. Sound sources on azimuths between 0 and 180 degrees are said to lie on the ipsilateral
side, and the ones on azimuths between 180 and 360 degrees, on the contralateral side.

Figure 1.5: HRTFs for the left ear of an artificial head. The HRTFs depend on the shape
of the head, and on the frequency and position of the sound sources. The sources are on
the horizontal plane and cover the full audible frequency range, from 20 Hz to 20 kHz.
In general, ipsilateral sources are received with high intensities at the ear canal, while the
contralateral ones are shadowed and scattered by the head. Resonances due to pinna cause
a notch pattern around 10 kHz on the ipsilateral side.
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head based on the boundary element method (BEM) [4]. However, even numerical meth-

ods consider only fixed positions and orientations of the listener’s head. Moreover, typical

measured sets of HRTFs do not show good accuracy for low-frequency sounds, do not con-

sider the mobility of the head, and only provide information for a limited range of sound

source positions. The spatial perception of the synthesized auditory scene is thus signifi-

cantly affected by these constraints, which generate reversals of sound direction between

front and back, excessive elevation, and in head localization of sound sources during the

binaural reproduction.

Efforts on these directions have proposed the approximation of the head by simple

shapes [5–8]. The most simple model is based on a spherical scatterer of the size of an

average human head, in which two microphones are placed at the ends of a horizontal di-

ameter. Experiments on the synchronous movement of the spherical model and listener’s

head have shown to reduce the reversals of sound direction between front and back, and

the excessive elevation, specially for low-frequency sound sources [5]. This approach have

inspired sound recording systems based on several microphones placed on the spherical

scatterer [9–12], so as to include the mobility of the head. On the other hand, several

methods to interpolate HRTFs for not available sound souce positions have also been pro-

posed [13–21], being the spherical harmonic decomposition a promising approach that

provides scalable spatial resolution and rotation capabilities [18–21].

Binaural cues for the localization of sound sources

The primary binaural cue for directional perception are the interaural time difference

(ITD) and the interaural intensity difference (IID) [2,3]. They determine the lateral angle of

a given sound source to the one side or the other. With increasing ITD the perceived sound

is located more and more to the side where the stimulation occur first, and with increasing

IID, the sound is said to appear further and further toward the side of the stronger stimu-

lation [22, 23]. The ITD and IID are therefore the primary cues for distal sound sources

localization. However, for a certain direction, the primary cues determine a circular locus
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of possible directions, arising the so-called cones of confusion containing the positions

with equals ITD and IID. Reversals of sound direction between front and back results from

this ambiguity. This effect is called the front/back confusion, referring to the perception of

sounds in the back as coming from the front, and the way around.

The primary cue for distance perception is the intensity. In general, intensity decreases

as the distance between the sound source and the listener is increased. For a fixed-power

point-source in an acoustic free-field, a 6dB loss in sound pressure for every doubling dis-

tance. The direct-to-reverberant energy ratio is another cue for environments with sound

reflecting surfaces. The ratio of energy reaching a listener via one or more of the reflect-

ing surfaces is inversely related to the distance of the sound source. Recent studies have

suggested that listener might also be able to use binaural cues to determine the distances of

lateral sound sources by comparing the ITD and IID cues. Although there is some ambi-

guity about the utility of binaural cues for the distance perception of distal sound sources,

there is ample evidence that binaural cues play an important role on the perception of sound

sources near the head [24–30].

Therefore, the binaural cues alone can be used to determine both the directions and

distances of nearby sound sources, given that listeners could use the distant-invariant ITD

to determine the lateral position of the source, and then use the magnitude of the ILD

to estimate its distance [24]. Moreover, given that the HRTFs contain the information to

compute both ITD and IID, the HRTFs provide a suitable tool to study of the binaural

localization of sound.

Models of HRTFs based on orthonormal functions

The limitations that arises from the measurement of HRTFs are motivating the devel-

opement of analytical methods to synthesize models for the HRTFs. The expected charac-

teristic of such models are the following:

• The parameters of the model should contain the information related to each indivual.

7



• The mobility of the head should be considered by means of easy rotations.

• The synthesis of moving sound should be performed by easy interpolations.

Attempts have been made to only measure HRTF sets for a limited range of source po-

sitions and to interpolate HRTFs for positions in between. A psychoacoustically motivated

approach exploits the limitations of the binaural hearing system to reduce the amount of

information to describe HRTFs. The parameters that characterize the HRTFs are extracted

by a set of perceptually motivated basis functions. The basis functions form a set of band

pass filters that mimic the known spectral limitations of the human auditory system. How-

ever, this simple parametric approach has the risk of deteriorating the externalization and

cannot be generalized to arbitrary HRTF sets [31].

Alternatively, the HRTFs can be approximated by weighted sums of a finite number I

of orthonormal functions fi as follows

H =

I∑
i=1

ci fi + e, (1.1)

where the weighting coefficients ci, computed by minimizing the error e in a least squares

sense, are the projection of H on the orthormal basis:

ci =

∫
H f ∗i . (1.2)

A statistical data compression approach aims to perform the approximation in terms

of orthonormal eigentransfer functions, which are extracted from the covariance matrix

of the HRTFs. Implementations of this approach relies on the principal component anal-

ysis [13] and the Karhunen-Loeve expansion [14] have been proposed. A digital filter

design approach aims to approximate the HRTFs in terms of rational functions on the z-

plane. The use of the pole zero approximation [15] and the common-acoustical pole zero

approximation [16, 17] have been proposed to implement this approach. More rencently,

the spherical acoustics approach aims to approximate the HRTFs in terms of functions

8



Table 1.1: Models of HRTFs based on orthonormal functions.

Method The orthonormal
functions depend on:

The weights depend
on: Characteristic

Eigen functions
[13, 14].

• Individual.

• Frequency.
• Direction. Reduced di-

mension.

Ratonal func-
tions [15, 16].

• Frequency.
• Individual.

• Direction.

Reduced com-
putational com-
plexity.

Spherical func-
tions [18–20].

• Position.
• Individual.

• Frequency.
Scalable spatial
resolution.

on the unit sphere. Implementations of this latter approach relies on the use of spherical

harmonics [18], multipoles [19], and Fourier spherical Bessel functions [20]. Table 1.1

highlights the characteristics of each approach.

Although there is a risk that the basis functions that are very important in terms of the

least-squares error of the fit are not so relevant in terms of human auditory perception,

the preservation of all the information contained in the HRTFs is preferable instead of the

psycho-acoustically motivated approach that reduces the amount of information. In par-

ticular, the spherical harmonics has been selected to be the orthonormal functions for this

proposal, because they fully encode the position information with scalable spatial resolu-

tion, providing an encoding format compatible with sound field reproduction techniques

based on loudspeaker arrays such as wave field synthesis [32,33] and high-order ambison-

ics [34].

1.3 Sound recording systems for binaural synthesis

This section briefly describes three spatial sound recording systems that aim to synthe-

size the binaural signals from the recordings made with a spherical microphone array.
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1.3.1 Motion-tracked binaural system

The Motion-tracked binaural system (MTB) [9] is based on a structural model of the

human head, for which the size of the head is approximated by a rigid sphere and the

shape of the pinna by a notch filter. This simple model allows to consider the mobility

of the head by arranging microphones on the surface of the rigid sphere. Three spatial

sampling schemes are proposed for the arrangement of microphones depending on the spa-

tial grouping of the original sound sources: equiangularly along the equator for panoramic

sound sources, closely spaced along the sides of the sphere for frontal sound sources, and

uniformly spaced over the sphere for omnidirectional sound sources. In addition, a head-

tracking system allows to select the closest sphere’s point to the ear position, where, if

necessary, linear interpolation on the microphone signals is performed only on the low

frequencies. 1

A realization of MTB uses 16 microphones for panoramic applications and a spherical

scatterer of 8.75 cm radius, which the authors considered to be the traditional radius of

the first order approximation of an average human head. The customization to individual

listeners is particularly addressed for the effects of different head sizes and pinna shapes.

When the radius a of the scatterer differs significantly from the radius b of the listener’s

head, the apparent locations of the sound sources shift systematically with head motion.

For sound sources in front of the listener, the disturbance can be reduced by simply scal-

ing the measured head rotation angle by the scale factor b/a. Moreover, an adjustable

simulated pinna notch filter was used to compensate for the front/back confusion and the

excessive elevation experienced as consequence of the lack of pinna cues. The limitation

of MTB is the degraded perceived realism of the synthesized binaural signals when com-

paring with systems based on head-related transfer functions.

1This interpolation method exploits the Rayleigh’s duplex theory of sound localization [2,3], which states
that the interaural time difference (ITD) is the dominant cue for frequencies at 1.5 kHz or below and the
interaural level difference (ILD) is more dominant for frequencies greater than 1.5 kHZ.
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1.3.2 SENZI

SENZI [10, 11] is a system to acquire 3D sound-space information from a rigid spher-

ical microphone array. Its name is an acronym for Symmetrical object with ENchansed

ZIllion microphones. In SENZI, the microphone signals are simply weighted and summed

to synthesize the listener’s binaural signals. The microphone’s weights are the solution to

a linear least-squares problem. The matrix coefficients of the linear system correspond to

spatial samplings of the inverse model of the acoustic scattering from the rigid sphere [6],

and its constant terms correspond to HRTFs for a representative of distal sound sources.

An implementation of SENZI uses 252 digital microphones placed on the surface of a

rigid sphere of 8.5 cm radius, which the authors considered to be the radius of an average

human head, and 2562 representative HRTFs or controlled directions. Both, the positions

of the microphones and the representative sound sources, have been decided according to

spherical grids based on the subdivisions of the faces of the icosahedron. Audio processing

is performed on the frequency domain, and therefore, the microphone’s weights needs to

be computed by solving an overdetermined linear system for each frequency. Moreover, a

new set of weights needs to be computed for each individual listener.

1.3.3 Binaural synthesis by spherical harmonics

The high-order binaural head-tracked system [12] synthesizes binaural signals based

on angular interpolations performed by the spherical harmonic decomposition (See Fig-

ure 1.6). Starting from the wave nature of sound, the equivalent sound pressure field is

derived from the sound pressure field captured by a spherical microphone array [35, 36],

and therefore the virtual loudspeakers approach [37, 38] is used to downmix the binaural

signals (See Figure 1.7). The sound field is calculated assuming plane-wave like sound

sources. The set of recorded signals is first decomposed into its directional components

by means of the spherical harmonic functions. Subsequently, the sound field is recon-

structed on the directions for which the representative distal HRTFs have been measured.
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The representative sound sources on the distal region are interpreted as being rendered by

a virtual array of loudspeakers, whose signals are filtered with the HRTFs and add up so as

to synthesize the binaural signals.

