
A Study on Discriminative Learning of Weighted
Abduction

著者 山本 風人
学位授与機関 Tohoku University
URL http://hdl.handle.net/10097/55493

B1IM2051

Master’s Thesis

A Study on Discriminative Learning
of Weighted Abduction

Kazeto Yamamoto

February 8, 2013

Graduate School of Information Science
Tohoku University

A Master’s Thesis
submitted to Graduate School of Information Science,

Tohoku University
in partial fulfillment of the requirements for the degree of

MASTER of ENGINEERING

Kazeto Yamamoto

Thesis Committee:
Professor Kentaro Inui (Supervisor)
Professor Kazuyuki Tanaka (Co-supervisor)
Professor Tetsuo Kinoshita (Co-supervisor)
Associate Professor Naoaki Okazaki (Co-supervisor)

A Study on Discriminative Learning
of Weighted Abduction∗

Kazeto Yamamoto

Abstract

Abduction is inference to the best explanation. Abduction has long been studied in
a wide range of contexts and is widely used for modeling artificial intelligence sys-
tems, such as diagnostic systems and plan recognition systems. Recent advances in the
techniques of automatic world knowledge acquisition and inference technique warrant
applying abduction with large knowledge bases to real-life problems. However, less
attention has been paid to how to automatically learn score functions, which rank can-
didate explanations in order of their plausibility. In this paper, we propose a novel
approach for learning the score function of first-order logic-based weighted abduction
[1] in a supervised manner. Because the manual annotation of abductive explanations
(i.e. a set of literals that explains observations) is a time-consuming task in many cases,
we propose a framework to learn the score function from partially annotated abductive
explanations (i.e. a subset of those literals). More specifically, we assume that we
apply abduction to a specific task, where a subset of the best explanation is associated
with output labels, and the rest are regarded as hidden variables. We then formulate
the learning problem as a task of discriminative structured learning with hidden vari-
ables. Our experiments show that our framework successfully reduces the loss in each
iteration on a plan recognition dataset.

Keywords:

∗Master’s Thesis, Department of System Information Sciences, Graduate School of Information
Sciences, Tohoku University, B1IM2051, February 8, 2013.

i

Contents

1 Introduction 1

2 Background 3
2.1 Abduction . 3
2.2 Weighted Abduction . 3

3 Discriminative Weight Learning of Weighted Abduction 5
3.1 Preliminaries . 6
3.2 Outline of our method . 7
3.3 Learning from complete abductive explanations 9
3.4 Learning from partial abductive explanations 10
3.5 Updating parameters with FFNNs 11
3.6 Procedures of parameter learning . 12

4 Featurizing parameters 13

5 Evaluation 14
5.1 Evaluation for ablity to learn parameters 14

5.1.1 Dataset . 14
5.1.2 Experimental setting . 15
5.1.3 Results and discussion . 15

5.2 Evaluation for featurizing . 16
5.2.1 Features . 16
5.2.2 Results and discussion . 17

6 Related work 17

7 Conclusion 19

Acknowledgements 20

ii

List of Figures

1 An example of discource interpretation with abduction 1
2 An example proof tree . 6
3 Outline of proposed parameter learning method 8
4 Example of transforming hypotheses into FFNNs 24
5 Example dataset. 25
6 Loss function values (closed test) . 26
7 Open test results. 26
8 Results on each feature setting. 27

iii

List of Tables

1 Features used for the system. We show example feature values for
the axioms inst shopping(s) ∧ go step(s, g) → inst going(g), and the
observation inst robbing(R). 17

2 Settings of features used in the experiment. 17

iv

1 Introduction

Making the implicit information (e.g. corefference relations, agent’s plans, etc.) in sen-
tences explicit is an important technique for various tasks in natural language process-
ing. We are trying to construct discource understanding frameworks using abduction
as the framework of making the implicit explicit.

Abduction is inference to the best explanation. Applying abduction to discource
understanding was studied in 1980s and 1990s. The most important study of those
is Interpretation as Abduction (IA) [1] by Hobbs et al. They showed the process of
natural language interpretation can reasonably be described as abductive inference.
For example, let us carry out interpretation on “John went to the bank. He got a loan.”
Treating world knowledge as background knowledge, target sentence to interpret as
observation, IA applies abduction and outputs the best explanation as the result of
interpretation. The interpretation of the example sentence with abduction is showed in
Figure 1. From the result of interpretation, we can retrieve such implicit information
as the goal of “went to the bank” is “got a loan” and that a corefference relation exists
between “John” and “He”.

(∃e1,e2,x1,x2,y1,y2)
 john(x1) ∧ go(e1, x1, x2) ∧ bank(x2) ∧ he(y1) ∧ get(e2, y1, y2) ∧ loan(y2)

loan(y2) ⇒ (∃e2, y1, y3) issue(e2, y3, y2, y1) ∧ financial_inst(y3)

Explanation	 issue(e2, y3, y2, y1)
⇒ get(e2, y1, y2)

financial_inst(x2)
⇒ bank(x2)

x2=y3
issue(e2, x2, x3, x1)
⇒ go(e2, x1, x2)

x1=y1

John went to the bank. He got a loan.

John and he
are coreferent	

bank refers to
a financial bank	

went to the bank
is the purpose of

got a loan	

hypothesized	

Observation	

Input	
hypothesized	

Figure 1: An example of discource interpretation with abduction

While the lack of world knowledge resources hampered applying abduction to real-
life problems in the 1980s and 1990s, a number of techniques for acquiring world

1

knowledge resources have been developed in the last decade [2, 3, 4, 5, 6, etc.]. In
addition, the development of an efficient inference technique of abduction warrant the
application of abduction with large knowledge bases to real-life problems [7]. Conse-
quently, several researchers have started applying abduction to real-life problems ex-
ploiting large knowledge bases. For instance, inspired by [1], [8] propose an abduction-
based natural language processing framework using forty thousands axioms extracted
from the popular ontological resources, WordNet [2] and FrameNet [3]. They evaluate
their approach on the real-life natural language processing task of textual entailment
recognition [9].

