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1 Introduction

In the real world, there are many complex networks, such as traffic networks,
social networks, biological networks, etc. Such networks are expressed in terms
of graph theory. In this paper we are interested in spectral properties of

graphs G and digraphs
−→
G , which are expected to possess important structural

information of networks.
The adjacency matrix A is used to represent the adjacency relation of a

graph G. The spectrum of a graph G is the table of numbers which are
eigenvalues and their multiplicities of A. The eigenvalues of the adjacency
matrix A can be obtained by solving the eigenvalue problem Ax = λx, or the
characteristic equation det(λI − A) = 0 [2, 3, 7, 8, 10].

Though matrix theory helps to understand complex networks easily, it is
hard to compute such matrices if the number of vertices is large. Therefore, it
is desirable to develop a method for computing spectrum of a large graph G
by means of its smaller components. In this sense, certain product structures
are within our scope. In this paper, we focus on the Comb product of graphs
and Manhattan product of digraphs.

In Chapter 3, we discuss the comb product of graphs, which is a relatively
new concept introduced in the context of random walks and quantum physics
[1, 4, 11, 12, 13]. Let G◃Pn be the comb product of G and Pn, where Pn is a
path graph with n vertices. The spectrum of the comb product of G◃Pn can
be computed by using the following theorem:

Theorem 3.3 Suppose the spectrum of a graph G is given by

Spec G =

(
. . . µk . . .
. . . mk . . .

)
.

Then the spectrum of G ◃ Pn is

Spec G ◃ Pn =

(
. . . λ1(µk) . . . λn(µk) . . .
. . . mk . . . mk . . .

)
,

where λ1(µ) < . . . < λn(µ) are the solutions of

µ =
φn(λ)

φn−1(λ)
,

where φn(λ) is the characterisitic polynomial of Pn. (In fact, φn(λ) is essen-
tially the Chebyshev polynomials of the second kind.)
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We next study the Manhattan product graph, the idea of which was orig-
inated from the Manhattan street network [5, 9]. The Manhattan street net-
work is made up of one-way alternate streets which can be found in the cities
of New York and Barcelona. The spectra of this network has been studied
in [6]. According to the result presented in [6], we know that the geometric
multiplicity of the eigenvalue zero have more than half multiplicity in case of
two-dimensional.

In Chapter 4, we study the spectra of Manhattan product of digraphs and
the properties of zero eigenvalue. We derive a sufficient condition for KV1,V2♯G
to have zero-eigenvalue in terms of connection matrix of a bipartite digraph
KV1,V2 .

Theorem 4.2 Let KV1,V2 be the complete bipartite digraph and A = [auv]u∈V1,v∈V2

the matrix defined by auv = 1 for u → v. Then spectrum of G = KV1,V2♯C2

contains 0 as an eigenvalue if and only if

Spec (AtA) ∋ 1 or Spec ((J − A)(J − A)t) ∋ 1,

where J is the matrix with all entries being one.

For the full spectrum of C2♯Pn we obtain the following:

Theorem 4.6 The spectrum of C2♯Pn is given by

Spec C2♯Pn =

(
0 2 cos kπ

n+2

n− 1 1

)
, k = 1, 2, . . . , n+ 1.

The spectrum of C2♯Pn is obtained by solving the characteristic equation.
To calculate this spectrum, we apply the Chebyshev polynomials of second
kind. From the spectrum of C2♯Pn, we can compute explicitly the asymptotic
spectral distribution of G2♯Pn, as n→ ∞.

Theorem 4.7 The asymptotic spectral distribution of C2♯Pn as n → ∞ is
given by

1

2
δ0 +

1

2
ρ(x)dx,

where

ρ(x) =


1

π
√
4− x2

, −2 < x < 2,

0, otherwise.
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We still have potential areas for open problem. In Chapter 4, we studied
zero eigenvalue property ofKV1,V2♯G. We would like to know all the eigenvalues
of KV1,V2♯G. We calculated spectrum of C2♯Pn mainly using by the Chebyshev
polynomials of second kind. Extending this method, we expect to get the
spectrum of C2m♯Pn, where C2m is a directed cycle with 2m vertices.
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2 Preliminaries

2.1 Graphs and Digraphs

In this section, we recall basic properties of networks under study. With this
aim we begin with some backgrounds on graphs and digraphs and their spectra.

Definition 1. A graph G = (V,E) is a pair of sets, where V is a set of vertices
and E is a set of unordered pairs of vertices of V . We say that vi and vj are
adjacent and write vi ∼ vj if an edge {vi, vj} belongs to E.

Definition 2. A directed graph (or digraph)
−→
G = (V,E) is a pair of sets, where

V is a set of vertices and E is a set of ordered pairs of vertices. We say that
vi and vj are adjacent from vi to vj and write vi → vj if an arc (vi, vj) belongs
to E.

In general, we consider a graph as an undirected graph and a graph G will

be identified with a symmetric digraph
−→
G in a natural manner.

Definition 3. The adjacency matrix A = [aij] of a graph G is defined by

aij =

{
1, if vi ∼ vj ,

0, otherwise.