An existing implementation of this system uses 60 microphones placed on a rigid

sphere of 10.1 cm radius. The microphones where distributed according to the Fliege

quadrature nodes, which improve the accuracy of the numerical integration over the

sphere. The sound arriving at the center of the head consists of a superposition of plane

waves weighted by a representative set of HRTFs. Other implementations for the synthesis

of distal HRTFs, based on the directional encoding of the sound field and the virtual

loudspeaker approach, have also been implemented with techniques such as high-order

ambisonics [38], spherical beamforming [39, 40], and wave field synthesis [41]. A benefit

of these initiatives is the encoding of the sound field in a directional and scalable format,

which can alternatively be reproduced by sound field reproduction techniques such as

high-order ambisonics [34] and wave field synthesis [33]. However, there are not enough

studies on binaural synthesis for proximal sound sources in this context.

Table 1.2: Existing systems for binaural synthesis based on spherical microphone arrays.

System Characteristic Limitation
Motion-tracked bin-
aural system [9].

A simple scaling operation al-
lows for the customization to
individual listeners, particu-
larly for the effects of dif-
ferent head sizes and pinna
shapes.

The realism of the synthe-
sized auditory scene is de-
graded due to the lack of
head-related transfer func-
tions during the binaural re-
production.

SENZI [10, 11]. The microphone signals are
simply weighted and summed
to synthesize binaural signals
for distal sound sources.

A new set of microphone’s
weights needs to be computed
for each individual.

High-order binaural
head-tracked system
[12].

The scalable encoding of the
recorded sound field is com-
patible with other sound field
reproduction techniques.

The binaural synthesis for
proximal sound sources have
not yet been addressed.

12



Figure 1.6: The spherical harmonic functions Ynm allow to change the spatial resolution of
a function g defined on a coarse sampling Ωq of the unit sphere. The polar plots of Ynm, with
coarse (left) and fine (right) resolutions, are grouped in the bottom triangles. The spherical
harmonics conform an orthonormal basis for the set of finite-energy signals on samplings
of the unit sphere. Hence, the coarse resolution function g(Ωq) can be decomposed into a
weighted sum of spherical harmonics sampled with the same resolution. The weights cnm

define the spherical spectrum of g. The spectrum can subsequently be used to weight a
different set of spherical harmonics defined on a finer sampling Ωv, so as to reconstruct the
function ĝ(Ωv) with a higher spatial resolution. The converse path is also possible. The
independence of Ωq and Ωv is exploited by the high-order ambisonics technique [34] to
decouple the arrangement of transducers at the recording and reproduction stages.
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Figure 1.7: Binaural synthesis by spherical harmonics. A sound source in the far field is
represented by a plane wave. The sound field due to the plane wave is recorded by the
rigid spherical microphone array. The directional structure of the sound field is charac-
terized by its decomposition into spherical harmonics (cf. Figure 1.6). A set of filters to
compensate for the scattering from the rigid sphere is applied to the spherical spectrum.
The compensated spectrum is reconstructed at a set of representative directions, for which
a set of HRTFs have been measured. Finally, the binaural rendering is based on the virtual
loudspeakers approach (see Figure 1.2), whose weights correspond to the sound field due
to the original sound source.
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1.4 Objective

The sound field representation in terms of spherical harmonics provide a solid theory

for binaural synthesis with the possibility to include the mobility of the head. Several

solutions that aims to synthesize the binaural signals based on the this representation have

been developed (See Table 1.3). Starting from a representative set of measured HRTFs,

the synthesis of distal [18, 38, 41] and proximal [19, 21] sound sources have already been

developed. Extending this approach, the binaural synthesis of distal sound sources from the

recordings made with a rigid spherical microphone array has also been proposed [12, 41].

However, to full cover the 3D auditory space with a spherical microphone array, it is still

necessary to address the binaural synthesis for proximal sound sources.

Therefore, the general objective of the method proposed in this thesis aims to synthesize

the binaural signals for the three-dimensional auditory space, starting from the recordings

made with a rigid spherical microphone array, and a set of representative HRTFs (see

Figure 1.1). The novelty of this proposal is the full covering of the audible space along

direction and distance, for which it is necessary to address the synthesis of the binaural

signals for distal and proximal sound sources. Starting from the sound field captured by

the microphone array, a set of beamformers need to be designed to weight the HRTFs,

which had been previously measured or precomputed for a set of representative distal sound

source positions. The optimal arrangement of the representative sound sources needs also

to be considered. From the overview in Table 1.3, the general goal is subdivided onto the

specific objectives organized in Table 1.4.
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Table 1.3: Overview of binaural synthesis based on spherical harmonics.

Application Distal sources (> 1 m) Proximal sources (< 1 m)
Binaural synthesis
from a set of measured
HRTFs

Decomposition of the HRTFs
in terms of spherical harmon-
ics [18] and weighted sum of
the HRTFs [38, 41].

Acoustic propagation of
the HRTF spherical spec-
trum [19, 21].

Binaural synthesis from
3D recordings and a set
of measured HRTFs

Plane wave decomposition
via compact spherical micro-
phone arrays [12, 41].

Method proposed on this the-
sis. Inspired on spheri-
cal beamforming [40, 42] and
binaural synthesis from com-
puter simulations of acoustic
spaces [43].

Table 1.4: Specific objectives.

Application Distal sources (> 1 m) Proximal sources (< 1 m)
Binaural synthesis
from a set of measured
HRTFs

Chapter 2: To propose an uni-
fied theoretical model based
on a continuous spherical
recording surface.

Chapter 4: References to pre-
vious work.

Binaural synthesis from
3D recordings and a set
of measured HRTFs

Chapter 3: To evaluate the ef-
fect of the spherical micro-
phone array on the accuracy
of the synthesis; and to set
the minimum number of rep-
resentative HRTFs for an ac-
curate synthesis.

Chapter 4: To set the min-
imum distance for proximal
sound sources that is possi-
ble to synthesize with the ex-
tended proposed method.
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Figure 1.8: Overview of the proposed method. The sound field due to a sound source in
the far field is captured and analyzed with spherical harmonics functions for its binaural
rendering based on the virtual loudspeaker approach (see Figure 1.7). We added a filtering
stage in the spherical spectrum domain, intended to scale the radius of the virtual loud-
speaker array so as to to match an inputted desired distance. Starting from the recordings
of a sound source beyond 1 m distance from the center of the listener’s head, made with
a spherical microphone array, our proposal allows for the binaural synthesis of the sound
source at arbitrary distances below 1 m.
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Chapter 2

Binaural synthesis for distal sound

sources by spherical harmonics

2.1 Introduction

This chapter introduces an ideal scenario to synthesize the binaural signals for sound

sources located beyond 1 m distance from the listener head’s center, the so-called distal

sound sources. The synthesis is based on a weighted sum of HRTFs measured for a repre-

sentative set of point-like surrounding sound sources. The weighting functions are derived

from the spherical harmonic decomposition of the sound pressure field on the surface of a

solid sphere. This ideal scenario, where the sound field is assumed to be captured by a rigid

spherical array of infinite microphones, allows for the evaluation of spherical harmonics

order effects and the arrangement of representative sound sources.

Section 2.2 briefly introduces the preliminary theory to synthesize the binaural signals

for sound sources on the distal region. Section 2.3 describes the synthesis method based

on the spherical harmonics analysis of the captured sound field. Section 2.4 shows how

the decomposition order of the spherical harmonics affects the accuracy of the binaural
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synthesis for sound sources in the horizontal plane. Lastly, Section 2.5 summarizes the

contents of this chapter.

2.2 Preliminaries

This section introduces the theory underlying the binaural synthesis from a rigid spher-

ical recording surface and the superposition of a representative set of HRTFs. The theory

of spherical harmonic analysis is then covered, emphasizing its application to characterize

the acoustic scattering from the rigid sphere and the analysis of sound pressure fields. In

this context, the binaural synthesis based on the superposition of a representative set of

HRTFs is lastly described.

2.2.1 Angular solutions to Laplace’s equation: Spherical harmonics

A function ψ that is a solution to the Laplace’s equation is said to be harmonic. The

scalar form of Laplace’s equation in the standard spherical coordinate system is the partial

differential equation [44]

[
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2

]
ψ(r, θ, φ) = 0, (2.1)

where r is the radial distance, θ ∈ [0, π] the inclination angle, and φ ∈ [0, 2π] the azimuth

angle.

Assuming ψ is constant along the radial distance r, the harmonic angular solutions to

Eq. (2.1) can be written ψ = Θnm(θ)Φm(φ). Thus, separation of variables leads to two

ordinary differential equations

[
1

sin θ
d
dθ

(
sin θ

d
dθ

)
+ n(n + 1) −

m2

sin2 θ

]
Θ(θ) = 0, (2.2)

[
d2

dφ2 + m2
]
Φ(φ) = 0. (2.3)
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The solution to Eq. (2.2) is found by the transformation of variables ζ = cos θ, which

leads to the Legendre differential equation. The solution to Eq. (2.3) is simply a complex

exponential function of φ. Both angular solutions are conveniently combined into a single

function Ynm = ΘnmΦm, called the spherical harmonic function of order n and degree m,

defined by [44]

Ynm(θ, φ) = NnmPm
n (cos θ)eimφ, (2.4)

where Pm
n is the associated Legendre function and Nnm a normalization factor.

The associated Legendre function is defined by [44]

Pm
n (ζ) = (−1)m(1 − ζ2)m/2 1

2nn!
dn+m

dζn+m (ζ2 − 1)n, (2.5)

for ζ ∈ [−1, 1], and for positive index n and m. The extension to negative index is computed

with the following two properties

Pm
−n−1(ζ) = Pm

n (ζ), (2.6)

P−m
n (ζ) = (−1)m (n − m)!

(n + m)!
Pm

n (ζ). (2.7)

The normalization factor Nnm is chosen such that
∫ 2π

0

∫ π

0
|Ynm(θ, φ)|2 sin θdθdφ = 1, that

is

Nnm =

√
2n + 1

4π
(n − m)!
(n + m)!

. (2.8)

The spherical harmonics up to oder 2, defined on a continuous sphere of unit radius,

are depicted in Figure 2.1. In these polar plots, the radius corresponds to the magnitude of

the spherical harmonics. The orthonormality property described by Eq. (2.10) is illustrated

by Figure 2.2 for the example in Figure 2.1.
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Spherical harmonic transforms

From now in advance, the direction (θ, φ) will be abbreviated as Ω = (θ, φ). The integral

on the surface of the unit sphere S2,

∫
Ω∈S2

dΩ =

∫ 2π

0

∫ π

0
sin θdθdφ, (2.9)

covers the entire surface of S2.

The spherical harmonics are orthonormal to each other:

∫
Ω∈S2

Ynm(Ω)Y∗n′m′(Ω)dΩ = δn−n′,m−m′ , (2.10)

where ∗ is the complex conjugate operator and δi, j the Kronecker Delta. They are also

complete on S2:
∞∑

n=0

n∑
m=−n

Ynm(Ω)Y∗nm(Ω′) = δ(θ − θ′)δ(φ − φ′), (2.11)

where δ(x) is the Dirac’s delta function. The spherical harmonics thus form a complete set

of orthonomal functions, and therefore an orthonormal basis for the set of square-integrable

functions on S2.

