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Chapter 1

Introduction

1.1 Background

In image restoration, we are interested in recovering an original image f from a degraded version of that
image g in order to improve the quality of the degraded image. In our research, we consider the case
where the original image is degraded by noise. Such a degradation can have various causes such as film
grain, electronic noise or quantization and its impact is the most severe in low signal situations such as
low-light photography or low-dose X-ray imaging.

Unfortunately, since there is no way to find the exact original image from the degraded image, we are
concerned with finding the best possible estimate of the original image. To do so, we use probability as
a tool and try to find a restored image which has a high probability of being very similar to the original
image. In our research, we use Bayesian probability where we find the original image estimate f̂ by
defining a prior probability model for the original image Pr {f} based on the expected structure of the
image and a conditional probability model for the degraded image Pr {g|f} based on the way we assume
the degraded image is generated from the original image. These allow us to define a posterior probability
for the original image as a function of the degraded image Pr {f |g} ∝ Pr {g|f}Pr {f}.

The basis for our models is the conditional autoregression model (CAR) defined by Molina in [1] and
for which the exact expressions for the marginal likelihood and the restored image as a function of the
degraded image and model hyperparameters was obtained by Tanaka and Inoue in [2] and [3] for binary
and greyscale images and by Tanaka and Horiguchi in [4] for colour images in the RGB space. It is also
interesting to note that probabilistic image processing is considered to have a close relationship to the
spin glass theory in the field of statistical mechanics [5], which constitutes the inspiration for one of our
proposed models.

1.2 Objectives

Our objective is to explore ways of extending the CAR model in order to improve its performance
with regards to image correction for both greyscale and colour images. To do so, we investigate two
extensions to the model: the extension to the second-neighbour interactions and the extension to the
third-neighbour interactions. We are also interested in evaluating the computational complexity of the
algorithms constructed using our extended models.

The motivation behind the extension to the second-neighbour interactions is that we expect such
an extension to help preserve the edges in the corrected images. Indeed, Fan and Wu described an
extension of the Ising model (a mathematical model of ferromagnetism in statistical mechanics used in
spin glass theory, among others) to second-neighbour interactions in [6]. They showed that depending
on the values of the parameters controlling first- and second-neighbour interactions, there can be three
spin configurations of lowest energy. These configurations are the ferromagnetic, antiferromagnetic and
superantiferromagnetic states and are illustrated in Fig. 1.1. Our hypothesis is that by similarly extending
the CAR model to second-neighbour interactions, we can preserve diagonal edges by approaching the
antiferromagnetic state or horizontal and vertical edges by approaching the superantiferromagnetic state.

The motivation behind the extension to the third-neighbour interactions is that cortical neural tissues
are often modelled mathematically as neural fields. One such neural field which is used to model the
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(a) J > 2|J ′| (b) J < −2|J ′| (c) −|J | > 2J ′

Figure 1.1: Spin configurations of lowest energy for the Ising model with second-neighbour interactions.
J and J ′ refer to the parameters controlling first- and second-neighbour interactions respectively. These
parameters correspond to the hyperparameters α and α′ in our second-neighbour interactions model. (a)
Ferromagnetic state. J > 2|J ′|. (b) Antiferromagnetic state. J < −2|J ′|. (c) Superantiferromagnetic
state. −|J | > 2J ′.

human visual system is the lateral inhibition type field and is characterized by a weighting function giving
a positive weight near to the origin and a negative or zero weight as we move away from the origin [7][8][9].
Here, a positive weight represents neuron stimulation and a negative weight represents neuron inhibition.
Such a weighting function is called a mexican-hat weighting function and is illustrated in Fig. 1.2. Our
hypothesis is that we can improve image correction by trying to reproduce a lateral inhibition type field.
This is done by approximating the mexican-hat weighting function through the use of hyperparameters
controlling the weights of the second- and third-neighbour pixel interactions relative to the weight of the
nearest-neighbour pixel interactions as shown by the arrows in Fig 1.2.