However, less attention has been paid to how to automatically learn score func-
tions, which rank candidate explanations in order of their plausibility (henceforth, we
call it the cost function). To apply abductive inference to a wide range of tasks, this
non-trivial issue needs to be addressed because the criterion of plausibility is highly
task-dependent, as discussed in Section 2.2. A notable exception is a series of studies
[10, 11, 12], which emulate abduction in the probabilistic deductive inference frame-
work, Markov Logic Networks (MLNs) [13]. MLN-based approaches can exploit sev-
eral choices of weight learning methods originally developed for MLNs [14, 15, etc.].
However, MLN-based abduction has severe problems when they are applied to dis-
cource processing which we will discuss in Section 6.

In this paper, we propose a novel supervised approach for learning the cost function
of first-order logic-based abduction. This is a framework to learn the cost function
from subsets of explanations (henceforth, we call it partial abductive explanations).
More specifically, we assume that we apply abduction to a specific task, where a sub-
set of the best explanation is associated with output labels, and the rest are regarded
as hidden variables. We then formulate the learning problem as the task of discrim-
inative structured learning with hidden variables. As the cost function, we use the
parametrized non-linear cost function proposed by [1].

This paper is organized as follows. We first give a brief review of abduction and
the cost function of Hobbs et al.’s Weighted Abduction (Section 2). We then show our
approach for learning the parametrized cost function of Weighted Abduction (Section
3). We start with the simple case where complete abductive explanations are given
(Section 3.3), and then describe a method for learning with partial explanations (Sec-
tion 3.4). Finally, we demonstrate how our learning algorithm works with a dataset of

2

plan recognition (Section 4).

2 Background

2.1 Abduction

Abduction is inference to the best explanation. Formally, logical abduction is defined
as follows:

• Given: Background knowledge B, and observations O, where both B and O are
sets of first-order logical formulas.

• Find: A hypothesis (explanation) H such that H∪B |= O, H∪B 6|=⊥, where H is
a set of first-order logical formulas1. We say that p is hypothesized if H∪B |= p,
and that p is explained if (∃q) q→ p ∈ B and H ∪ B |= q.

Typically, several hypotheses H explaining O exist. We call each of them a candi-
date hypothesis, and each literal in a hypothesis an elemental hypothesis. The goal
of abduction is to find the best hypothesis among candidate hypotheses by a specific
evaluation measure. In this paper, we formulate abduction as the task of finding the
minimum-cost hypothesis Ĥ among a set H of candidate hypotheses. Formally, we
find Ĥ = arg min

H∈H
c(H), where c is a function H → R, which is called the cost func-

tion. We call the best hypothesis Ĥ the solution hypothesis. In the literature, several
kinds of cost functions have been proposed, including cost-based and probability-based
[16, 17, 1, 18, 12, etc.].

2.2 Weighted Abduction

Hobbs et al. [1] propose a cost function that can evaluate two types of plausibility of
hypotheses simultaneously: correctness and informativeness. Correctness represents
how reliable the contents of information are. Informativeness is how specific the infor-
mation is. Hobbs et al. parametrized the cost function in a way that one can construct
a cost function that favors more specific and thus more informative explanations, or

1Throughout the paper, |= and ⊥ represent logical entailment and logical contradiction respectively.

3

less specific but more reliable explanations in terms of a specific task by altering the
parameters. The resulting framework is called Weighted Abduction.

In principle, the cost function gives a penalty for assuming specific and unreliable
information but rewards for inferring the same information from different observations.
To the best of our knowledge, Hobbs et al.’s Weighted Abduction is the only framework
that considers the appropriateness of a hypothesis’ specificity. Hobbs et al. exploit this
cost function for text understanding where the key idea is that interpreting sentences is
to find the lowest-cost abductive explanation2 to the logical forms of the sentences in a
agreement with a correctness-informativeness tradeoff. However, they do not elaborate
on how to give the parameters of cost function. There are no existing methods for
learning the parameters automatically.

Let us describe the cost function in more formal way. Following [1], we use the
following representations for background knowledge, observations, and hypothesis
throughout the paper:

• Background knowledge B: a set of first-order logical Horn clause whose literals
in its body are assigned positive real-valued weights. We use a notation pw to
indicate “a literal p has the weight w” (e.g. p(x)0.6 ∧ q(x)0.6 ⇒ r(x)). We use a
vector θ to represent weights on each literal, where each element refers to one
weight on a literal in a specific axiom.

• Observations O: an existentially quantified conjunction of literals. Each literal
has a positive real-valued cost. We use a notation p$c to denote “a literal p has
the cost c,” and c(p) to denote “the cost of the literal p” (e.g. p(x)$10 ∧ q(x)$10).

• Hypothesis H: an existentially quantified conjunction of literals. Each literal
also has a positive real-valued cost (e.g. r(x)$10 ∧ s(x)$10). We define unification
as an operation that merges two literals to one literal with the smaller cost, as-
suming that the arguments of the two literals are the same. For example, given
the hypothesis p(x)$30 ∧ p(y)$10 ∧ q(y)$10, the unification of p(x)$30 and p(y)$10

yields another hypothesis p(x)$10 ∧ q(x)$10, assuming x = y. The unification op-
eration is applicable to any hypotheses, unless H ∪ B 6|=⊥. We say that p(x) is

2Hobbs did not mention cases where there are multiple lowest-cost explanations. So we assume
those cases do not occur in this paper.