The following addition theorem for two different directions Ωv and Ωq also holds [45]:

n∑
m=−n

Ynm(Ωv)Y∗nm(Ωq) =
2n + 1

4π
Pn(cos Θvq), (2.12)

where Pn is the Legendre function of Eq. (2.5) for m = 0, and Θvq is the angle between the

directions Ωv and Ωq. It is useful to deal with relative directions.

The importance of the spherical harmonics rests in the fact that any square-integrable

function f (Ω) on S2 can be expanded in terms of them as follows [45]:

f (Ω) =

∞∑
n=0

n∑
m=−n

fnmYnm(Ω), (2.13)

where the constants fnm define the spherical wave spectrum, a projection of f (Ω) into the
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Figure 2.1: Polar plots of the magnitude of the spherical harmonics |Ynm(Ω)|, defined for
all directions Ω in the unit sphere S2, for orders n = 0, 1, 2, and degrees m = −n, ..., n,
respectively. The spherical harmonics form a complete set of orthonormal functions. Any
square-integrable function on S2 can thus be expanded as a linear combination of spherical
harmonics.

Figure 2.2: The spherical harmonics Ynm(Ω) of order n and degree m are orthonormal to
each other. Their inner product on the unit sphere, evaluated with Eq. (2.10), equals zero
except when they coincide. This property does not hold on samplings of the unit sphere.
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set of spherical harmonic functions computed as follows [45]:

fnm =

∫
Ω∈S2

f (Ω)Y∗nm(Ω)dΩ. (2.14)

Hence, Eqs. (2.13) and (2.14) are also referred to as the inverse spherical harmonic

transform (ISHT) or decomposition (ISHD), and the spherical harmonic transform (SHT)

or reconstruction (SHR), respectively.

2.2.2 Acoustic scattering from the rigid sphere

Let a = (a,Ω′) be a point on a rigid spherical measurement surface of radius a, and

b = (b,Ω) a point on a spherical radiating surface of radius b (see Figure 2.3). The presence

of the rigid sphere of radius a diffracts the sound wave produced by the source at a point b.

The total pressure field S (a,b, k) on the surface of the rigid sphere, due to a point-like

source at b emiting sound of wave number k, is defined as a sum of the incident pressure

in the free field due to the point-like sound source, and the scattered pressure due to the

presence of a rigid sphere of radius a.

The interaction of sound with a rigid sphere is therefore characterized by [46]

S (a,b, k) = −
1

ka2

∞∑
n=0

hn(kb)
h′n(ka)

(2n + 1)Pn(cos Θ), b > a, (2.15)

where Θ is the angle between the measurement point at a and the source at b, Pn is the

Legendre function of Eq. (2.5) for m = 0, hn is the spherical Hankel function, and k is the

wave number.

Figure 2.4 illustrates the geometry used to characterize the total pressure field described

by Eq. (2.15). The measurement point is placed on the leftmost position of the surface of

the rigid sphere. 360 sound sources at a 1.5 m distance from the center of the sphere,

equiangularly distributed on the horizontal plane, were used. A microphone is placed

on the leftmost position of the equator of a spherical scatterer of 8.5 cm radius. The total
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Figure 2.3: The geometry to model the acoustic scattering from the rigid sphere. The total
pressure at a point a = (a,Ω′), on the surface of the rigid sphere centered at 0 = (0, 0, 0),
equals the superposition of the incident pressure in the free field due to the sound source
located at b = (b,Ω), and the scattered pressure due to the presence of the rigid sphere.

pressure field characterized for sound sources in the full audible frequency range are shown

in Figure 2.5. It has been computed with the algorithm proposed in [6].

The use of microphones placed on opposite points of the equator of a rigid sphere

can significantly reduce the front/back confussion [5]. This fact has inspired, directly or

indirectly, the use of microphone arrays over the surface of a rigid scatterer to record the

sound pressure field for the subsequent binaural synthesis. Rigid spherical microphone

arrays provide good spatial samplings of the sound pressure thanks to the use of a rigid

scatterer that increases the sensitivity to the arrival direction of sound. The sampled sound

field thus recorded can be reproduced over loudspeakers and headphones by characterizing

it as a superposition of virtual sound sources surrounding the listener [37, 43].

2.2.3 Superposition of a representative set of HRTFs

Within a spherical volume of radius b, the sound pressure field P̂ at a point r = (r,Ω),

due to a continuous distribution of secondary monopole sound sources on the sphere b =

(b,Ω′), can be calculated using the Kirchhoff–Helmholtz integral theorem. It reads [44]

P̂(r, k) =

∫
Ω′∈S2

P(r,b, k)G(r,b, k)dΩ′, (2.16)
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Figure 2.4: Top view of the geometry for the characterization of the total pressure field
defined by Eq. (2.15), evaluated at the leftmost point on the surface of the rigid sphere.
The sound sources are equiangularly distributed in the horizontal plane. Sound sources on
azimuths between 0 and 180 degrees are said to lie on the ipsilateral side, and the ones on
azimuths between 180 and 360 degrees, on the contralateral side.

Figure 2.5: Total pressure field at the leftmost point of the rigid sphere described by
Eq. (2.15). The total pressure depends on the size of the sphere, and on the frequency
and position of the sound sources. The sources are on the horizontal plane and cover the
full audible frequency range, from 20 Hz to 20 kHz. In general, ipsilateral sources are re-
ceived with high intensities at the leftmost point, while the contralateral ones are shadowed
and scattered by the rigid sphere. Below 4 kHz, this model approximates the HRTFs fairly
good (cf. Figure 1.5).
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where P denotes the complex amplitude of an incoming wave, with wave number k, arriv-

ing from a point in b, and G the Green’s function characterizing the sound field at r due to

a monopole located at b.

The synthesis of HRTFs is possible by replacing G in Eq. (2.16) by the HRTFs for

sources on b, and P by the density functions ρ at r for a sound source at b. The HRTFs

are interpreted as the complex amplitude of the sound pressure measured at both ears.

Therefore, the formula for the synthesis of HRTFs for sources at any point r, starting from

a set of HRTFs measured from sound sources on the sphere b, results in the following

expression

Ĥ(r, k) =

∫
Ω′∈S2

ρ(r,b, k)H(b)dΩ′. (2.17)

In practice, the integration on the sphere must be approximated by a weighted sum of

a discrete distribution of an integer number V of representative HRTFs, for sound sources

on sampled positions bv = (b,Ωv), and hence, Eq. (2.17) becomes

Ĥ(r, k) =

V∑
v=1

ρ(r,bv, k)Hv(bv)αv, (2.18)

where αv are the normalized quadrature weights that approximates the differential dΩ′ at

each sampled point.

As for the computation of density functions ρv, several sound field techniques have

been applied so as to synthesize the HRTFs for distal sound sources (r = b), and proximal

sound sources (r < b). Wave field synthesis (WFS) [41] and higher order ambisonics

(HOA) [38] have been proposed to synthesize HRTFs for distal sound sources. The sound

field produced by the far field sound sources is typically decomposed into plane-waves,

thus neglecting the distance-related effects, which may be important for the rendering with

high levels of realism [21]. An extension to include the distance effects of sound sources in

the proximal region, based on the modal beamforming technique [40, 42], have also been

proposed.

Following the virtual loudspeaker approach, the binaural synthesis for distal sound
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sources is described in the next section, considering the density functions are derived from

the sound field captured by a continuous spherical recording surface. An extension to a

discrete recording surface is described in Chapter 3. The binaural synthesis for sound

sources in the proximal region is described on Chapter 4.

2.3 Synthesis by a continuous measurement surface

A first appoach to the synthesis of binaural signals is to derive the density functions

from the sound field captured by a continuous spherical measurement surface. We interpret

ρ(bv, k) in Eq. (2.18) as a spherical harmonic decompositon with band-limited spherical

spectrum ρnm(b). Using the spherical harmonic transform in Eq. (2.14), ρ(r,bv, k) can be

written

ρ(r,bv, k) =

N∑
n=0

n∑
m=−n

ρnm(b)Ynm(Ωv), (2.19)

where the truncated sum over n up to a constant N models the practical limited spatial

bandwidth. Here, N must not be confused with the normalization factor Nnm of Eq. (2.4).

Let a = (a,Ω′) represent a rigid spherical measurement surface of radius a (See Figure

2.6), which can be understood as having an infinite number of microphones on the surface

of the rigid sphere. The spherical wave spectrum ρnm(b) can then be computed by back-

propagating the sound pressure due to a source at r measured on the surface of radius a,

denoted by s(a, r, k), to the radiating surface of radius b. Applying the spherical harmonic

transform in Eq. (2.14) to s(a, r), and replacing the result in Eq. (2.19), ρ(r,bv, k) now reads

ρ(r,bv, k) =

N∑
n=0

n∑
m=−n

Bn

∫
Ω′

s(a, r, k)Y∗nm(Ω′)dΩ′Ynm(Ωv), (2.20)

where the beamformers Bn defined on the spherical harmonics domain must be computed

so as to compensate for the measurement effects.
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2.3.1 Spherical beamformers

The measured signal s(a, r) can now be modeled with the acoustic scattering from the

rigid sphere. Replacing s(a, r, k) in Eq. (2.20) by the result of Eq. (2.15), and using the

sum of Eq. (2.12), and the orthonormality property of Eq. (2.10) in the resulting expression

yields

ρ(r,bv, k) = −

N∑
n=0

Bn(a, b, k)
[

hn(kb)
ka2h′n(ka)

]
(2n + 1)Pn(cos Θv), (2.21)

where Θv is the angle between the source at r and the representative source at bv.

The filters Bn are spherical beamformers to be applied on the spherical spectrum, which

can now be chosen in such a way that they compensate the factor in brackets in Eq. (2.21).

Therefore,

Bn(a, b, k) = −ka2 h′n(ka)
hn(kb)

, (2.22)

whose factors are intended to remove the scattering effects from the rigid spherical mea-

surement surface of radius a [35, 36, 47] and to backpropagate the pressure field from the

center of the array to the radiating surface of radius b [44]. The spherical beamformers up

to order N = 14 are shown in Figure 2.7, for a = 8.5 cm and b = 1.5 m.