Definition 4. The adjacency matrix A = [aij] of a digraph
−→
G is defined by

aij =

{
1, if vi → vj ,

0, otherwise.

1

2 3

4 5

A =













0 1 1 0 0

1 0 1 1 1

1 1 0 1 1

0 1 1 0 0

0 1 1 0 0













V = {1, 2, 3, 4, 5}, E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}}

Figure 1: Graph and its adjacency matrix
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1

2 3

4 5

6

A =

















0 0 0 0 0 0
0 0 0 0 1 0
1 0 0 1 0 0
0 1 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0

















V = {1, 2, 3, 4, 5, 6}, E = {(2, 5), (3, 1), (3, 4), (4, 2), (4, 6), (5, 3)}

Figure 2: Digraph and its adjacency matrix

2.2 Characteristic Polynomials

Let G = (V,E) be a graph with |V | = n. The characteristic polynomial of G,
denoted by φG(λ), is defined by

φG(λ) = det(λI − A),

where A is the adjacency matrix of G. φG(λ) can be written in the form:

φG(λ) = λn + c1λ
n−1 + c2λ

n−2 + c3λ
n−3 + . . .+ cn.

Proposition 2.1. The coefficients of the characteristic polynomial of a graph
G satisfy:

(1) c1 = 0;

(2) −c2 is the number of edges of G;

(3) −c3 is twice the number of triangles in G.

Proof. We follow the argument in [2]. For each i ∈ {1, 2, . . . , n}, the number
of (−1)ici is the sum of those principal minors of A which have i rows and
columns.
(1) Since the diagonal elements of A are all zero, we have c1 = 0.
(2) A principal minor with two rows and columns, and which has a non-zero
entry, must be of the form [

0 1
1 0

]
.
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There is one such minor for each pair of adjacent vertices of G, and each has
value −1. Hence (−1)2c2 = −|E|, giving the result.
(3) There are essentially three possibilities for non-trivial principal minors with
three rows and columns:0 1 0

1 0 0
0 0 0

 ,
0 1 1
1 0 0
1 0 0

 ,
0 1 1
1 0 1
1 1 0


and, the only non-zero one is the last. This principal minor corresponds to
three mutually adjacent vertices in G, and so we have the required description
of c3.

Example 2.2.

λ λ
2
− 1 λ

3
− 3λ− 2 λ

4
− 4λ

2
− 1

Figure 3: Examples of characteristic polynomials

2.3 Spectrum

Let A be the adjacency matrix of a graph G. We can obtain the eigenvalues of
A by solving the eigenvalue problem Ax = λx, or the characteristic equation
det(λI − A) = 0.

Definition 5. Let A be the adjacency matrix of G. The spectrum of a graph
G, Spec G, is the table of numbers which are eigenvalues and the multiplicities
of the eigenvalues of A. If the distinct eigenvalues of A are λ1 > λ2 > . . . > λs,
and their multiplicities are m(λ1), m(λ2), . . . , m(λs), respectively, we write

Spec G =

(
λ1 λ2 . . . λs

m(λ1) m(λ2) . . . m(λs)

)
.

The spectrum of a graph
−→
G , Spec

−→
G , is defined in a similar way.
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Since the adjacency matrix of G is symmetric, the multiplicity of an eigen-
value is obtained from the characteristic polynomial, i.e., the algebraic multi-
plicity, which coincides with the geometric multiplicity. In case of a digraph,

since the adjacency matrix of
−→
G is not necessarily symmetric, the multiplicity

of a digraph is defined to be the dimension of the associated eigenspace, i.e.,
the geometric multiplicity. The geometric multiplicity of an eigenvalue λ of a
matrix A does not exceed its algebraic multiplicity.

We present here some results on spectra of simple graphs.

Definition 6. A graph is called complete if all vertices are adjacent to others.
A complete graph with n vertices is denoted by Kn.

Theorem 2.3. The spectrum of Kn is given by

Spec Kn =

(
n− 1 −1
1 n− 1

)
.

Proof. The adjacency matrix of Kn is written in the form:

A =


0 1 . . . 1 1

1 0
. . .

...
...

. . . . . . . . .
...

...
. . . 0 1

1 . . . 1 1 0

 .

We observe that
0 1 . . . 1 1

1 0
. . .

...
...

. . . . . . . . .
...

...
. . . 0 1

1 . . . 1 1 0




1
1
...
1
1

 =


n− 1
n− 1

...
n− 1
n− 1

 = (n− 1)


1
1
...
1
1

 .

This implies that (n− 1) is an eigenvalue. On the other hand, we have
0 1 . . . 1 1

1 0
. . .

...
...

. . . . . . . . .
...

...
. . . 0 1

1 . . . 1 1 0





1
0
−1
0
...
0


=



−1
0
1
0
...
0


= (−1)



1
0
−1
0
...
0


.
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Hence (−1) is an eigenvalue with multiplicity at least n − 1. Combining the
above abservation we conclude that the eigenvalues n− 1 and −1 have multi-
plicities 1 and n− 1, respectively.