4

unified with p(y) if x = y ∧ cθ(p(x)) ≥ cθ(p(y)).3

Given a weight vector θ, the cost function of H is defined as the sum of all the costs of
elemental hypotheses in H:

cθ(H) =
∑
h∈PH

cθ(h) (1)

=
∑
h∈PH

 ∏
i∈chain(h)

θi

 c(obs(h)), (2)

where PH is a set of elemental hypotheses that are not explained nor unified, chain(h)
is a set of indices to a literal in axioms that are used for hypothesizing h, and obs(h) is
an observed literal that is back-chained on to hypothesize h. Henceforth, we refer to a
weight vector θ as the parameter of cost functions.

3 Discriminative Weight Learning of Weighted Abduc-
tion

In this section, we propose a method to learn the parameters of cost function in Weighted
Abduction by recasting the parameter estimation problem as an online discriminative
leaning problem with hidden variables.

The idea is four-fold:

1. We train the cost function with only partially specified gold abductive expla-
nations which we represent as a partial set of the required literals (gold partial
explanations).

2. We automatically infer complete correct abductive explanations from gold par-
tial explanations by abductive inference.

3. We optimize the parameters of the cost function by minimizing the loss func-
tion where the loss is given by the difference of the costs of the minimal-cost
hypothesis and the complete correct abductive explanations.

3If cp(x) = cp(y), we regard that either p(x) or p(y) is unified.

5

4. We employ feed-forward neural networks to calculate the gradient of each pa-
rameter.

In the rest of this section, we first formalize explanation in Weighted Abduction with
directed acyclic graphs (Section 3.1), and we then describe the outline of our learning
method (Section 3.2) and elaborate on our learning framework in the simple case where
complete abductive explanations are given (Section 3.3). We then describe a method
for learning the parameters from partial abductive explanations (Section 3.4). Finally,
we describe how to update the parameters through error back-propagation in FFNNs
(Section 3.5).

3.1 Preliminaries

p(a)$10	 q(b)$10	

t(b)$12	
s(a)$12	

u(a)$18	

u(b)$24	

Observations	

Hypothesis	unification	

backward-‐chaining	

u(x)1.5	 ⇒	 s(x)	

s(x)1.2	 ⇒	 p(x)	 t(x)1.2	 ⇒	 q(x)	

u(x)2.0	 ⇒	 t(x)	

a=b	

Figure 2: An example proof tree

In this paper, we express the hypotheses of Weighted Abduction as directed acyclic
graphs (DAG). Namely, we regard each literal in the hypothesis as a node of DAG and
each of relation between literals as an edge of DAG. We call these graphs proof graph
and use a notation GO,B,H to denote the proof graph made from the observation O, the
background knowledge B and the hypothesis H.

We define following two types of edge in proof graphs:

6

• Backward-chaining: Given the tail node’s literal p(x)$c1 and the head node’s
literal q(x)$c2 , this relation indicates that q(x) ∪ B |= p(x). Namely, q(x) is
hypothesized with p(x). Then, the cost of head node’s literal is caluclated by
multiplication of the cost of tail node’s literal and the weight of background
knowledge (e.g. c2 = c1w, where q(x)w ⇒ p(x)).

• Unification: Given the tail node’s literal p(x) and the head node’s literal p(y),
this relation indicate that p(x) and p(y) are unified and x = y.

Between the tail node and the head node of each edge in a proof graph, the relation
that the head node’s literal explain the tail node’s literal exists. Thus, the set of literals
of leaf nodes in proof graphs corresponds to PH and the set of literals of root nodes in
proof graphs corresponds to O.

We show an example proof graph in Figure 2. This is the proof graph made from
the following background knowledge, observation and hypothesis:

B = { ∀x (s(x)1.2 ⇒ p(x)),∀x(s(x)1.2 ⇒ q(x)),

∀x (u(x)1.5 ⇒ s(x)),∀x(u(x)2.0 ⇒ t(x))}, (3)

O = ∃x (p(a)$10 ∧ q(b)$10) (4)

H = ∃x (u(a)$18 ∧ u(b)$24 ∧ s(a)$12 ∧ t(b)$12 ∧ a = b) (5)

The cost of a hypothesis is calculated with Equation 1. Therefore, the cost of this
hypothesis is calculated as c(H) =

∑
h∈PH

c(h) = $18.

3.2 Outline of our method

In this section, we describe the outline of our learning method. The overall framework
is illustrated in Figure 3.

First, we assume each training example to be a pair (Oi, τi), where Oi is an observa-
tion and τi is a gold partial explanation. A gold partial explanation is a set of literals
that must be included in the correct abductive explanation Ti for the input observation
Oi, i.e. Ti ∪ B |= Oi and τi ⊆ Ti.

Next, we consider the online version of parameter learning 4. For each cycle,
given (Oi, τi), we perform Weighted Abduction for the observations Oi and background

4The batch version can also be considered by accumulating the gradients for each cycle before up-
dating the weights.

7

Observations:	

a$c1	 ∧	 b$c2	 ∧	 c$c3

a$c1	 	 	 	 	 	 b$c2	 	 	 	 	 	 	 	 c$c3	

s$w4c2	

s$w3c5	

Weighted	 Abduction	

a$c1	 	 	 	 	 b$c2	 	 	 	 	 c$c3	

p$w1c1	 q$w2c2	

p$w1w3c1	
a	 b	 c	

p	 q	
w1	

w2	

0	
p	

w3	

Error-‐BP	

a	 b	 c	

s	

s	

w4	
w5	

0	
Error-‐BP	

create	 FFNNs	

offer	 a	 reward

impose	 a	 penalty

least	 cost	
hypothesis	
including	

gold	 literals

Gold	 Partial	 Abductive	
Explanation	 (gold	 literals):	

p	 ∈	 τ

correct？

p$∞	 	

do	 nothing	

YES	

NO	

perform	 learning

section	 3.4

infer	 complete	
explanation	 from	 gold	
partial	 explanation	

(section	 3.3)

calculate	 gradient	 of	
each	 parameter	 by	
backpropagation

I II

III

Background	 Knowledge	

system	 output	
(solution	 hypothesis)

Input

€

ʹ′ T i,θ

€

ˆ H Oi ,θ

Update	 parameters	

Figure 3: Outline of proposed parameter learning method

knowledge B with parameters θ, and get the solution hypothesis ĤOi,θ ([I] in Figure 3).
If ĤOi,θ does not include τi (i.e. ĤOi,θ is an incorrect prediction), we update the param-
eters so that ĤOi,θ includes τi. In order to do so, we first infer a complete abductive
explanation T́i,θ from the gold partial explanation τi ([II]). We then update parameters
θ by imposing a penalty to the wrong solution hypothesis ĤOi,θ and offering a reward to
the inferred correct complete abductive explanation T́i,θ. To compute these updates, we
translate ĤOi,θ and T́i,θ to feed-forward neural networks and perform backpropagation
on them ([III]).