The replacement of Eq. (2.22) in Eqs. (2.21) and (2.18) results in the following ex-

pression for the transfer functions Ĥ used to synthesize the binaural signals by means of a

continuous spherical measurement surface:

Ĥ(r, k) =

V∑
v=1

αvH(bv, k)
N∑

n=0

(2n + 1)Pn(cos Θv), (2.23)

where the quadrature weights αv applied to the representative HRTFs are chosen in such

way that [36]
V∑

v=1

αvYnm(Ωv)Y∗n′m′(Ωv) = δn−n′δm−m′ . (2.24)

The use of almost regular spherical grids is convenient for computations with spherical

harmonics. Their quadrature weights αv in Eq. (2.24) can be chosen to be equal to the area
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Figure 2.6: Geometry for the synthesis of binaural signals for sound sources in the distal
region. Sound field due to a sound source is ideally measured by a rigid, spherical and
continuous surface of radius a, and then analyzed by spherical harmonics. The rendering
assumes a virtual array of loudspeakers placed on the representative positions bv (see Fig-
ure 1.2). Loudspeaker’s driving signals are computed so that they match the captured sound
field. The synthesized sound sources lie at the same radial distance of the loudspeakers or
farther.

Figure 2.7: Filters to be applied on the spherical spectrum of the recorded signals, along
orders n = 0, ..., 14. They are intended to remove the scattering from a rigid sphere of
8.5 cm radius due to a sound source at a 1.5 m distance (see Eq. (2.22)). On ideal recordings
with infinite microphones, these filters perfectly cancel the scattering up to a given order.
On recordings with microphone arrays, the small size of the spherical scatterer will demand
very large gains to compensate for the high directivity components at low frequencies.
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of the Voronoi cell containing each sampling point, and normalized in such a way that:

V∑
v=1

αv = 1. (2.25)

Given that Eq. (2.23) is independent of the distribution of microphones, it allows for

the evaluation of the isolated effects arising from the arrangement of virtual sources.

2.4 Numerical accuracy of the synthesis

For evaluation, we relied on the computer simulation of a sound field recorded by a

rigid, continuous and spherical measurement surface. The representative positions for the

virtual loudspeakers were arranged in almost regular samplings of a surrounding sphere.

The transfer functions for the whole process were characterized and compared with a set

of target HRTFs computed numerically for a dummyhead.

The number (N + 1)2 of spherical harmonics for an accurate binaural synthesis is deter-

mined by the wave number k of the sound sources. The spatial bandwidth of the captured

sound field depends on the radius a of the rigid spherical measurement surface. On the

other hand, the spatial bandwidth of the representative set of HRTFs is determined by the

radius of the smallest sphere enclosing the listener’s head. In both cases, the radial spheri-

cal wave spectrum is represented by spherical Bessel functions jn(kr), which show a rapid

decay of orders n > kr. Hence, a bound for the required order N of the spherical harmon-

ics analysis to characterize a captured sound field or a set of HRTFs can be approximated

by [48]

N =

⌈
eka
2

⌉
=

⌈
eπ f a

c

⌉
, (2.26)

where f is the frequency of the sound sources in Hz, c the velocity of sound in air in m/s,

and e ≈ 2.7183 (see Figure 2.8).

To approximate the entire audible frequency range, from 20 Hz to 20 kHz, using a

spherical scatterer of a = 8.5 cm radius, which is the size of an average human head, an
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order N = 43 is needed, and therefore, at least V = (43 + 1)2 = 1936 representative sound

sources would be required. However, a limited spatial bandwidth is imposed by the finite

number Q of microphones in practical arrays. In particular, the recording setup available

at the Research Institute of Electrical Communication has Q = 252 microphones arranged

on a spherical scatterer, which allows for spherical harmonics decompositions up to order

N = 14, and therefore the accuracy of the synthesis will only be evaluated up to a spatial

aliasing frequency of around 8 kHz.

2.4.1 Parameters and conditions for the evaluation

The parameter under evaluation was the number of virtual sources. Its effect on the

accuracy of the synthesis is evaluated. The representative sound sources were arranged on

spherical grids based on subdividing each face of an icosahedron (see Figure 2.10). These

icosahedral grids provide an almost regular covering of the sphere. The HRTFs for sets

of representative sound sources at a 1.5 m distance, arranged on icosahedral grids (see

Figure 2.10), were computed using the boundary element method (BEM) [4] with a 3D

mesh of the SAMRAI dummy head.

The accuracy was evaluated by comparing the transfer functions for the whole syn-

thesis process denoted by Ĥ(θ, f ) (see Eq. (2.23)) and a set of target HRTFs computed

numerically for a dummyhead and denoted by H(θ, f ). Synthesis accuracy along azimuth

θ was measured by the spectral distortion (SD) defined by the logarithmic spectral distance

between H(θ, f ) and Ĥ(θ, f ) [49]

S D(θ) =

√√
1
I

I∑
i=1

(
20 log10

∣∣∣∣∣∣H(θ, fi)
Ĥ(θ, fi)

∣∣∣∣∣∣
)2

. (2.27)

Synthesis accuracy along frequency f was measured by the normalized spherical correla-

tion (SC) between H(θ, f ) and Ĥ(θ, f ) [21]

S C( f ) =

∑P
p=1 H(θp, f )Ĥ(θp, f )√∑P

p=1 H(θp, f )2
√∑P

p=1 Ĥ(θp, f )2
. (2.28)
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Figure 2.8: The order n of the spherical spectrum provides a measure of the spatial band-
width for almost uniform samplings of a sphere (see Eq. (2.26)). The spatial bandwidth
of a captured sound field depends on the radius a of the rigid spherical measurement sur-
face. On the other hand, the spatial bandwidth of the binaural localization cues, due to the
scattering from the listener’s head, depends on the radius of the smallest sphere enclos-
ing the head. In both cases, the frequency of sound sources defines the minimum number
of microphones to capture a sound field, or the minimum number of virtual loudspeakers
associated to the representative HRTFs.
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The number of synthesized directions on the horizontal plane were P = 360. The

number of frequency bins of the target HRTFs was 512 for a sampling frequency of 48 kHz,

but the error was computed up to 9 kHz, and therefore up to I = 97.

2.4.2 Simulation results

Figure 2.9 shows the target HRTFs on the horizontal plane, which have been computed

with a BEM solver. Figure 2.11 shows the HRTFs synthesized with a continuous rigid

spherical measurement surface of 8.5 cm radius, spherical harmonic functions up to or-

der 14, and representative sound sources distributed on icosahedral grids. Here, the spatial

aliasing effects start to appear around 8 kHz, affecting the shadowed side of the head. Fig-

ure 2.12 shows the synthesis accuracy along frequency and direction, measured with the

spectral distortion in Eq. (2.27) and the normalized spherical correlation in Eq. (2.28).
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Figure 2.9: Head-related transfer functions for the left ear and sound sources on the hori-
zontal plane. They were computed with the boundary element method (BEM) [4] for a 3D
mesh of an artificial head, and 360 sound sources at a 1.5 m distance from the center of
the head, equiangularly distributed on the horizontal plane. The transfer functions of the
binaural synthesis method, described in Eq. (2.23), are compared with these target HRTFs.
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(a) 642 points.

(b) 1212 points.

Figure 2.10: Spherical grids based on subdivisions of the vertex of an icosahedrum. The
grid on Panel (a) was obtained by subdividing each vertex into 7 intervals. The grid on
Panel (b) was obtained by subdividing each vertex into 10 equal intervals. These icosahe-
dral grids define a set of representative positions used to place the virtual loudspeakers for
binaural synthesis (see Figure 2.6).
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Figure 2.11: Transfer functions of the binaural synthesis method described by Eq. (2.23).
We refer to these transfer functions as the synthesized HRTFs. They were computed for
virtual loudspeakers arranged on the icosahedral grids shown in Figure 2.10, and spheri-
cal harmonics decompositions of order N = 14. A visual comparison of the synthesized
HRTFs with the target ones in Figure 2.9 shows that the synthesis is fairly good, up a spa-
tial aliasing frequency of around 8 kHz on the ipsilateral side, and around 6 kHz on the
ipsilateral side. The lowest bound is in accordance with Figure 2.8.
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(a) Spectral distortion (dB).

(b) Normalized spherical correlation.

Figure 2.12: Numerical accuracy of the synthesis with virtual loudspeakers on icosahedral
grids. The transfer functions in Figure 2.11 are compared with the target HRTFs in Fig-
ure 2.9 using the spectral distortion in Eq. 2.27 and the normalized spherical correlation in
Eq. (2.28).
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2.5 Summary

With the present approach, a binaural response is synthesized directly from the direc-

tional distribution of the incident pressure field on the rigid sphere. Hence, the underlying

idea of this approach is closely related to modal beamforming techniques [40, 42]. On the

other hand, given the decomposition of the captured sound field in terms of spherical har-

monics and subsequent reconstruction in the directions of the representative sound sources,

the presented is similar to existing techniques for the angular interpolation of HRTFs based

on the spherical harmonic decomposition [18, 19].
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Chapter 3

Binaural synthesis by spherical

microphone arrays

3.1 Introduction

This chapter continues with the evaluation of the binaural synthesis for distal sound

sources introduced in chapter 2. The optimal arrangement of representative sound sources

for angular interpolation is discussed in this Section. A practical scenario for the synthe-

sis is subsequently introduced, where accuracy of the transfer functions or the proposed

system, compared with a set of target HRTFs, is evaluated assuming a finite number of

microphones.

3.2 Sound source distributions for representative HRTFs

Measured or computed sets of HRTFs are usually used for sound sources distributed

on spherical grids centered on the listener’s head. The following characteristics are desired

for the arrangement of the sound sources [48]
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• Least number of measurements: For efficiency, the number of points on the pro-

posed sampling grid must at least equal 2000 sample positions to cover the audible

frequency range (cf. Figure 2.8).

• Equal area division: The proposed sampling grid should have nearly equal area di-

vision of the sphere, which makes all the measurements contribute nearly equally

when used in the spherical harmonic transform.

• Hierarchical structure of data: The database measured on the proposed sampling

grid should be structured such that a low spatial resolution data set, suitable for low

frequencies, is imbedded in the high spatial resolution data set.

• Iso-longitude measurement setup: The proposed sampling strategy should measure

all elevations at each azimuth in order that the listener and apparatus experience the

least rotations.

The three first item are inherent to almost uniform distributions of points on a surround-

ing sphere. The fourth item is related to practical measurement setups due to the simplicity

of mechanical rotations. Given that the scope of our proposal is the almost uniform dis-

tribution of virtual loudspeakers, the next section examines two spherical coverings, the

icosahedral and the Lebedev grids, which fulfill with the three first items.

3.2.1 Spherical samplings

Although the regular covering of the sphere is still an open mathematical problem 2,

several sampling strategies have been proposed for the arrangement of points on a spherical

surface. Among them, the icosahedral grids and the Lebedev grids are of special impor-

tance for computations based on spherical harmonics.