Definition 7. A path with n vertices is a graph Pn = (V,E) of the form:
V = {v1, v2, . . . , vn}, E = {vivj; 1 ≤ i ≤ n− 1}.
Theorem 2.4. Let φPn(λ) = φn(λ) be the characteristic polynomial of the
path Pn. Then it holds that

φ1(λ) = λ

φ2(λ) = λ2 − 1

φn+1(λ) = λφn(λ)− φn−1(λ), n ≥ 2.

Proof. The adjacency matrix A of Pn is represented by

A =


0 1 0 . . . 0

1 0 1
...

0 1
. . . . . . 0

...
. . . 0 1

0 . . . 0 1 0

 .
We see that the characteristic polynomials of P1 and P2 are given by

φ1(λ) = λ

φ2(λ) =

∣∣∣∣ λ −1
−1 λ

∣∣∣∣ = λ2 − 1.

For n ≥ 3 we have

φn(λ) =

∣∣∣∣∣∣∣∣∣∣∣

λ −1
−1 λ −1

−1
. . . . . .
. . . λ −1

−1 λ

∣∣∣∣∣∣∣∣∣∣∣

= λφn−1(λ) +

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1
λ −1
−1 λ −1

. . . . . . . . .

−1 λ −1
−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= λφn−1(λ)− φn−2(λ),
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which completes the proof.

The Chebyshev polynomials of the second kind are defined by the trigono-
metric identity. First we observe that

sin 2θ = sin θ(2 cos θ)

sin 3θ = sin θ(4 cos2 θ − 1)

sin 4θ = sin θ(8 cos3 θ − 4 cos θ)

...

sin(n+ 1)θ = sin θ(polynomial of cos θ).

Definition 8. For n ≥ 0, the polynomial Un(x) defined by

Un(cos θ) =
sin(n+ 1)θ

sin θ

is called the Chebyshev polynomial of the second kind of degree n. Then the
Chebyshev polynomials of the second kind fulfill the recurrence relation:

U0(λ) = 1

U1(λ) = 2λ

Un+1(λ) = 2λUn(λ)− Un−1(λ). (2.1)

Theorem 2.5. The characteristic polynomial of the path Pn is given by Un(λ/2).

Proof. Set

Ũn(λ) = Un

(
λ

2

)
.

Then equation (2.1) gives rise to

Ũn+1(λ) = λŨn(λ)− Ũn−1(λ), (2.2)

Ũ0(λ) = 1, Ũ1(λ) = λ, Ũ2(λ) = λ2 − 1.

Thus Ũn(λ) and φn(λ) satisfy the same recurrence relation with the same initial
condition. Hence

Ũn(λ) = φn(λ),

as desired.

Theorem 2.6. The spectrum of the path Pn is given by

Spec Pn =

(
2 cos kπ

n+1

1

)
, k = 1, 2, . . . , n.
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Proof. Let us solve the characteristic equation:

det(λI − A) = φn(λ) = Un

(
λ

2

)
= 0.

Note first that

Un(cos θ) =
sin(n+ 1)θ

sin θ
= 0

is satisfied for

θ =
kπ

n+ 1
, k = 1, 2, . . . , n.

Moreover, for these θ’s the values cos θ are all distinct. Hence the zeroes of
φn(λ) are given by

λ = 2 cos
kπ

n+ 1
, k = 1, 2, . . . , n,

and the multiplicities are all one.

Theorem 2.7. The asymptotic spectral distribution of Pn as n→ ∞ is given
by ρ(x)dx, where

ρ(x) =


1

π
√
4− x2

, −2 < x < 2,

0, otherwise.

The probability density ρ(x)dx is called the arcsine law.

Proof. For a continuous function f(x) we set

Sn =
1

n

n∑
k=1

f

(
2 cos

kπ

n+ 1

)
.

We will compute limn→∞ Sn. Let F (t) = f(2 cos tπ). Then,

Sn =
1

n

n∑
k=1

F

(
k

n+ 1

)
=
n+ 1

n

n∑
k=1

F

(
k

n+ 1

)
1

n+ 1
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Taking the limit as n→ ∞, we have

lim
n→∞

Sn = lim
n→∞

n∑
k=1

F

(
k

n+ 1

)
1

n+ 1

= lim
n→∞

n+1∑
k=1

F

(
k

n+ 1

)
1

n+ 1
.

By the definition of Riemannian integral,

lim
n→∞

Sn =

∫ 1

0

F (t)dt

=

∫ 1

0

f(2 cos tπ)dt.

Let 2 cos tπ = x. Then,

lim
n→∞

Sn =

∫ 2

−2

f(x)

−2π sin tπ
dx

=

∫ 2

−2

f(x) · 1

2π
√

1− (x
2
)2
dx

=

∫ 2

−2

f(x) · 1

π
√
4− x2

dx

Therefore, we see that the asymptotic spectrum distribution of Pn as n → ∞
is given by ρ(x)dx.

2.4 Products of Graphs

Suppose that a graph G is composed of a ‘product’ of two graphs G1 and G2.
From the spectra of G1 and G2, we can expect to obtain the spectrum of G.
In this section, we study the direct sum and direct product of graphs using
simple examples.