In this paper, we assume that there is enough knowledge to infer the correct ex-
planation in each problem (we call this the knowledge completeness assumption). If
this assumption were not satisfied, which means that the correct explanation is not in-
cluded in the candidate hypotheses, then we could not infer the correct explanation
irrespectively of parameters. In the following discussion, we do not consider a case of
knowledge base shortage.

8

3.3 Learning from complete abductive explanations

Let us first assume that we have a set of training examples labeled with a complete
abductive explanation. Namely, we consider a training dataset
D = {(O1,T1), (O2,T2), ..., (On,Tn)}, where Oi is an observation and Ti is the gold
(correct) complete abductive explanation for Oi, i.e. Ti ∪ B |= Oi.

For each labeled example (Oi,Ti), the solution hypothesis Ĥi is obtained by:

Ĥi = arg min
H∈Hi

cθ(H) (6)

We consider that a solution hypothesis Ĥi is correct if Ĥi = Ti. Now we consider a loss
function that calculates how far the current solution hypothesis is from the gold expla-
nation, analogously to standard learning algorithms. If the current solution hypothesis
is correct, the loss is zero. If Ĥi , Ti, on the other hand, we consider the loss as given
by the following loss function:

E(Oi, θ, Ti) =

1
2

(
cθ(Ti)−cθ(Ĥi)
cθ(Ti)+cθ(Ĥi)

+ m
)2
+ λθ · θ (Ĥi , Ti)

0 (Ĥi = Ti)
, (7)

where λθ · θ is a regularization term and m is a margin. Our goal is to learn the cost
function cθ that has minimal prediction errors. This goal is accomplished by learning
parameters θ∗ which minimize the total loss as below:

θ∗ = arg min
θ

∑
(O,T)∈D

E(O, θ, T) (8)

We describe how to minimize the loss in Section 3.5.
Note that we use the ratio of cost functions 1

2

(
cθ(Ti)−cθ(Ĥi)
cθ(Ti)+cθ(Ĥi)

+ m
)2

as the loss function,

instead of 1
2

(
cθ(Ti) − cθ(Ĥi)

)2
. In the following, we shortly justify the use of the ratio of

cost function. Let us suppose that we employ 1
2

(
cθ(Ti) − cθ(Ĥi)

)2
as the loss function.

Then, we can minimize the loss function by minimizing the weight terms that appear in
both cθ(Ti) and cθ(Hi), namely the weights assigned to axioms that are used in both Ti

and Hi. For instance, given Oi = {p(a)$c}, B = {q(x)w0 ⇒ p(x), s(x)w1 ⇒ q(x), t(x)w2 ⇒
q(x)}, Ti = {s(a)$w0w1c}, Hi = {t(a)$w0w2c}, we can minimize the value of loss function
by minimizing the value of w0. As a result, the learning procedure just decreases w0

as much as possible to minimize the loss function. This prevents our framework from

9

learning a meaningful cost function, because the minimization of weights does not
imply that we can infer the gold hypothesis as the solution hypothesis. To avoid this
problem, we employ the ratio of cost functions.

3.4 Learning from partial abductive explanations

In the above, we assumed that each training example has a complete abductive expla-
nation. However, this assumption is not realistic in many cases because it is usually
prohibitively costly for human annotators to give a complete abductive explanation for
each given input. This leads us to consider representing a training example as a pair
of observation Oi and gold partial explanation τi, which is a partial set of literals that
must be included in the explanation of Oi. In the case of Figure 3, we assumed that the
correct hypothesis for the given observation is partially specified by the literal p ∈ τ.

This way of simplification is essential in real-life tasks. In plan recognition, for
example, it is not an easy job for human annotators to give a complete explanation to
an input sequence of observed events, but they can tell whether it is a shopping story
or a robbing story much more easily, which can be indicated by a small set of gold
literals.

Now, our goal is to learn the cost function from partial explanations
D = {(O1, τ1), (O2, τ2), ..., (On, τn)}. Regarding whether each gold literal is included in
the solution hypothesis ĤOi,θ and the structure of the proof graph GOi,B,ĤOi ,θ

as hidden
states, this task can be seen as discriminative structure learning with hidden states. The
issue is how to infer the complete correct explanation T́i,θ from a given incomplete set
τi of gold literals. Fortunately, this can be done straightforwardly by adding the gold
literals τi to the observation Oi:

O+i = Oi ∪ {t$∞ | t ∈ τi}, (9)

where each gold literal is assigned an infinitive cost. Then, the solution hypothesis
ĤO+i ,θ is equivalent to the complete correct explanation T́i,θ if the following conditions
are satisfied:

• A hypothesis including τi exists in the candidate hypotheses for Oi (the knowl-
edge completeness assumption).

• ĤO+i ,θ has no backward chaining from t ∈ τi.

10

Figure 3 ([II]) illustrates a simple case, where ĤO+i ,θ is inferred by adding the gold
literal p to the observation. Since this added literal p is assigned an infinitive cost, it is
strongly motivated to derive an explanation including that p, resulting in obtaining the
correct explanation T́i,θ.