2Uniform distributions of points on the surface of a sphere are only possible for the special cases of the
platonic solids. Many different criteria are used to distribute points almost uniformly, including minimum en-
ergy, covering, packing, Voronoi cells, volume of their convex hull, maximum determinant, cubature weights
and norms of the Lagrange polynomials. [50, 51].
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The icosahedral grids are based on the subdivision of the faces of the icosahedron. A

set of icosahedral grids is shown on Figure 3.1. On the other hand, the Lebedev grids

are constructed so as to have octahedral rotation and inversion symmetry. The number

and location of the grid points together with a corresponding set of integration weights are

determined by enforcing the exact integration of spherical harmonics on the unit sphere

up to a given order. A set of Lebedev grids appear on Figure 3.2. Both spherical grids

fulfill the requirements of least measurements, nearly equal area division, and hierarchical

structure.

3.2.2 Spatial aliasing

The approximation of functions on the unit sphere in terms of the spherical harmonics

is possible thanks to the orthonormality property of Eq. (2.10). However, interference of

orders occurs when applying the spherical harmonic transform on samplings of the sphere,

specially when the number of spherical harmonics (N + 1)2 is lower than the number of

samplings V . Therefore, the orthonormality property does not hold anymore, causing the

so-called spatial aliasing.

A measure of the interference of orders is given by the orthonormality error, defined

by [53]

Enm =

N∑
n′=0

n′∑
m′=−n′

δ(n − n′)δ(m − m′) −
V∑

v=1

αvYnm(Ωv)Y∗n′,m′(Ωv)

2

. (3.1)

The orthonormality error for Icosahedral and Lebedev grids is shown on Figure 3.3. Given

the practical limitation of having a finite number of microphones, Q = 252, the maximum

order is set to N = 14. For this order, the orthonormality error graph provides the minimum

number of representative sound sources for each type: 362 for Icosahedral grids and 302

for Lebedev grids. Although the error is still noticeable, it remains constant. below this

quantity of points and decreasing orders, the interference of orders can be seen on these

plots.
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(a) 362 points. (b) 492 points.

(c) 642 points. (d) 812 points.

(e) 1002 points. (f) 1212 points.

Figure 3.1: Spherical grids based on subdivisions of the vertex of an icosahedron. The grids
were obtained by subdividing each vertex into (a) 5 intervals, (b) 6 intervals, (c) 7 intervals,
(d) 8 intervals, (e) 9 intervals, and (f) 10 intervals. These icosahedral grids define the
representative positions used to place the virtual loudspeakers for binaural synthesis (see
Figure 2.6).

44



(a) 350 points. (b) 434 points.

(c) 590 points. (d) 770 points.

(e) 974 points. (f) 1202 points.

Figure 3.2: Spherical grids proposed by Lebedev [52]. They are constructed so as to
obtain octahedral rotation and inversion symmetry. The number and distribution of points,
together with the corresponding quadrature weights (see Eq. (2.24)), are determined by
enforcing the exact integration of spherical harmonics on the unit sphere up to a given
order. These grids define another set of representative positions used to place the virtual
loudspeakers for the synthesis of binaural signals (see Figure 2.6).
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Figure 3.3: The orthonormality error Enm in Eq. (3.1) defines a measure of the spatial alias-
ing in spherical grids. The measurement is based on the orthonormality property of the
spherical harmonics on the continuous unit sphere. This property does not hold on sam-
plings of the sphere. The spatial bandwidth is set by the order n of the spherical spectrum.
The wider the spatial bandwidth, the bigger the number of points required to avoid the
spatial aliasing.
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3.3 Sampling the continuous measurement surface

In practice, a finite number of microphones at points aq, with q = 1, ...,Q, on the surface

of the rigid sphere is used (See Figure 3.4). Therefore, the integral in Eq. (2.20) must be

approximated with a sum over q. After using the sum in Eq. (2.12) with the resulting sum,

Eqs. (2.19) and (2.20) become the formula for the synthesis of the binaural signals using a

rigid spherical microphone array and a set of representative HRTFs:

Ĥ(r, k) =

V∑
v=1

αvH(bv, k)
N∑

n=0

(2n + 1)Bn

Q∑
q=1

Pn(cos Θvq)βqS (r, aq, k), (3.2)

where Bn is the filter on the spherical harmonic domain defined by Eq. (2.22), Θvq is the an-

gle between the virtual source at bv and the microphone at aq, and the quadrature weights βq

applied to the individual microphone signals are chosen in such way that the orthonormal-

ity property in Eq. (2.10) is fulfilled, and therefore [36]

Q∑
q=1

βqYnm(Ωq)Y∗n′m′(Ωq) = δn−n′δm−m′ . (3.3)

3.3.1 Near field order limitation

High gains at low frequencies appeared on the spherical beamformers due to the inver-

sion of higher orders on the model of acoustic scattering from the rigid sphere of small size

(See Figure 2.7). In order to avoid such a low frequency distortion, frequency and spatial

modes are related so as to select the reconstruction order N according to the wave number k

and the size of the scatterer a such that

N = min(d
eka
2
e, b

√
Q − 1c), (3.4)

where Q is the number of microphones, which imposes the upper limit to the order. The

order selection is illustrated in Figure 3.5.
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Figure 3.4: Geometry for the synthesis of binaural signals for sound sources in the distal
region. The sound field due to a sound source is measured by the rigid spherical micro-
phone array of radius a, and then analyzed by spherical harmonics up to order N. The
rendering assumes a virtual array of loudspeakers placed at the representative positions bv

(see Figure 1.2). The loudspeaker’s driving signals are computed so that they match the
captured sound field. The synthesized sound sources lie at the same radial distance of the
loudspeakers, or farther.

Figure 3.5: Filters to be applied on the spherical spectrum of the recorded signals, along
orders n = 0, ..., 14. They are intended to remove the scattering from a rigid sphere of
8.5 cm radius due to a sound source at a 1.5 m distance (see Eq. (2.22)). The small size of
the spherical scatterer will demand very large gains to compensate for the high directivity
components at low frequencies. To sidestep this drawback, the reconstruction order is
chosen according to the wave number and the size of the scatterer (see Eq. (3.4)). The dark
line sets the upper bound at different frequency bands.
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3.3.2 Matrix formulation

The synthesis of the binaural signals for sound sources in the distal region, from the

spherical harmonic analysis of compact microphone arrays recordings and a set of repre-

sentative HRTFs, described by Eq. 3.2, can be expressed in terms of matrix multiplications.

For each ear, each sound sound source position, and each frequency bin, the follow-

ing expressions represent the transfer function Ĥ of the whole process required for the

proposed binaural synthesis method:

Ĥ =

V∑
v=1

WvHv, (3.5)

for Hv the HRTF associated to the v-th virtual loudspeaker, and its corresponding weighting

coefficient Wv defined by

Wv = FPvS, (3.6)

which depend on the spherical microphone array signals

S =


S 1

...

S Q


Q×1

, (3.7)

the directivity patterns matching the arrays of microphones and virtual loudspeakers

Pv =


P0(Θv1) · · · P0(ΘvQ)

...
. . .

...

PN(Θv1) · · · PN(ΘvQ)


(N+1)×Q

, (3.8)

and the scattering compensation filters

F = −ka2
[

h′0(ka)
h0(kb) · · · (2N + 1)h′N (ka)

hN (kb)

]
1×(N+1)

. (3.9)
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3.4 Numerical accuracy of the synthesized HRTFs

To approximate the entire audible frequency range using a spherical scatterer of a =

8.5 cm radius, which is the size of an average human head, an order N = 43 is needed, and

therefore, at least Q = (43 + 1)2 = 1936 microphones over the sphere would be required.

However, a limited spatial bandwidth is imposed by the reduced number of microphones

in practical arrays, and hence, the accuracy can only be evaluated up to a spatial aliasing

frequency.

3.4.1 Parameters and conditions for the evaluation

The parameter under evaluation was the number of representative sound sources. Its

effect on the accuracy of the synthesis was evaluated. The representative sound sources

were arranged on icosahedral grids and Lebedev grids. The center of the rigid spherical

microphone array was set as the reference position, and its radius was chosen to be 8.5 cm.

The recorded microphone signals were generated with the model of the acoustic scattering

from the rigid sphere in Eq. (2.15), which was computed for 360 sources at a 1.5 m distance

from the reference position, equiangularly distributed on the horizontal plane. The target

HRTFs from 360 sources at a 1.5 m distance equiangularly distributed on the horizontal

plane were computed using the Boundary-Element-Method (BEM) [4] with a 3D mesh of

the SAMRAI dummy head. Other HRTFs from sets of virtual sources at a 1.5 m distance

arranged on icosahedral and Lebedev grids were also computed with the BEM solver.

The evaluation based on a discrete measurement surface was performed. An array

of Q = 252 microphones distributed in a icosahedral grid over the surface of the rigid

sphere of 8.5 cm radius was assumed for this purpose, which is the available setup at the

Research Institute of Electrical Communication, Tohoku University [11]. The number of

microphones Q = 252 imposed a spatial bandwidth limitation up to the order N = 14,

and therefore the accuracy could be evaluated up to a spatial aliasing frequency of around

9 kHz. The model of the acoustic scattering from the rigid sphere was decomposed up
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to order 14 at the positions of the microphones, and reconstructed at the positions of the

virtual sources. The resultant signals were downmixed to a binaural signal. This process is

formulated in Eq. (3.2).

3.4.2 Simulation results

Figure 3.6 shows the target left ear HRTFs computed with a dummy head model and

sources at a 1.5 m distance on the horizontal plane. Figures 3.7 to 3.9 show the transfer

functions obtained with the proposed method for representative sound sources arranged

on icosahedral grids. Figures 3.10 to 3.12 show the synthesized HRTFs obtained with

the proposed method for representative sound sources arranged on Lebedev grids. Fig-

ures 3.13 and 3.14 show the accuracy of the binaural synthesis using the spectral distortion

in Eq. (2.27) and the spherical correlation in Eq. (2.28), respectively. In both cases, the

binaural synthesis were synthesized with 252 microphones arranged on a rigid sphere of

8.5 cm radius and spherical harmonic functions up to order 14. The spatial aliasing effects

start to appear around 8 kHz, affecting the shadowed side of the head the most.
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Figure 3.6: Head-related transfer functions for the left ear and sound sources on the hori-
zontal plane. They were computed with the boundary element method (BEM) [4] for a 3D
mesh of an artificial head, and 360 sound sources at a 1.5 m distance from the center of
the head, equiangularly distributed on the horizontal plane. The transfer functions of the
binaural synthesis method, described in Eq. (2.23), are compared with these target HRTFs.
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Figure 3.7: Transfer functions of the binaural synthesis method described by Eq. (3.2).
We refer to these transfer functions as the synthesized HRTFs. They were computed for
virtual loudspeakers arranged on the icosahedral grids shown in Panels (a) and (b) of Fig-
ure 3.1, and spherical harmonics decompositions of order N = 14. A comparison with the
target HRTFs in Figure 3.6 highlights the discontinuities along frequency due to the order
limitation set by Eq. (3.4) and illustrated in Figure 3.5.