Definition 9. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with V1 ∩ V2 =
∅. A direct sum is defined to be a graph G = (V,E), where V = V1 ∪ V2,
E = E1 ∪ E2. We write G = G1 ∪G2.

Proposition 2.8. Let the spectra of G1 and G2 be given by

Spec G1 =

(
λ

′
1 . . . λ

′
s

m(λ
′
1) . . . m(λ

′
s)

)
,
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Spec G2 =

(
λ

′′
1 . . . λ

′′
t

m(λ
′′
1) . . . m(λ

′′
t )

)
,

respectively. Then the spectrum of G is given by

Spec G =

(
λ

′
1 . . . λ

′
s λ

′′
1 . . . λ

′′
t

m(λ
′
1) . . . m(λ

′
s) m(λ

′′
1) . . . m(λ

′′
t )

)
.

Proof. Let A1 and A2 be the adjacency matrices of graphs G1 and G2, respec-
tively. The adjacency matrix A of G is represented by

A =

[
A1 0
0 A2

]
.

Then by the definition of characteristic polynomial we have

φG(λ) =

∣∣∣∣λI1 − A1 0
0 λI2 − A2

∣∣∣∣ = det(λI1 − A1) det(λI2 − A2).

Thus, we can easily know the spectrum of G.

Definition 10. We set V = V1 × V2, where V1 and V2 are the sets of vertices
of G1 and G2, respectively, and

E =

{
{(x, y), (x′

, y
′
)} ;

(1) x = x
′
, y ∼ y

or (2) x ∼ x, y = y
′

}
Then G = (V,E) is called the direct product of G1 and G2, and is denoted

by G = G1 ×G2.

Proposition 2.9. Let the spectrum of G1 and G2 be given by

Spec G1 =

(
λ

′
1 · · · λ

′
s

m(λ
′
1) · · · m(λ

′
s)

)
,

Spec G2 =

(
λ

′′
1 · · · λ

′′
t

m(λ
′′
1) · · · m(λ

′′
t )

)
,

respectively. Then the spectrum of G is given by

Spec G =

(
λ

′
1 + λ

′′
1 · · · λ

′
1 + λ

′′
t · · · λ

′
s + λ

′′
1 · · · λ

′
s + λ

′′
t

m(λ
′
1)m(λ

′′
1) · · · m(λ

′
1)m(λ

′′
t ) · · · m(λ

′
s)m(λ

′′
1) · · · m(λ

′
s)m(λ

′′
t )

)
.
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Proof. Let A1, A2 be the adjacency matrix of graphs G1, G2 respectively. Then
the adjacency matrix A of the direct product G is in the following form:

A = A1 ⊗ I2 + I1 ⊗ A2,

where Ii is the identity matrices of the same order as Ai. If u and v are
eigenvectors for A1 and A2 with eigenvalues of λ

′
and λ

′′
, respectively, then

the vector u⊗ v is an eigenvector of A. Indeed,

A(u⊗ v) = (A1 ⊗ I2 + I1 ⊗ A2)(u⊗ v)

= A1u⊗ v + u⊗ A2v

= λ
′
u⊗ v + u⊗ λ

′′
v

= (λ
′
+ λ

′′
)(u⊗ v).

Hence we see that λ
′
+ λ

′′
is an eigenvalue of G. Consequently, the spectrum

of G consists of the sum of all possible pairs of eigenvalues of G1 and G2.

C4 P2 C4 × P2

× =⇒

Figure 4: Direct product

Example 2.10. Let G be the direct product of C4 and P2. The spectrum of
C4 is

Spec C4 =

(
−2 0 2
1 2 1

)
.

The spectrum of P2 is

Spec P2 =

(
−1 1
1 1

)
.

The spectrum of G = C4 × P2 is

Spec G =

(
−3 −1 1 3
1 3 3 1

)
.
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3 Comb Product Graphs

3.1 Definition and Structures

In this section we discuss the comb product of graphs, which is a relatively
new concept introduced in the context of quantum physics. We refer to the
mathematical formulation given in [11].

Definition 11. Let G1 and G2 be two graphs and assume that the second
graph is given a distinguished vertex o ∈ V (G2). The comb product graph G
is defined as a subgraph of G1 ×G2, obtained by grafting a copy of G2 at the
vertex o into each vertex of G1. The comb product is denoted by G = G1 ◃G2.

o

×

G1 G2 G = G1 . G2

Figure 5: Comb product

3.2 Spectrum of Comb Graphs (A Simple Case)

In this section we derive the spectrum G◃ P2, where G is an arbitrary graph
and P2 is the path of two vertices. Note that if the number of vertices of G is
n, then that of G◃ P2 is 2n.

Theorem 3.1. Let G◃ P2 be the comb product graph with G being any graph
and P2 a path with two vertices. If the spectrum of G is given by

Spec G =

(
µ1 . . . µs

m1 . . . ms

)
,

then the spectrum of G◃ P2 is

Spec G◃ P2 =

(
λ−(µ1) λ+(µ1) . . . λ−(µs) λ+(µs)
m1 m1 . . . ms ms

)
,

15



⇒.