When these conditions are satisfied, because each t has a huge cost, the system
selects as the solution hypothesis ĤO+i ,θ the hypothesis in which most literals in τi unify
with other literals. Then, assuming the existence of a hypothesis including τi in the
candidate hypotheses for Oi, there is the hypothesis in which each of the literals in
τi unifies to a literal in the candidate hypotheses for O+i , and it is selected as solution
hypothesis ĤO+i ,θ. Because the cost of t must be 0 when it is unified with an other literal
included in Oi or hypothesized from Oi, the cost of ĤO+i ,θ is equal to cost of T́i,θ. So
ĤO+i ,θ must be equal to T́i,θ.

It should be note that we can check whether candidate hypotheses satisfy the above-
mentioned conditions by checking the cost of the solution hypothesis, because any
non-unified t$∞ will result in a huge cost.

3.5 Updating parameters with FFNNs

To update parameters, we want to compute the gradient of the loss function for each
parameter. However, since the cost function and the loss function are both nonlinear to
their parameters, their gradients cannot be computed straightforwardly.

To solve this problem, we propose employing feed-forward neural networks (FFNNs).
An FFNN is a directed acyclic graph where the output of each node j is given by:

z j = h(a j), (10)

a j =
∑

i∈{i|ei→ j∈E}
zi × wi→ j, (11)

where zi denotes the output of node i, ai denotes the degree of activation of node i, h(a)
is an activation function, ei→ j denotes a directed edge from node i to node j, and wi→ j

denotes the weight of ei→ j.
Then, we express the cost function of H with a FFNN. This is achieved by applying

the following convertion to GO,B,H:

1. The cost of each literal in GO,B,H is the output of the node in the corresponding
FFNN.

11

2. Each backward-chaining edge in GO,B,H is an edge with weight w in the FFNN
where w denote the weight of the background knowledge of the corresponding
backward-chaining edge.

3. Each unification edge in GO,B,H is an edge with weight 0 in the FFNN.

4. The activation function of each layer in FFNNs is h(a) = a.

5. An output node) is added to the FFNN, making new edges with weight 1 between
output node and each node that corresponds to each literal in PH (i.e. leef nodes
in the proof graph).

Then, the value of the output node is equal to the cost function cθ(H) in Weighted
Abduction.

We show that the cost function of Weighted Abduction is converted into equivalent
FFNNs as shown in Figure 4. This indicates the FFNN can express the cost function
of Weighted Abduction. Therefore, we are able to apply various techniques in FFNNs
to learning parameters of Weighted Abduction. Namely, gradients of the loss function
can be caluclated easily by using the backpropagation technique of FFNNs.

Moreover, FFNNs are flexible framework and can express various functions by
changing the activation functions or the network’s structure. Thus, this idea can be
apply to not only Weighted Abduction but other various frameworks of abduction.

3.6 Procedures of parameter learning

The overall learning procedure is given in Algorithm 1. First, the solution hypothesis
is inferred from observation O, and if it does not include gold literals τ, it is treated
as a negative example H− (Line 3-6). Next, the positive example H+ is inferred from
observation O+ (Line 7,8). The loss is then calculated from the costs of H+ and H−

(Line 9) H+ and H− is converted into FFNNs (Line 10). The gradient of the loss
function for each non-zero cost literal is assigned to the corresponding node in the
FFNN (Line 11-15). The gradients of the loss function for costs of the other literals are
calculated by applying standard backpropagation to the converted FFNNs (Line 16).
Updating the parameters is performed with these gradients (Line 17). The parameters
are trained iteratively until the learning converges.

12

Algorithm 1 parameter learning
1: Input: B, θ,D
2: repeat
3: for all (O, τ) ∈ D do
4: Ĥ ← In f erence(O, θ)
5: if τ * Ĥ then
6: H− ← Ĥ
7: O+ = O ∪ {t$∞ | t ∈ τ}
8: H+ ← In f erence(O+, θ)
9: EO,θ ← LossFunction(H+,H−)

10: N ← MakeFFNN(H+,H−)
11: for all h ∈ PH+ ∪ PH− do
12: if c(h) > 0 then
13: assign gradient ∂EO,θ

∂c(h)

14: end if
15: end for
16: do backpropagation
17: θ ← U pdateWeights(θ,∇EO,θ)
18: end if
19: end for
20: until convergence
21: Output: θ

4 Featurizing parameters

So far, we have assigned a parameter for each literal which corresponds to a particu-
lar background knowledge. However, in this setting, we can train parameters for the
background knowledge only appear in the training data, therefore the trained system
would not be able to deal with unseen data. In this section, we describe a method
which featurizes parameters of weighted abduction and its learning algorithm.

We introduce a function which defines parameter values:

θi = h(Fi · φ) (12)

where Fi ∈ Rn is the feature vector for a parameter θi which corresponds to a particular

13

background knowledge, φ ∈ Rn is the weights for features and h(·) is the activation
function. In training, instead of parameters, feature weights φ are trained based on a
particular loss function. In Weighted Abduction, since parameter values must be more
than 1.0, we employ the following activation function:

h(a) =
1.0
n
+ exp(a) (13)

where n is the number of literals in the left hand side of the background knowledge
which the literal belongs to. Gradient values of feature weights can be calculated from
gradient values of parameters as follows:

∂EO,θ

∂φk
=

∑
i

(
∂EO,θ

∂θi
Fik

)
(14)

where φk is kth element of the feature weights, Fik is kth element of the feature vector
for a parameter θi.

5 Evaluation

5.1 Evaluation for ablity to learn parameters

We evaluate the proposed learning procedure on the dataset of plan recognition. In
this experiment, we address the following questions: (i) does our leaning procedure
actually decrease prediction errors? (ii) are models trained by our learning procedure
robust to unseen data? To answer these questions, we evaluate prediction performance
on a plan recognition dataset in the two settings: a closed test (i.e., the same dataset is
used for both training and testing) and an open test (i.e., two distinct datasets are used
for training and testing). In order to obtain the lowest-cost hypotheses, we used the
Integer Linear Programming-based abductive reasoner proposed by [7].