53



Figure 3.8: Transfer functions of the binaural synthesis method described by Eq. (3.2).
We refer to these transfer functions as the synthesized HRTFs. They were computed for
virtual loudspeakers arranged on the icosahedral grids shown in Panels (c) and (d) of Fig-
ure 3.1, and spherical harmonics decompositions of order N = 14. A comparison with the
target HRTFs in Figure 3.6 highlights the discontinuities along frequency due to the order
limitation set by Eq. (3.4) and illustrated in Figure 3.5.
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Figure 3.9: Transfer functions of the binaural synthesis method described by Eq. (3.2).
We refer to these transfer functions as the synthesized HRTFs. They were computed for
virtual loudspeakers arranged on the icosahedral grids shown in Panels (e) and (f) of Fig-
ure 3.1, and spherical harmonics decompositions of order N = 14. A comparison with the
target HRTFs in Figure 3.6 highlights the discontinuities along frequency due to the order
limitation set by Eq. (3.4) and illustrated in Figure 3.5.
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Figure 3.10: Transfer functions of the binaural synthesis method described by Eq. (3.2). We
refer to these transfer functions as the synthesized HRTFs. They were computed for virtual
loudspeakers arranged on the Lebedev grids shown in Panels (a) and (b) of Figure 3.2, and
spherical harmonics decompositions of order N = 14. A comparison with the target HRTFs
in Figure 3.6 highlights the discontinuities along frequency due to the order limitation set
by Eq. (3.4) and illustrated in Figure 3.5.
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Figure 3.11: Transfer functions of the binaural synthesis method described by Eq. (3.2). We
refer to these transfer functions as the synthesized HRTFs. They were computed for virtual
loudspeakers arranged on the Lebedev grids shown in Panels (c) and (d) of Figure 3.2, and
spherical harmonics decompositions of order N = 14. A comparison with the target HRTFs
in Figure 3.6 highlights the discontinuities along frequency due to the order limitation set
by Eq. (3.4) and illustrated in Figure 3.5.
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Figure 3.12: Transfer functions of the binaural synthesis method described by Eq. (3.2). We
refer to these transfer functions as the synthesized HRTFs. They were computed for virtual
loudspeakers arranged on the Lebedev grids shown in Panels (e) and (f) of Figure 3.2, and
spherical harmonics decompositions of order N = 14. A comparison with the target HRTFs
in Figure 3.6 highlights the discontinuities along frequency due to the order limitation set
by Eq. (3.4) and illustrated in Figure 3.5.
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(a) Icosahedral grids.

(b) Lebedev grids.

Figure 3.13: Numerical accuracy of the synthesis with virtual loudspeakers on (a) icosa-
hedral and (b) Lebedev grids. The transfer functions in Figures 3.7 to 3.12 are compared
with the target HRTFs in Figure 3.6, using the spectral distortion (SD) in Eq. (2.27). The
SD is measured in dB.
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(a) Icosahedral grids.

(b) Lebedev grids.

Figure 3.14: Numerical accuracy of the synthesis with virtual loudspeakers on (a) icosahe-
dral and (b) Lebedev grids. The transfer functions in Figures 3.7 to 3.12 are compared with
the target HRTFs in Figure 3.6 using the normalized spherical correlation in Eq. (2.28).
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3.5 Summary

A method for the synthesis of high directional-resolution binaural signals using a lim-

ited number of microphones was proposed. The microphones were arranged on the surface

of a spherical scatterer the size of an average human head. A limited set of HRTFs com-

puted from virtual sources arranged over icosahedral grids around the listener was used.

Spherical harmonics up to order 14 were used for the decomposition of the sound pressure

field in the directions of microphones and for its reconstruction in the directions of virtual

sources. A set of synthesized HRTFs on the horizontal plane, up to the spatial aliasing fre-

quency around 9 kHz, was obtained with a logarithmic spectral distortion below 5 dB. The

benefit of increasing the number of virtual sources was reduction of the low frequency dis-

tortion generated by the inversion of high order terms of the acoustic model for scattering

from the rigid sphere.
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Chapter 4

Extended binaural synthesis method for

proximal sound sources

4.1 Introduction

This chapter extends the proposed method for the binaural synthesis of sound sources

in the proximal region. The recorded sound field is now analyzed with multipoles, an

extension to the spherical harmonics that allows to model the distance propagation of a

sound field.

4.2 Preliminaries

4.2.1 General solutions to the wave equation: Multipoles

The wave equation is a physical model of the propagation of a wave in a medium.

The medium must be considered as a continuum, that is, the atoms in a particle move at

unison. The acoustic propagation of a sound wave in air can be characterized by a change

of pressure δp that produces a displacement of particles δξ, this displacement also produces
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a variation of density δρ that produces a change of pressure, and so on. Thus, the wave

equation arises from the relation between the spatial variation of a movement equation

(δp → δξ) and the temporal variation of a continuity equation (δξ → δρ) by means of a

state equation (δρ → δp). And hence, the behaviour of all these quantities, δp, δξ and δρ,

obey to the wave equation [54].

When the acoustic pressure field ψ(r, θ, φ, k) is represented in the standard spherical

coordinate system (r, θ, φ) for a wave number k, the wave equation reads [44]

[
1
r2

∂

∂r

(
r2 ∂

2

∂r2

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ
+ k2

]
ψ(r, θ, φ, k) = 0. (4.1)

Considering that the spectral solutions are complex exponentials of k, we can focus our

attention on the spatial solutions.

The method of separation of variables ψ = Rnk(r)Θnm(θ)Φm(φ) is used to find the spa-

tial solutions to Eq. (4.1). The general solution to the wave equation in spherical coordi-

nates are the so-called multipoles, which are linear combinations of incoming and outgoing

sound waves. The incoming waves are represented by the spherical Bessel functions of the

first kind jn(kr) and the spherical Hankel functions of the first kind h(1)
n (kr). The outgoing

waves are represented by the spherical Bessel functions of the second kind yn(kr) and the

spherical Hankel functions of the second kind h(2)
n (kr).

The multipole expansion is therefore defined by [44]

ψ(r, θ, φ) =

∞∑
n=0

n∑
m=−n

(anm jn(kr) + bnmyn(kr)) Ynm(θ, φ), (4.2)

for standing wave type solutions, and by [44]

ψ(r, θ, φ) =

∞∑
n=0

n∑
m=−n

(
cnmh(1)

n (kr) + dnmh(2)
n (kr)

)
Ynm(θ, φ), (4.3)

for traveling wave solutions. In analogy with Eq. (2.13), the linear combination coefficients

anm, bnm, cnm and dnm are referred to as the multipole spectrum.
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4.2.2 Distance propagators based on acoustic holography

Acoustic holography [44] is a method to estimate the sound field on a surface of radius r

by measuring acoustic parameters on a different enclosing surface of radius b. Consider

the outgoing wave component in Eq. (4.3) of the general solution to the wave equation in

Eq. (4.1), evaluated at the measurement surface of radius b

ψ(b,Ω) =

∞∑
n=0

n∑
m=−n

cnmhn(kr)Ynm(Ω). (4.4)

Multiplying by Ynm(Ω), integrating the product on the unit sphere as in Eq. (2.9), and

using the property of orthonormality of the spherical harmonics in Eq. (2.10), the spherical

wave spectrum cnm results in

cnm =
ψnm(b)
hn(kb)

. (4.5)

Evaluating Eq. (4.5) at a different surface of radius r, and inserting the resulting ex-

pression into the outgoing component of Eq. (4.3), the sound field at a radius r reads

ψ(r,Ω) =

∞∑
n=0

n∑
m=−n

(
hn(kr)
hn(kb)

ψnm(b)
)

Ynm(Ω). (4.6)

The result in Eq. (4.6) can be generalized to work in both the far and near fields by a

normalization of the spherical Hankel functions so that they do not tend to zero at infinity.

The normalized spherical Hankel functions are defined by [20]

Rn(kr) =
in+1kr
e−ikr hn(kr), (4.7)

which tends to 1 when r tends to infinity.

The normalized spherical Hankel functions, together with the term in parentheses in

Eq. (4.6), leads to the generalized distance propagator in the spherical harmonic domain

ψnm(r) =

(
rhn(kr)
bhn(kb)

)
ψnm(b). (4.8)
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4.2.3 Characterization of HRTFs using the principle of reciprocity

When sound propagates from the source to the listener, the received sound at the lis-

tener’s ears is transformed by the structure and shape of the listener’s body. To represent

the sound pressure at the ears of the listener, two sources should be taken into account: one

is the original acoustic source from the speaker and the other is the secondary source due

to the scattering of human body. It is a complicated problem to apply the wave equation in

this configuration because the receiver, the listener’s ear, is within the scatterer region of

human body. The acoustic principle of reciprocity [44] can be used to remove this difficulty

and to develop a general representation of the HRTFs.

To apply the principle of reciprocity to the analysis of HRTFs [20], it is assumed that

the original acoustic source is located at the listener’s ear, and the microphones are assumed

to be placed some distance away 3. Here, all the scattering sources of human body as the

secondary level sources with the original sources at the listener’s ear together constituting

the source field. From Huygens’ principle, the sum of the waves from all the sources

(including both original and secondary sources) to any point beyond the scatterers (the

human body) can be calculated by integration or numerical modeling.

The HRTFs can thus be reformulated as an acoustic radiation problem [21]. When the

volume velocity at the entrance of the ear canal is known, the radiated pressure field is

completely defined outside a region that encloses all contributing scattering sources. It can

be calculated from the Helmholtz equation assuming that the Sommerfeld radiation condi-

tion is fulfilled. Therefore, the sound pressure field on the enclosing sphere is completely

define only if it large enough to enclose the listener’s head, and also the listener’s torso in

case it was also consider in the measurements.

3The principle of reciprocity has also inspired a fast and efficient method to measure HRTFs by using two
miniature speakers on the listener’s ears and a surrounding array of microphones [55]. However, miniature
speakers with a signal to noise ratio of at least 20 dB, at frequencies below 400 Hz, need still to be developed,
so as to enhance the measurements for low frequencies [56].
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4.3 Synthesis of proximal sound sources

The distance propagators in Eq. (4.8) allow for the embedding of source distance infor-

mation on the binaural synthesis method derived in Chapter 3. Traditional representations

of sound fields based on the spherical harmonics decomposition described by Eqs. (2.13)

and (2.14) do not include the sound source distance information. The multipole expan-

sions in Eqs. (4.2) and (4.3), though, can accurately encode the distance of a sound source.

However, a spherical spectrum cannot be easily converted into a multipole spectrum, even

using the distance compensation described by Eq. (4.8), since this requires establishing

the reference distance b during recording. Furthermore, the multipole decomposition seek

for accurate reproduction, while some recordings may be enhanced by making sounds ap-

pear closer or farther. Therefore, an extended method to synthesize the binaural signals for

arbitrary distances is described in this section.