G P2 G . P2

Figure 6: Comb product graph G◃ P2

where

λ±(µ) =
µ±

√
µ2 + 4

2
.

Moreover, λ±(µ1), . . . , λ±(µs) are all distinct.

Proof. Let A be the adjacency matrix of G and Ã be the adjacency matrix of
G◃ P2. Then,

Ã =

[
A I
I 0

]
.

We will obtain the eigenvalues of G◃ P2 by solving the eigenvalue problem:[
A I
I 0

] [
X
Y

]
= λ

[
X
Y

]
,

which may be rewritten as {
AX + IY = λX,

IX = λY.
(3.1)

Suppose that µ is an eigenvalue of A satisfying AX = µX,X ̸= 0. Then (3.1)
becomes

µλY + Y = λ2Y.

Since Y ̸= 0, we have
λ2 − µλ− 1 = 0.

16



Namely,

λ =
µ±

√
µ2 + 4

2
.

We set

λ+ =
µ+

√
µ2 + 4

2
, λ− =

µ−
√
µ2 + 4

2
.

Since λ±(µ) is a monotone function in µ and λ− < 0 < λ+, we see that
λ±(µ1), . . . , λ±(µs) are distinct.

As a result of Theorem 3.1. , we can easily know the spectrum of G ◃ P2

from that of G.

Example 3.2. Here is a simple example. The spectrum of C3 is

Spec C3 =

(
−1 2
2 1

)
.

We can easily derive the spectrum of C3 ◃ P2 by using Theorem 3.1.

Spec C3 ◃ P2 =

(
−1−

√
5 1−

√
2 −1 +

√
5 1 +

√
2

2 1 2 1

)
.

C3 P2 C3 . p2

. =⇒

Figure 7: C3 ◃ P2

3.3 Spectrum of Comb Graphs (A General Case)

In this section, we discuss a general case of G ◃ Pn.

17



.

.

.

.
⇒

G Pn
G . Pn

1

2

n− 1

n

Figure 8: G ◃ Pn

Theorem 3.3. Suppose the spectrum of a graph G is given by

Spec G =

(
. . . µk . . .
. . . mk . . .

)
.

Let Pn be the path graph with n vertices. Then the spectrum of G ◃ Pn is

Spec G ◃ Pn =

(
. . . λ1(µk) . . . λn(µk) . . .
. . . mk . . . mk . . .

)
,

where λ1(µ) < . . . < λn(µ) are the solutions of

µ =
φn(λ)

φn−1(λ)
,

where φn(λ) is the characteristic polynomial of Pn.

Proof. Let A be the adjacency matrix of G. Then the adjacency matrix of
G ◃ Pn is given by

Ã =


0 I 0 · · · 0

I 0
...

0
. . . 0

... 0 I
0 · · · 0 I A

 .
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. . .

β1 β2 βn−1 βn

α1 α2 αn−1

. . .

µ
′

µ

β3 βn−2

α3
αn−2αn−3

−2 2

−2 2

Figure 9: Path

We can obtain the eigenvalues of G ◃ Pn by solving the eigenvalue problem:
0 I 0 · · · 0

I 0
...

0
. . . 0

... 0 I
0 · · · 0 I A




X1

...

Xn

 = λ


X1

...

Xn

 .

Then, 

X2 = λX1

X1 +X3 = λX2

...

Xn−2 +Xn = λXn−1

Xn−1 + AXn = λXn

Let φi(λ) be the characteristic polynomial of the path Pi with i vertices, see
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Theorem 2.4. Then the above equations may be rewritten as

X2 = φ1(λ)X1

X3 = λφ1(λ)X1 −X1 = (λφ1(λ)− φ0(λ))X1 = φ2(λ)X1

...

Xn = λφn−2(λ)X1 − φn−3(λ)X1

= (λφn−2(λ)− φn−3(λ))X1 = φn−1(λ)X1 (3.2)

AXn = λφn−1(λ)X1 − φn−2(λ)X1

= (λφn−1(λ)− φn−2(λ))X1 = φn(λ)X1 (3.3)

By solving the equation (3.2) and (3.3), we can obtain

(φn−1(λ)A− φn(λ))X1 = 0.

Since X1 ̸= 0, we have

det(φn−1(λ)A− φn(λ)) = 0.

Therefore

det

(
A− φn(λ)

φn−1(λ)

)
= 0.

Thus we have shown that if λ is an eigenvalue of G ◃ Pn, then

µ =
φn(λ)

φn−1(λ)
, (3.4)

is an eigenvalue of A. Namely, to find an eigenvalue of G◃Pn we need to solve
the equation (3.4) for a given µ. Now, let α1 < · · · < αn−1 be the roots of
φn−1(λ) = 0 and β1 < · · · < βn be the roots of φn(λ) = 0. Then it follows that
β1 < α1 < β2 < α2 < · · · < αn−1 < βn as in Fig 6. And for every i, x = αi are
vertical asymptotes of φn(λ). We also know that φn(λ) is strictly increasing
(or decreasing) in each interval (αi−1, αi), 1 ≤ i ≤ n. Let µ be an eigenvalue
of A then the equation (3.4) has n distinct solutions, say, λ1(µ) < · · · < λn(µ).
We see from Fig 6 that, λ1(µ), . . . , λn(µ), λ1(µ

′
), . . . , λn(µ

′
) are all distinct for

µ ̸= µ
′
, hence exhaust the eigenvalues of G ◃ Pn.