5.1.1 Dataset

We used [19]’s story understanding dataset, which is widely used for evaluation of ab-
ductive plan recognition systems [10, 18, 12]. In this dataset, we need to abductively
infer the top-level plans of characters from actions which are represented by the log-
ical forms. For example, given “Bill went to the liquor-store. He pointed a gun at

14

the owner,” plan recognition systems need to infer Bill’s plan. The dataset consists of
development set and a test set, each of which includes 25 plan recognition problems.
The dataset contains on average 12.6 literals in observed logical forms. The back-
ground knowledge base contains of 107 Horn clauses. Figure 5 shows an example of
this dataset.

In our evaluation, we introduced two types of axioms in addition to the original
107 axioms. First, to make the predicates representing top-level plans (e.g. shop-
ping, robbing) disjoint, we generated 73 disjointness axioms (e.g. robbing(x) ⇒
¬shopping(x)). Note that it is still possible to infer multiple top-level plans for one
problem, because we are able to hypothesize robbing(x) ∧ shopping(y). Second,
we generated axioms of superplan-subplans relations (e.g. going by plane(x) ⇒
going by vehicle(x)). In total, we used 220 background axioms for our evaluation.

For evaluating the prediction performance of our system, we focused on how well
the system infers top-level plans, and their subparts (i.e. subplans, role-fillers), follow-
ing [12]. More specifically, we use precision (ratio of inferred literals that are correct),
recall (ratio of correct literals that are inferred by the system), and F-measure (har-
monic mean of precision and recall), because the gold data often has multiple top-level
plan predicates.

5.1.2 Experimental setting

We applied weight regularization in order to prevent overfitting to the training set. The
hyperparameter for regularization λ was set to 0.1. For parameter updating, we em-
ployed the annealing approach; θnew = θ − η0ki∇Eθ where η0 (initial learning rate) was
set to 0.0001, k (annealing parameter) was set to 0.95 and i is the number of iterations.
The hyperparameters were selected based on performances on the development set.
All weights were initialized to 0.0.

5.1.3 Results and discussion

At first, we report results of the closed test where the development set was used for both
training and testing. Figure 6 shows the values of the loss function at each iteration
on the development set. The curve indicates that our learning procedure successfully
reduces values of the loss function at each iteration. The reason for the fluctuation in
values is thought to be the existence of hidden variables.

15

In the open test, we trained our model on the development set and then tested on the
test set. Figure 7 shows plots of values of the three measures (i.e. Precision, Recall
and F-measure) on the test set at each iteration. Although the values are also fluctuate
as with the closed test, performance rises in terms of all measures compared to the
performances at iteration zero (i.e. initial values). The results suggest that the learning
procedure is robust to unseen data.

Singla and Mooney [12] report that the MLN-based approach achieve 72.10 F-
measure on the same test set, which is slightly better than our results. However, our
experimental setting and Singla’s are different on various point such as framework of
abduction (i.e. Weighted Abduction vs. MLN-based abduction), method of parameter
learning (i.e. FFNNs vs. MLNs), method of parameter initialization (i.e. constant
value vs. manually tuning). Therefore, it is unable to compare usefulness of these
frameworks.

It has taken about half an hour to perform training for each iteration. Most of the
time was spent in obtaining solution hypotheses using ILP-based abductive inference.

5.2 Evaluation for featurizing

We evaluate how effective is featurizing parameters in Weighted Abduction. In this ex-
periment, we evaluate prediction performance on a plan recognition dataset in 10-fold
cross validation on some feature settings. The abductive reasoner and the hyperparam-
eters are same as in the evaluation in Section 5.1.

5.2.1 Features

We evaluated three settings on featurizing the paramters. Table 1 shows the details
about the features used in the experiment and Table 2 shows three settings we used in
the experiment. LITERAL and PRED features include information of individual literals
and predicates included in axioms. CLAUSE features capture what axioms are used
in a hypothesis. CLAUSE-OBS and PRED-OBS features combine predicate or clause
with observation information. The reason for introducing CLAUSE-OBS and PRED-

OBS is to capture dependence between parameter weights of Weighted Abduction and
observations. Setting I corresponds original Weighted Abduction. Setting II is more
generalized than Setting I. In addition, Setting III considers dependency between pa-

16

Feature Explanation Example feature value

LITERAL each literal included in the left-hand side go step(s, g), inst shopping(s)
PRED each predicate included in the left-hand side go step, inst shopping
CLAUSE whole clause of axiom inst shopping(s) ∧ go step(s, g)

→ inst going(g)
CLAUSE-OBS combination of CLAUSE and inst shopping(s) ∧ go step(s, g)

each predicate in observations → inst going(g) & inst robbing
PRED-OBS combination of PRED and go step & inst robbing

each predicate in observations

Table 1: Features used for the system. We show example feature values for
the axioms inst shopping(s) ∧ go step(s, g) → inst going(g), and the observation
inst robbing(R).

Feature Setting I Setting II Setting III

LITERAL X X X

PRED X X

CLAUSE X X

CLAUSE-OBS X

PRED-OBS X

Table 2: Settings of features used in the experiment.

rameter weights of Weighted Abduction and observations.

5.2.2 Results and discussion

Figure 8 shows the results of the experiment. The result indicates that our extention
about the parameters successfully improves robustness to unseen data and correct as-
signment of the weight of axioms depend on the observations.

6 Related work

As mentioned in Section 1, abduction has been extensively studied in a wide range
of contexts. However, less attention has been paid to how to automatically learn cost
functions. In the field of Statistical Relational Learning, some researchers [10, 12, 11,

17

etc.] employ Markov Logic Networks [13] to emulate abductive inference. MLNs
provide well-studied software packages of inference and learning.