4.3.1 Extended method

We propose a method to synthesize the binaural signals for sound sources in the prox-

imal region from sound fields represented by spherical harmonics (see Figure 1.8). We

rely on HRTFs for representative sound source positions on the distal region. The radius

of the corresponding virtual loudspeaker array is scaled to match an inputted desired dis-

tance using the acoustic holography propagators in Eq. (4.8). The spherical spectrum of

the recordings is decoded for the virtual loudspeaker array, and the binaural signals are

rendered using the distance-compensated HRTFs. This novel proposal is also an important

step towards the re-creation of the binaural signals for sound sources in the proximal re-

gion, which would demand to consider both the recording of near field sound sources and

the synthesis of HRTFs for sound sources in the proximal region.

Consider a finite number of microphones at points aq, for q = 1, ...,Q, on the surface

of the rigid sphere illustrated in Figure 4.1. As in Chapter 3, the integral in Eq. (2.20) must

be approximated with a sum over q. After using the sum in Eq. (2.12) with the resulting
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sum, Eqs. (2.19) and (2.20) become the transfer functions Ĥ of the proposed method to

synthesize the binaural signals from the recordings made with a rigid spherical microphone

array and a set of representative HRTFs:

Ĥ(r, k) =

V∑
v=1

αvH(bv, k)
N∑

n=0

(2n + 1)Bn

Q∑
q=1

Pn(cos Θvq)βqS (r, aq, k), (4.9)

where Θvq is the angle between the virtual source at bv and the microphone at aq, and the

quadrature weights βq applied to the individual microphone signals are chosen in such way

that [36]
Q∑

q=1

βqYnm(Ωq)Y∗n′m′(Ωq) = δn−n′δm−m′ . (4.10)

The spherical beamformers Bn are now defined by

Bn(r, a, b, k) = −(ka)2h′n(ka) ×
1

hn(kb)
×

[
rhn(kr)
bhn(kb)

]
, (4.11)

where its three factors, from left to right, are intended to remove the scattering effects

from the rigid spherical measurement surface of radius a [35,36,47], to backpropagate the

pressure field from the center of the array to the radiating surface of radius b [44], and to

propagate the sound pressure field to a closer or farther distance.

4.3.2 Matrix formulation

The extended binaural synthesis method in Eq. (4.9), for sound sources in both the

distal and proximal regions, from the spherical harmonic analysis of compact microphone

arrays recordings and a set of representative HRTFs, can conveniently be expressed in

terms of matrix multiplications.

For each ear, each sound sound source position, and each frequency bin, the following

expressions represent the transfer functions Ĥ of the proposed method:

Ĥ =

V∑
v=1

WvHv, (4.12)
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for Hv the HRTF associated to the v-th virtual loudspeaker, and its corresponding weighting

coefficient Wv defined by

Wv = FPvS, (4.13)

which depend on the spherical microphone array signals

S =


S 1

...

S Q


Q×1

, (4.14)

the directivity patterns matching the arrays of microphones and virtual loudspeakers

Pv =


P0(Θv1) · · · P0(ΘvQ)

...
. . .

...

PN(Θv1) · · · PN(ΘvQ)


(N+1)×Q

, (4.15)

and the distance-compensation filters

F = −ka2
[

h′0(ka)
h0(kb)

(
rh0(kr)
bh0(kb)

)
· · · (2N + 1)h′N (ka)

hN (kb)

(
rhN (kr)
bhN (kb)

)]
1×(N+1)

. (4.16)

4.4 Numerical accuracy of the synthesized HRTFs

4.4.1 Parameters and conditions for the evaluation

The parameter under evaluation was the number of representative sound sources and

the distance of sound sources. Its effect on the accuracy of the synthesis was evaluated.

The representative sound sources were arranged on icosahedral and Lebedev grids (see

Figures 3.1 and 3.3). The center of the rigid spherical microphone array was set as the

reference position, and its radius was chosen to be 8.5 cm. The recorded microphone

signals were generated with the model of acoustic scattering from the rigid sphere in

Eq. (2.15), which was computed for 360 sources at a 1.5 m distance from the reference

69



position, equiangularly distributed on the horizontal plane. The target HRTFs (See Fig-

ures 4.2 to 4.4) for 360 sources at different distances, equiangularly distributed on the

horizontal plane, were computed numerically for a dummyhead using a BEM solver [4].

Other HRTFs for sets of representative sound sources at a 1.5 m distance, arranged on

icosahedral and Lebedev grids were also computed with the BEM solver.

The evaluation based on a discrete measurement surface was performed. An array

of Q = 252 microphones distributed on a icosahedral grid over the surface of the rigid

sphere of 8.5 cm radius was assumed for this purpose, which is the available setup at

the Research Institute of Electrical Communication, Tohoku University [11]. The number

of microphones Q = 252 imposed a spatial bandwidth or order N = 14, and therefore

the accuracy could be evaluated up to a spatial aliasing frequency of around 8 kHz. The

model of the acoustic scattering from the rigid sphere was decomposed up to order 14 at the

positions of the microphones, and reconstructed at the positions of the virtual loudspeakers.

The resultant signals were downmixed to a binaural signal. This process is formulated in

Eq. (4.9).

4.4.2 Simulation results

Figures 4.2 to 4.4 show the HRTFs for sound sources on the distal (3.0 m, 1.5 m and

1.0 m) and proximal (0.75 m, 0.50 m and 0.25 m) regions. Compared with distal HRTFs,

the proximal HRTFs show a slight amplification on intensity on the ipsilateral side, and

a slight attenuation on the contralateral side. These HRTFs are the desired output for the

evaluation of the accuracy of the proposed method.

Figure 4.5 to 4.10 shows the spectral distortion between the target HRTFs (see Fig-

ures 4.2 to 4.4) and the HRTFs synthesized with representative sound sources on icosahe-

dral (top Panels) and Lebedev (bottom Panels) grids. The synthesis of sound sources in

the proximal region, on the opposite side of the left ear, shows that the accuracy of the

synthesis tends to decrease as the sound sources approaches the listener’s head.

Figure 4.11 and 4.16 shows the normalized spherical correlation between the target
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HRTFs (see Figures 4.2 to 4.4) and the HRTFs synthesized with representative sound

sources on icosahedral (top Panels) and Lebedev (bottom Panels) grids. The synthesis of

sound sources in the proximal region, at frequencies up to 1 kHz, shows that the accuracy

of the synthesis tends to decrease with both decreasing frequency and distance.

The previous results suggest that the accuracy along azimuth should be based on the

mean value of the spectral distortion for sound sources on the ipsilateral and contralateral

sides. They also suggest to evaluate the accuracy along frequency by computing the mean

value of the spherical correlation over two frequency bands: below 1 kHz (low frequencies)

and between 1 kHz and 8 kHz (high frequencies up to the limit imposed by the finite

number of microphones).

The synthesis accuracy for sources on the ipsilateral side, shown in Figure 4.19, shows

that the accuracy remains almost constant when the synthesis is based on representative

sound sources arranged on icosahedral grids. However, when using the Lebedev grids,

the use of 770 representative sound sources improves the accuracy at all distances. More

important is the evaluation of contralateral sound sources, whose accuracy, in general,

clearly decreases as the sound source approaches the listener’s head. Moreover, as for the

number and arrangement of the representative sound sources, Figure 4.20 shows that the

best accuracies correspond to 1002 points on icosahedral grids and 590 points on Lebedev

grids.

Therefore, Figure 4.17 shows the mean value of the spherical correlation at low fre-

quencies. This plot shows that the accuracy of the synthesis is not affected by the number

of representative sound sources, but it still decreases monotonically as the sound sources

approaches the listener’s head. On the other hand, at high frequencies, as shown by Fig-

ure 4.18, the accuracy does not depend on distance nor frequency, although a slightly im-

proved accuracy is obtained when using 642 sound sources arranged on icosahedral grids.

Finally, Figures 4.21 and 4.22 show the distal and proximal HRTFs, which correspond

to the best accuracies obtained with both icosahedral and Lebedev grids.
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Figure 4.1: Geometry used on the synthesis method of binaural signals for sound sources
on the proximal region. The sound field due to a sound source is measured by the rigid
spherical microphone array of radius a, and then analyzed with spherical harmonics up to
order N. The rendering assumes a virtual array of loudspeakers placed at the representative
positions bv (see Figure 1.2). The radius of the loudspeaker array is scaled so as to to match
an inputted desired distance (see Figure 1.8). The synthesized sound sources can therefore
lie at the same radial distance of the loudspeakers, or farther or nearer.
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Figure 4.2: Distance dependence of the left ear HRTFs. They do not vary for sound sources
on the distal region.
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Figure 4.3: Distance dependence of the left ear HRTFs. The intensity slightly starts to
increase on the ipsilateral side.
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Figure 4.4: Distance dependence of the left ear HRTFs. For sound sources in the proxi-
mal region, the intensity increases with decreased distance on the ipsilateral side, and the
shadowing effect of the head is attenuated on the contralateral side.
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(a) Synthesis at 3 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 3 m and virtual loudspeakers on Lebedev grids.

Figure 4.5: Spectral distortion (dB) between the transfer functions of the binaural synthesis
method described by Eq. (4.9) and the target HRTFs in the top Panel of Figure 4.2. The
synthesis is based on virtual loudspeakers arranged on (a) icosahedral and (b) Lebedev
grids. The loudspeakers driving signals are derived from the recordings made with 252
microphones on a rigid sphere of 8.5 cm radius.
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(a) Synthesis at 1.5 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 1.5 m and virtual loudspeakers on Lebedev grids.

Figure 4.6: Spectral distortion (dB) between the transfer functions of the binaural synthesis
method described by Eq. (4.9) and the target HRTFs in the bottom Panel of Figure 4.2.
The synthesis is based on virtual loudspeakers arranged on (a) icosahedral and (b) Lebedev
grids. The loudspeakers driving signals are derived from the recordings made with 252
microphones on a rigid sphere of 8.5 cm radius.
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(a) Synthesis at 1 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 1 m and virtual loudspeakers on Lebedev grids.

Figure 4.7: Spectral distortion (dB) between the transfer functions of the binaural synthesis
method described by Eq. (4.9) and the target HRTFs in the top Panel of Figure 4.3. The
synthesis is based on virtual loudspeakers arranged on (a) icosahedral and (b) Lebedev
grids. The loudspeakers driving signals are derived from the recordings made with 252
microphones on a rigid sphere of 8.5 cm radius.
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(a) Synthesis at 0.75 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 0.75 m and virtual loudspeakers on Lebedev grids.

Figure 4.8: Spectral distortion (dB) between the transfer functions of the binaural synthesis
method described by Eq. (4.9) and the target HRTFs in the bottom Panel of Figure 4.3.
The synthesis is based on virtual loudspeakers arranged on (a) icosahedral and (b) Lebedev
grids. The loudspeakers driving signals are derived from the recordings made with 252
microphones on a rigid sphere of 8.5 cm radius.
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(a) Synthesis at 0.5 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 0.5 m and virtual loudspeakers on Lebedev grids.