If the number of the vertices ofG ism, the total number of vertices ofG◃Pn

are mn. By using the characteristic equation, it is quite hard to obtain their
spectrum. But using the Theorem 3.3., we can easily find out the spectrum.
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4 Manhattan Product Digraphs

In this section, we focus on a product of digraphs. Simply by G we denote a
digraph.

4.1 Manhattan Street Network

The lattice structure often appears in realistic networks. As a simple example,
the 2-dimensional integer lattice Z2 is composed of the direct product Z1×Z1.

Similarly the direct product
−→
Z2 =

−→
Z1 ×

−→
Z1 is a basic digraph. The spectra of

Z2 and
−→
Z2 are easily derived from the spectra of Z1 and

−→
Z1, respectively.

Z
2
= Z

1
× Z

1
−→

Z
2
=

−→

Z
1
×

−→

Z
1

Figure 10: Integer lattice

As shown in Fig 11, the Manhattan street network is another lattice struc-
ture. This network of one-way alternate streets can be found in the cities of
New York and Barcelona. By analysing this network, scientific concepts, such
as easy routing, Hamiltonicity and modular structure, has been established.
The spectrum of this network has been discussed in [6]. In this study we in-
troduce the Manhattan product motivated by the Manhattan street network.

4.2 Definition and Structures

We introduce, motivated by the Manhattan street network, the Manhattan
product of digraphs.

Definition 12. Given a digraph G = (V,E), its converse digraph G∨ =
(V,E∨) is obtained from G by reversing all the orientations of the arcs in
E; that is (vi, vj) ∈ E∨ if and only if (vj, vi) ∈ E.
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Figure 11: Manhattan street network

Theorem 4.1. Let G be a digraph and G∨ the converse digraph of G. Then

Spec G = Spec G∨.

Proof. Let A = [aij] be the adjacency matrix of G. Then the adjacency ma-
trix of G∨ is the transposed of A, i.e., At = [aji]. Since the characteristic
polynomials of A and At are the same, we have Spec G = Spec G∨.

The Manhattan product G consists of two graphs G1 and G2 which are
horizontal and vertical digraphs respectively, and G1 and G

∨
1 are embedded to

G2, G
∨
2 alternately, vice versa.

Definition 13. [5] Let Gi = (Vi, Ei) be bipartite digraphs with independent
sets Vi = Vi0 ∪ Vi1, Ni = |Vi|, i = 1, 2, . . . , n. Let π be the characteristic
function of Vi1 ⊂ Vi for any i; that is,

π(u) =

{
0, if u ∈ Vi0,

1, if u ∈ Vi1.

Then, the Manhattan product Mn = G1♯G2♯ · · · ♯Gn is the digraph with vertex
set V (Mn) = V1×V2×· · ·×Vn, and each vertex (u1, . . . , ui, . . . , un) is adjacent
to vertices (u1, . . . , vi, . . . , un), 1 ≤ i ≤ n, when

(1) vi ∈ Γ+(ui) if
∑

j ̸=i π(uj) is even,

(2) vi ∈ Γ−(ui) if
∑

j ̸=i π(uj) is odd,

where Γ+(ui) be the set of vertices which are adjacent from i, and Γ−(ui) be
the set of vertices which are adjacent to i.
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⇒

G1 G2

G1]G2

]

Figure 12: Figure of Manhattan product

4.3 Eigenvalue Properties of KV1,V2
♯C2

One of the interesting properties of the Manhattan product C2m♯C2n is that,
multiplicity of the zero-eigenvalue is more than half of the total sum of mul-
tiplicities [6]. We discuss the eigenvalue properties of KV1,V2♯C2, in particular,
the conditions necessary for having the zero eigenvalue.

Definition 14. A complete bipartite graph is a bipartite graph with its vertex
set being partitioned into two parts V1 and V2, where each edge has one vertex
in V1 and the other in V2. Thus, every pair of vertices in V1 and V2 are adjacent.

Definition 15. A directed cycle of length n, denoted by Cn, is a digraph with
the vertex set {v1, . . . , vn} having arcs (vi, vj), i = 1, . . . , n− 1, and (vn, v1).

We discuss the eigenvalues of KV1,V2♯C2 as a simple example.

23



Theorem 4.2. Let KV1,V2 be the complete bipartite digraph and A = [auv]u∈V1,v∈V2

the matrix defined by auv = 1 for u → v. Then spectrum of G = KV1,V2♯C2

contains 0 as an eigenvalue if and only if

Spec (AtA) ∋ 1 or Spec ((J − A)(J − A)t) ∋ 1,

where J is the matrix with all entries being one.