However, MLN-based approaches require special procedures to convert abduction
problems into deduction problems because of the deductive nature of MLNs. The pi-
oneering work of MLN-based abduction [10] converts background axioms into MLN
logical formulae by (i) reversing implication and (ii) constructing axioms represent-
ing mutual exclusiveness of explanation (e.g. the set of background knowledge ax-
ioms {p1 → q, p2 → q, p3 → q} is converted into the following MLN formulae:
q → p1 ∨ p2 ∨ p3, q → ¬p1 ∨ ¬p2, q → ¬p1 ∨ ¬p3 etc.). As the readers can imag-
ine, MLN-based approach suffers from the inefficiency of inference due to the increase
of converted axioms. Therefore, learning would not scale to larger problems due to the
severe overhead [20]. [12] report that their MLN-based abduction models cannot be
trained in larger dataset.

Moreover, when MLN-based approaches are applied to abduction-based discourse
processing, a critical problem arises. MLN-based approaches represent a hypothesis
as a truth assignment to ground atoms in the Herbrand base of background knowl-
edge, while our framework represents a hypothesis as a set of first-order literals or
equalities of logical variables. This means that a hypothesis generated by MLN-
based approaches loses the first-order information in the input text. As shown in
Section 1, each logical variable in the observation corresponds to a mention in the
discourse; thus losing this information would be a serious drawback in discourse pro-
cessing. For example, suppose that MLN-based approaches produce the hypothesis
president(A), male(A), doctor(B), male(B) (A and B are constants) to the observation
∃p,m1, d,m2{president(p)∧male(m1)∧doctor(d)∧male(m2)}. Then, we can interpret
this hypothesis as two types of first-order logical forms: president(p) ∧ male(m1) ∧
doctor(d) ∧ male(m2) ∧ p = m1 ∧ d = m2, or president(p) ∧ male(m1) ∧ doctor(d) ∧
male(m2) ∧ p = m2 ∧ d = m1. This means that we cannot decide which discourse
mentions are identified as coreferential in the hypothesis generated by MLN-based
approaches. Some previous work [21, 22] represent coreference relations by intro-
ducing special predicates that describe two logical variables are equal, but they use
MLNs to create a classifier (i.e. binary log-linear classification model that utilizes a
number of features) rather than reasoner. Therefore, it is a non-trivial issue to use these
coreference representations with logical inference aimed at complicated commonsense

18

reasoning, which is our goal in abudction-based discourse processing.

7 Conclusion

We have proposed a supervised approach for learning the cost function of Weighted
Abduction. We formulated the learning procedure in the framework of structured learn-
ing with hidden variables. Our approach enables us to learn the non-linear cost function
from partial abductive explanations, which is the typical situation in real-life tasks be-
cause constructing complete abductive explanations is usually a cost-consuming task.
To the best of our knowledge, this is the first work to address the issue of automatic
parameter learning of the cost function of Weighted Abduction, which can evaluate
both the correctness and informativeness of explanations. In our evaluation, we found
that our learning procedure can reduce the value of loss function in each iteration, and
learned weights are also robust to unseen dataset.

Our future work includes large-scale evaluation of our learning procedure. We plan
to evaluate our procedure on the popular natural language processing tasks, coference
resolution with a massive set of axioms extracted from several language resources
(e.g. WordNet [2]). It is also a problem that it takes long time to training weights.
This problem will be critical in training on a large data set. We will address this
problem by improving of abductive reasoner and optimization methods. As discussed
in [1], coreference relation correponds to the unification of two logical variables. We
therefore plan to incorporate a term that represents the cost of variable unification in
the cost function of Weighted Abduction.

19

Acknowledgements

This section is written in Japanese...
本研究を進めるにあたり，ご指導を頂いた乾健太郎教授，岡崎直観准教授，邉

陽太郎助教に感謝致します．
また，日常の議論を通じて多くの知識や示唆を頂いた乾・岡崎研究室の皆様に

感謝致します．特に井之上直也氏には，研究に関する議論や推論エンジンの提供．
論文執筆のサポートなど，修士課程の 2年間を通じて数えきれないほど助けて頂
きました．本当にありがとうございました．
陰ながら私を支えてくださった父と母に感謝致します．苦しい経済状況にも関

わらず常に私の事を第一に考えてくれるその姿は，私にとって，精神的にも大き
な支えでした．ありがとうございました．
最後に，東北大学，そして職員の皆さまに感謝を述べたいと思います．ありが

とうございました．

20

References

[1] J. R. Hobbs, M. Stickel, P. Martin, and D. Edwards. Interpretation as abduction.
Artificial Intelligence, Vol. 63, pp. 69–142, 1993.

[2] C. Fellbaum, editor. WordNet: an electronic lexical database. MIT Press, 1998.

[3] J. Ruppenhofer, M. Ellsworth, M.R. Petruck, C.R. Johnson, and J. Scheffczyk.
FrameNet II: Extended Theory and Practice. Technical report, Berkeley, USA,
2010.

[4] N. Chambers and D. Jurafsky. Unsupervised Learning of Narrative Schemas and
their Participants. In ACL, pp. 602–610, 2009.

[5] S. Schoenmackers, J. Davis, O. Etzioni, and D. Weld. Learning First-order Horn
Clauses from Web Text. In EMNLP, pp. 1088–1098, 2010.

[6] D. Hovy, C. Zhang, E. Hovy, and A. Penas. Unsupervised discovery of domain-
specific knowledge from text. In ACL, pp. 1466–1475, 2011.

[7] N. Inoue and K. Inui. ILP-Based Reasoning for Weighted Abduction. In AAAI
Workshop on Plan, Activity and Intent Recognition, 2011.