Figure 4.9: Spectral distortion (dB) between the transfer functions of the binaural synthesis
method described by Eq. (4.9) and the target HRTFs in the top Panel of Figure 4.4. The
synthesis is based on virtual loudspeakers arranged on (a) icosahedral and (b) Lebedev
grids. The loudspeakers driving signals are derived from the recordings made with 252
microphones on a rigid sphere of 8.5 cm radius.
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(a) Synthesis at 0.25 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 0.25 m and virtual loudspeakers on Lebedev grids.

Figure 4.10: Spectral distortion (dB) between the transfer functions synthesized by
Eq. (4.9) and the target HRTFs in the bottom Panel of Figure 4.4. Virtual loudspeakers
were arranged on (a) icosahedral and (b) Lebedev grids. An array of 252 microphones on
a rigid sphere of 8.5 cm radius was assumed. A comparisson with Figures 4.5 to 4.9 shows
that, for sound sources in the proximal region on the contralateral side, the accuracy of the
synthesis tends to decrease with decreased distance.
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(a) Synthesis at 3 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 3 m and virtual loudspeakers on Lebedev grids.

Figure 4.11: Normalized spherical correlation between the transfer functions synthesized
by Eq. (4.9) and the target HRTFs in the top Panel of Figure 4.2. Virtual loudspeakers
were arranged on (a) icosahedral and (b) Lebedev grids. The loudspeaker driving signals
are derived from the recordings made with 252 microphones on a rigid sphere of 8.5 cm
radius.
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(a) Synthesis at 1.5 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 1.5 m and virtual loudspeakers on Lebedev grids.

Figure 4.12: Normalized spherical correlation between the transfer functions synthesized
by Eq. (4.9) and the target HRTFs in the bottom Panel of Figure 4.2. Virtual loudspeakers
were arranged on (a) icosahedral and (b) Lebedev grids. The loudspeaker driving signals
are derived from the recordings made with 252 microphones on a rigid sphere of 8.5 cm
radius.
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(a) Synthesis at 1 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 1 m and virtual loudspeakers on Lebedev grids.

Figure 4.13: Normalized spherical correlation between the transfer functions synthesized
by Eq. (4.9) and the target HRTFs in the top Panel of Figure 4.3. Virtual loudspeakers
were arranged on (a) icosahedral and (b) Lebedev grids. The loudspeaker driving signals
are derived from the recordings made with 252 microphones on a rigid sphere of 8.5 cm
radius.
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(a) Synthesis at 0.75 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 0.75 m and virtual loudspeakers on Lebedev grids.

Figure 4.14: Normalized spherical correlation between the transfer functions synthesized
by Eq. (4.9) and the target HRTFs in the bottom Panel of Figure 4.3. Virtual loudspeakers
were arranged on (a) icosahedral and (b) Lebedev grids. The loudspeaker driving signals
are derived from the recordings made with 252 microphones on a rigid sphere of 8.5 cm
radius.
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(a) Synthesis at 0.5 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 0.5 m and virtual loudspeakers on Lebedev grids.

Figure 4.15: Normalized spherical correlation between the transfer functions synthesized
by Eq. (4.9) and the target HRTFs in the top Panel of Figure 4.4. Virtual loudspeakers
were arranged on (a) icosahedral and (b) Lebedev grids. The loudspeaker driving signals
are derived from the recordings made with 252 microphones on a rigid sphere of 8.5 cm
radius.
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(a) Synthesis at 0.25 m and virtual loudspeakers on icosahedral grids.

(b) Synthesis at 0.25 m and virtual loudspeakers on Lebedev grids.

Figure 4.16: Normalized spherical correlation between the transfer functions synthesized
by Eq. (4.9) and the target HRTFs in the bottom Panel of Figure 4.4. Virtual loudspeakers
were arranged on (a) icosahedral and (b) Lebedev grids. An array of 252 microphones
on a rigid sphere of 8.5 cm radius was assumed. Comparissons with Figures 4.11 to 4.15
show that, for sound sources in proximal region and frequencies below 1 kHz, the synthesis
accuracy tends to decrease with decreased frequency and distance.
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Figure 4.17: Mean value of spectral distortion between the target and synthesized HRTFs
for sound sources on the ipsilateral side of the left ear. The synthesis was based on weighted
sums of representative HRTFs for sound sources at a 1.5 m distance arranged on icosahe-
dral (top) and Lebedev (bottom) grids. The weights are derived from the compact array
signals. Lebedev grids provide slightly better accuracies than icosahedral grids, where the
use of 770 representative sound sources improves the accuracy at all distances.
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Figure 4.18: Mean value of spectral distortion between the target and synthesized HRTFs
for sound sources on the contralateral side of the left ear. The synthesis is based on
weighted sums of representative HRTFs for sound sources at a 1.5 m distance arranged
on icosahedral (top) and Lebedev (bottom) grids. The weights are derived from the com-
pact array signals. Lebedev grids provide slightly better accuracies than icosahedral grids.
In both cases, the accuracy decreases monotonically with decreased distance. The best ac-
curacies correspond to 1002 points on icosahedral grids and 590 points on Lebedev grids.
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Figure 4.19: Mean value of spherical correlation between the target and synthesized HRTFs
for sound sources below 1 kHz. Virtual loudspeakers were arranged on icosahedral (top)
and Lebedev (bottom) grids. The weights are derived from the microphone array record-
ings. Lebedev grids provide slightly better accuracies than icosahedral grids. In both cases,
the accuracy of the synthesis is not affected by the number of representative sound sources,
but decreases monotonically with decreased distance.
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Figure 4.20: Mean value of spherical correlations between 1 kHz and 8 kHz. Virtual loud-
speakers were arranged on icosahedral (top) and Lebedev (bottom) grids. The weights are
derived from the compact array signals. Lebedev grids provide slightly better accuracies
than icosahedral grids. In both cases, the accuracy increases slightly and monotonically
with decreased distance. For icosahedral grids, 642 representative sound sources slightly
improve the accuracy at all distances.
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Figure 4.21: HRTFs for (a) distal and (b) proximal sound source synthesized with the
extended method. The synthesis is based on weighted sums of 1002 representative HRTFs
for sound sources at a 1.5 m distance arranged on an icosahedral grid. The weights are
derived from the compact array signals.
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Figure 4.22: HRTFs for (a) distal and (b) proximal sound source synthesized with the
extended method. The synthesis is based on weighted sums of 590 representative HRTFs
for sound sources at a 1.5 m distance arranged on a Lebedev grid. The weights are derived
from the compact array signals.
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4.5 Summary

An extended method to synthesize the binaural signals for distal and proximal sound

sources has been proposed. The recorded sound field has been analyzed with multipoles, an

extension of spherical harmonics that allowed the radial propagation of the sound field. For

sound sources at frequencies below 1 kHz, the accuracy of the synthesis tends to decrease

with decreased distance, but is not affected by the number of representative sound sources.

For sound sources on the contralateral side of the ear, the accuracy also tends to decrease

with distance, but it is possible to select an optimum number of repersentative HRTFs that

provides the best accuracy.
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Chapter 5

Conclusion

A new method to synthesize the binaural signals for the three-dimensional auditory

space was proposed in this thesis. The novelty of our proposal is the full covering of

the audible space along direction and distance, for which it was necessary to address the

binaural synthesis for sources in both the proximal (less than 1 m away) and distal (beyond

1 m) regions. The binaural signals were synthesized by virtual loudspeakers endowed with

HRTFs. The driving signals for the virtual loudspekaers were calculated so to match the

sound field captured by microphones arranged on the surface of a rigid sphere. The size of

the rigid sphere was chosen to equal that of an average human head.

An ideal scenario for the binaural synthesis of sound sources on the distal region, where

the sound field is captured assuming an infinite number of microphones, has been described

in Chapter 2. The synthesis performed in this way, from the directional distribution of the

incident pressure field on a rigid sphere, is closely related to modal beamforming tech-

niques. On the other hand, given the decomposition of the captured sound field in terms

of spherical harmonics, and subsequent reconstruction at the virtual loudspeaker array, the

reported synthesis accuracies were in agreement with existing techniques for the angular

interpolation of HRTFs based on the spherical harmonic decomposition.

A discussion on the optimal arrangement of virtual loudspeakers for an accurate syn-
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thesis of sound sources on the distal region have been introduced in Chapter 3. Moreover,

the synthesis accuracy evaluation was performed considering a practical scenario where

the sound field was captured by a finite number of microphones arranged on the surface of

a rigid sphere. It was found that regular samplings of the sphere allowed to set the mini-

mum number of virtual loudspeakers very close to the number of microphones. Accurate

synthesis of sources on the horizontal plane was obtained up to the spatial aliasing limit

imposed by the finite number of microphones.

An extended method for the binaural synthesis of sound sources in the proximal region

has been proposed in Chapter 4. The generalized method was based on the analysis of

the sound field in terms of multipoles, an extension of spherical harmonics that allows

the radial propagation of the sound field. Theoretically, the closer distance that can be

synthesized is equal to the radius of the smallest sphere enclosing the listener’s head. This

novel proposal is an important step towards the re-creation of the binaural signals for sound

sources in the proximal region, which would demand to consider both the recording of near

field sound sources and the synthesis of HRTFs for sound sources in the proximal region.

In general, the proposed method shows good accuracy along frequency and direction,

as was reported by the spherical correlation and the spectral distortion, up to the limit

imposed by the use of a finite number of microphones. The extended method that includes

the binaural synthesis of proximal sound sources have been evaluated feeding the proposed

system with the model of the acoustic scattering from the rigid sphere, so as to produce the

corresponding HRTFs at the output. It was found that at frequencies below 1 kHz, the

accuracy of the synthesis tended to decrease with decreased distance, but was not affected

by the number of representative HRTFs. However, for sound sources on the contralateral

side of the ear, the accuracy also tended to decrease with distance, but it was possible to

select an optimum number of repersentative HRTFs that provided the best accuracy.

The computational complexity for a future implementation of the present algorithm

can be evaluated from the matrix formulation in Eq. (4.12). Considering the number of

products involved in a matrix multiplications, it can be shown that the running time to
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synthesize a single source, for a number I of frequency bins, is at most of order

O (I × V × (N + 1) × Q) , (5.1)

where I represents the number of frequency bins, V the number of representative sound

sources, N the order of spherical harmonics, and Q the number of microphones. Given

that the proposed method allows for the reduction of V nearly close to Q = (N + 1)2, the

algorithmic complexity for the synthesis of a sound source at each frequency bin can be

finally said to be of order

O
(
(N + 1)5

)
, (5.2)

whose lower bound can be set to O
(
N4 log N

)
for large values of N, by using algorithms

for efficient matrix multiplications.
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