Proof. Let Ã be the adjacency matrix of KV1,V2♯C2. Then we have

Ã =


0 A I 0

(J − A)t 0 0 I
I 0 0 J − A
0 I At 0

 ,
where J is the matrix in which all entries are 1. We consider the eigenvalue
problem: 

−λ A I 0
(J − A)t −λ 0 I

I 0 −λ J − A
0 I At −λ



X1

X2

X3

X4

 =


0
0
0
0

 ,
which may be rewritten as

−λX1 + AX2 +X3 = 0
(J − A)tX1 − λX2 +X4 = 0
X1 − λX3 + (J − A)X4 = 0
X2 + AtX3 − λX4 = 0.

From the first and second equations, we obtain

X3 = λX1 − AX2

and
X4 = λX2 − (J − A)tX1,

respectively. Substituting X3 and X4 into the third and fourth equations, we
get the following equations:{

((1− λ2)I − (J − A)(J − A)t)X1 + λJX2 = 0
λJX1 + (I − AtA− λ2)X2 = 0

Therefore we obtain the following equation.

det

[
(1− λ2)I − (J − A)(J − A)t λJ

λJ (1− λ2)I − AtA

]
= 0 (4.1)
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Case 1 Case 2 Case 3 Case 4

A =

[

1 0

1 1

]

A =

[

1 1

1 1

]

A =

[

1 0

0 1

]

A =

[

1 1

0 0

]

Figure 13: K2,2 and their adjacency matrix

Thus, G has a zero-eigenvalue if and only if

det

[
I − (J − A)(J − A)t 0

0 I − AtA

]
= 0,

namely,
det[I − (J − A)(J − A)t] = 0 or det[I − AtA] = 0.

The above condition is equivalent to

Spec ((J − A)(J − A)t) ∋ 1 or Spec (AtA) ∋ 1,

as desired.

During the above proof, we have established the following.

Corollary 4.3. The spectrum of G = KV1,V2♯C2 is determined by the charac-
teristic equation (4.1).

Example 4.4. We consider Manhattan product of the K2,2♯C2. Let A =
[auv]u∈V1,v∈V2 the matrix defined by auv = 1 for u → v. Then the matrix A of
K2,2 have 4 cases, as in Fig.13. The characteristic polynomials of K2,2♯C2 are
given as follows:

Case1 : λ8 − 4λ6 + 2λ4 + 4λ2 − 3

Case2 : λ8 − 4λ6 + 2λ4

Case3 : λ8 − 4λ6

Case4 : λ8 − 4λ6 + 2λ4 + 1

We can easily know that they have 0 eigenvalues in Case 2 and Case 3. From
Theorem 4.2, by computing the Spec (AtA) and Spec ((J −A)(J −A)t) in the
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four cases, we can check the existence of zero eigenvalues.

(Case1) Spec (AtA) : det

[
λ− 2 −2
−2 λ− 2

]
= λ4 − 4λ

Spec ((J − A)(J − A)t) : det

[
λ 0
0 λ

]
= λ2

(Case2) Spec (AtA) : det

[
λ− 2 −1
−1 λ− 1

]
= λ2 − 3λ+ 1

Spec ((J − A)(J − A)t) : det

[
λ− 1 0
0 λ

]
= λ(λ− 1)

(Case3) Spec (AtA) : det

[
λ− 1 0
0 λ− 1

]
= (λ− 1)2

Spec ((J − A)(J − A)t) : det

[
λ− 1 0
0 λ− 1

]
= (λ− 1)2

(Case4) Spec (AtA) : det

[
λ− 1 −1
−1 λ− 1

]
= λ2 − 2λ

Spec ((J − A)(J − A)t) : det

[
λ 0
0 λ− 2

]
= λ(λ− 2)

4.4 Spectrum of C2♯Pn

In this section we discuss the spectrum of G = C2♯Pn.

Lemma 16. Let φn(λ) be the characteristic polynomial of G = C2♯Pn. Then
it holds that

φ1(λ) = λ2 − 1

φ2(λ) = λ4 − 2λ2

φn(λ) = λ2(φn−1(λ)− φn−2(λ)), n ≥ 2

Here we set φ0(λ) = 1 tacitly.
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.

.

.

Figure 14: C2♯Pn

Proof. The adjacency matrix of G = C2♯Pn is written in the form:

A =



0 1 1 0
1 0 0 0

0 0
. . .

0 1
. . . . . .

. . . . . . 1 0
. . . 0 0

0 0 0 1
0 1 1 0


.

The characteristic equation of G is given by

φn(λ) = |λI − A| = det



λ −1 −1 0
−1 λ 0 0

0 0 λ −1
. . .

0 −1 −1 λ
. . .

. . . . . . −1 0
. . . . . . 0 0

0 0 λ −1
0 −1 −1 λ


.