[8] E. Ovchinnikova, N. Montazeri, T. Alexandrov, J. R Hobbs, M. McCord, and
R. Mulkar-Mehta. Abductive Reasoning with a Large Knowledge Base for Dis-
course Processing. In IWCS, pp. 225–234, Oxford, UK, 2011.

[9] I. Dagan, B. Dolan, B. Magnini, and D. Roth. Recognizing textual entailment:
Rational, evaluation and approaches - Erratum. NLE, Vol. 16, No. 1, p. 105, 2010.

[10] R. J. Kate and R. J. Mooney. Probabilistic Abduction using Markov Logic Net-
works. In PAIRS, 2009.

[11] J. Blythe, J. R. Hobbs, P. Domingos, R. J. Kate, and R. J. Mooney. Implementing
Weighted Abduction in Markov Logic. In IWCS, pp. 55–64, Oxford, UK, 2011.

[12] P. Singla and P. Domingos. Abductive Markov Logic for Plan Recognition. In
AAAI, pp. 1069–1075, 2011.

21

[13] M. Richardson and P. Domingos. Markov logic networks. ML, pp. 107–136,
2006.

[14] T. N. Huynh and R. J. Mooney. Max-Margin Weight Learning for Markov Logic
Networks. In Proceedings of the International Workshop on Statistical Relational
Learning (SRL-09), 2009.

[15] D. Lowd and P. Domingos. Efficient Weight Learning for Markov Logic Net-
works. In Proceedings of the 11th European conference on Principles and Prac-
tice of Knowledge Discovery in Databases, PKDD 2007, pp. 200–211, 2007.

[16] E. Charniak and R. P. Goldman. A Probabilistic Model of Plan Recognition. In
AAAI, pp. 160–165, 1991.

[17] D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence, Vol. 64 (1), pp. 81–129, 1993.

[18] S. Raghavan and R. J. Mooney. Bayesian Abductive Logic Programs. In STARAI,
pp. 82–87, 2010.

[19] H. T. Ng and R. J. Mooney. Abductive Plan Recognition and Diagnosis: A Com-
prehensive Empirical Evaluation. In KR, pp. 499–508, 1992.

[20] N. Inoue and K. Inui. Large-scale Cost-based Abduction in Full-fledged First-
order Logic with Cutting Plane Inference. In Proceedings of the 12th European
Conference on Logics in Artificial Intelligence, p. to appear, 2012.

[21] Hoifung Poon and Pedro Domingos. Joint unsupervised coreference resolution
with markov logic. In Proceedings of EMNLP, pp. 650–659, 2008.

[22] Yang Song, Jing Jiang, Wayne Xin Zhao, Sujian Li, and Houfeng Wang. Joint
learning for coreference resolution with markov logic. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pp. 1245–1254. ACL, July 2012.

22

List of Publications

Awards

• NLP若手の会第 7回シンポジウム奨励賞

• 第 206回自然言語処理研究会学生奨励賞

International Conferences Papers

• Kazeto Yamamoto, Naoya Inoue, Yotaro Watanabe, Naoaki Okazaki and Ken-
taro Inui. Discriminative Learning of First-order Weighted Abduction from Par-
tial Discource Explanations. In Proceedings of the 14th International Conference
on Intelligent Text Processing and Computational Linguistics. March 2013.

Other Publications

• 山本風人, 井之上直也, 渡邉陽太郎, 岡崎直観, 乾健太郎. 重み付き仮説推論
における部分的な正解仮説からの識別学習. NLP若手の会第 7回シンポジ
ウム. September 2012.

• 山本風人,井之上直也,渡邉陽太郎,岡崎直観,乾健太郎. 誤差逆伝播を利用し
た重み付き仮説推論の教師有り学習. 情報処理学会研究報告, Vol.2012-NL-
206. May 2012.

23

p$10	 q$10	 r$10	

s$5	 t$5	

u$12	

x$6	 y$6	 r$6	

x$10	
s0.5	 ∧	 t0.5	 →	 p	

u1.2	 →	 q	
x2.0	 →	 t	

x0.5	 ∧	 y0.5	 ∧	 r0.5	
→	 u

knowledge	 base	

s	

p	 q	

t	

x	

x	 y	 r	

u	

r	

0.5	

0.5	

0.5	
0.5	

0.5	

1.2	

2.0	

0	

0	

$10	 $10	 $10	

$5	 $6	
$6	 $6	

$12	

$5	

Output	 Nodes	

Error	
Back-‐	
propagation	

backward	 chaining	

unification	

Hypothesis

FFNNs

1	 1	 1	
1	

Figure 4: Example of transforming hypotheses into FFNNs

24

(a) Observations (b) Correct abductive explanations
“Bill went to the store. He paid for some milk” instance shopping(s)
instance going(GO1) shopper(s, BILL)
goer(GO1, BILL) go step(s,GO1)
destination go(GO1, S TORE) pay step(s, PAY1)
instance paying(PAY1) thing shopped f or(s,MILK)
payer(PAY1, BILL)
thing paid(PAY1,MILK)

(c) Background knowledge
instance shopping(s) ∧ go step(s, g)→ instance shopping(s) ∧ pay step(s, pay)→
instance going(g) instance paying(pay)

instance shopping(s) ∧ go step(s, g)∧ instance shopping(s) ∧ pay step(s, pay)→
shopper(s, p)→ goer(g, p) payer(pay, p)

instance shopping(s) ∧ go step(s, g)∧ instance shopping(s) ∧ pay step(s, pay)∧
store(s, str)→ destination go(g, str) thing shopped f or(s, t)→ thing paid(pay, t)

Figure 5: Example dataset.

25

Error	

Figure 6: Loss function values (closed test)

Precision[%]	

Recall[%]	

F1[%]	

Figure 7: Open test results.

26

Precision[%]	

Recall[%]	

F1[%]	

Figure 8: Results on each feature setting.

27