27



Let φ(λ) = detΦn(λ). By cofactor expansion with respect to the first column,
we obtain

φn(λ) = λ2 · φn−1(λ) + det



−1 −1 0 · · · 0
0
−1

Φn−1(λ)0
...
0


,

︸ ︷︷ ︸
Ψn−1(λ)

where

detΨn−1(λ) = −φn−1(λ) + det



−1 −1 0 · · · 0
0
−1

Φn−2(λ)0
...
0


︸ ︷︷ ︸

Ψn−2(λ)

= −φn−1(λ) + detΨn−2(λ)

= −φn−1(λ)− φn−2(λ) + detΨn−3(λ)

= −φn−1(λ)− φn−2(λ)− · · · − φ2(λ) + detΨ1(λ).

Therefore

φn(λ) = λ2 · φn−1(λ)− (φn−1(λ) + φn−2(λ) + · · ·+ φ1(λ) + φ0(λ))

= λ2 · φn−1(λ)−

(
n−1∑
i=0

φi(λ)

)
,

φ0(λ) = 1.

Then,

φn(λ)− φn−1(λ) = λ2 · φn−1(λ)− (
n−1∑
i=0

φi(λ))− λ2 · φn−2(λ)− (
n−2∑
i=0

φi(λ))

= λ2 · φn−1(λ)− φn−1(λ)− λ2 · φn−2(λ).

Consequently we obtain

φn(λ) = λ2(φn−1(λ)− φn−2(λ)), (4.2)

as desired.
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Theorem 4.5. Let Ũn(λ) = Un(λ/2), where Un(x) is the Chebyshev polynomial
of the second kind. Then the characteristic polynomial φn(λ) of C2♯Pn is given
by

φn(λ) = λn−1Ũn+1(λ), n ≥ 1.

Proof. Let
ψn+1(λ) = λ−(n−1)φn(λ), n ≥ 0.

Multiplying λ−(n−1) both sides of the equation (4.2) in Lemma 16, we get

ψn+1(λ) = λ−n+3 φn−1(λ)− λ−n+3 φn−2(λ)

= λψn(λ)− ψn−1(λ).
(4.3)

This coincides with the recurrence relations satisfied by Ũ(λ), see (2.2). For
n ≥ 1, it holds that

ψ1(λ) = λφ0(λ) = λ

ψ2(λ) = φ1(λ) = λ2 − 1

ψ3(λ) = λ−1φ2(λ) = λ3 − 2λ

Comparing the equation (4.3) and equation (2.2), we see that

ψn+1(λ) = Ũn+1(λ).

Therefore,

φn(λ) = λn−1ψn+1(λ)

= λn−1Ũn+1(λ).

This completes the proof.

Theorem 4.6. The spectrum of C2♯Pn is given by

Spec C2♯Pn =

(
0 2 cos kπ

n+2

n− 1 1

)
, k = 1, 2, . . . , n+ 1.

Proof. The spectrum of C2♯Pn is obtained by solving the characteristic equa-
tion:

φn(λ) = 0.

From Theorem 4.6 we see that

φn(λ) = λn−1Ũn+1(λ),
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where

Ũn+1(2 cos θ) =
sin(n+ 2)θ

sin θ
.

Therefore,

λ = 2 cos
kπ

n+ 2
, k = 1, 2, . . . , n+ 1,

are n + 1 distinct roots of φn(λ) = 0 and λ = 0 is a root with at least n − 1
multiplicities. Since φn(λ) is a polynomial of degree 2n, we found all roots of
φn(λ) = 0. This completes the proof.

Theorem 4.7. The asymptotic spectral distribution of C2♯Pn as n → ∞ is
given by

1

2
δ0 +

1

2
ρ(x)dx,

where

ρ(x) =


1

π
√
4− x2

, −2 < x < 2,

0, otherwise.

Proof. Let {λk; k = 1, . . . , 2n} be the eigenvalues of C2♯Pn. For a continuous
function f(x) we set

Sn =
1

2n

2n∑
k=1

f(λk).

We will compute limn→∞ Sn. Let F (t) = f(2 cos tπ). Then we have

Sn =
n− 1

2n
f(0) +

1

2n

n+1∑
k=1

F

(
k

n+ 2

)

=
n− 1

2n
f(0) +

n+ 2

2n

n+1∑
k=1

F

(
k

n+ 2

)
1

n+ 2

Taking the limit as n→ ∞, we have

lim
n→∞

Sn =
1

2
f(0) +

1

2
lim
n→∞

n+2∑
k=1

F

(
k

n+ 2

)
1

n+ 2

By the definition of Riemannian integral,

lim
n→∞

Sn =
1

2
f(0) +

1

2

∫ 1

0

F (t)dt

=
1

2
f(0) +

1

2

∫ 1

0

f(2 cos tπ)dt.
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Let 2 cos tπ = x. Then,∫ 1

0

f(2 cos tπ)dt =

∫ 2

−2

f(x)

−2π sin tπ
dx

=

∫ 2

−2

f(x) · 1

π
√
4− x2

dx.

Therefore,

lim
n→∞

1

2n

2n∑
k=1

f(λk) =
1

2
f(0) +

1

2

∫ 2

−2

f(x) · 1

π
√
4− x2

dx.

This means that the asymptotic spectrum distribution of C2♯Pn as n → ∞ is
given by

1

2
δ0 +

1

2
ρ(x)dx

as desired.
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