Nearest neighbour (α)
Excitation

Lateral distance

Second neighbour (α’)

Third neighbour (α’’)

Figure 1.2: Mexican-hat weighting function. The x-axis represents lateral distance relative to the origin.
The y-axis represents neuron excitation where positive values represent neuron stimulation and negative
values represent neuron inhibition. The arrows represent the relative weights for nearest-, second- and
third-neighbour pixel interactions which we expect can approximate a lateral inhibition type field. The
values α, α′ and α′′ correspond to the hyperparameters controlling the pixel weights in our third-neighbour
interactions model.

1.3 Structure

This thesis consists of 6 chapters. In chapter 2, we present an extended version of the CAR model to
the second-neighbour interactions for greyscale image restoration. In chapter 3, we extend the model of
chapter 2 to colour images. Chapter 4 presents a model with third-neighbour interactions for greyscale
images and that model is also extended to colour images in chapter 5. Finally, we conclude in chapter 6
with a summary of our thesis and a description of future tasks related to our research.
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Chapter 2

Solvable Probabilistic Model with
Second-Neighbour Interaction for
Grayscale Image Restoration

2.1 Chapter Outline

In this chapter, we shall describe the extension to the second-neighbour pixel interactions of the solvable
probabilistic model for greyscale images originally proposed by Tanaka in [3]. We start with a detailed
description of the model as well as the calculations involved in its formation. This is followed by the
presentation of an image correction algorithm based on this model before concluding with a description
of the numerical experiments we performed to evaluate this model.

2.2 Model Description

In this section we describe in detail the equations that form the basis of our solvable probabilistic model
with second-neighbour interaction for grayscale image restoration. From these equations, we also derive
mathematical expressions that can be used to implement an efficient image correction algorithm.

2.2.1 Image Model

We consider an image to be composed of a set of pixels on a square lattice. The lattice is defined as
V ≡ {(x, y) |x = 0, 1, . . . , Vx − 1, y = 0, 1, . . . , Vy − 1} with Vx = Vy so that the number of pixels in an
image is defined as |V| = Vx × Vy. We also consider the lattice to be on a torus so that it satisfies the
periodic boundary conditions. We define a pixel as a real value corresponding to the light intensity at
that location on the lattice, so that we have the values fx,y and gx,y corresponding to the pixel (x, y) in
the original and the degraded images respectively. Thus the configurations of the original and degraded
images are represented by f = {fx,y ∈ R| (x, y) ∈ V} and g = {gx,y ∈ R| (x, y) ∈ V} respectively. We
associate the random variables F = {Fx,y ∈ R| (x, y) ∈ V} and G = {Gx,y ∈ R| (x, y) ∈ V} to the original
and degraded images respectively.

2.2.2 Degradation Process Model

The model for the image degradation is additive white Gaussian noise N(0, σ2) added independently to
each pixel. Thus we have the conditional probability function

Pr {G = g|F = f , σ} ≡ 1
Znoise (σ)

exp
(
− 1

2σ2
∥g − f∥2

)
(2.1)

where

Znoise (σ) ≡
∫

exp
(
− 1

2σ2
∥z − f∥2

)
dz, (2.2)
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with
∫

dz ≡
∫ +∞
−∞

∫ +∞
−∞ . . .

∫ +∞
−∞

∏
(x,y)∈V

dzx,y , is the normalization constant and

∥g − f∥2 ≡
∑

(x,y)∈V

(gx,y − fx,y)2. (2.3)

By substituting (2.3) into (2.2) and using the Gaussian integral formula, we can find the value of
Znoise (σ) as follows:

Znoise (σ) =
∫

exp

− 1
2σ2

∑
(x,y)∈V

(zx,y − fx,y)2
 dz

=
∫ ∏

(x,y)∈V

exp
(
− 1

2σ2
(zx,y − fx,y)2

)
dz

=
∏

(x,y)∈V

∫
exp

(
− 1

2σ2
(zx,y − fx,y)2

)
dzx,y

=
∏

(x,y)∈V

√
2πσ2

=
(
2πσ2

) |V|
2 (2.4)

2.2.3 A Priori Probability Density Function

We define the a priori probability density function (prior) that the original image F has a given configu-
ration f as

Pr {F = f |α, α′} ≡ 1
Zprior (α, α′)

exp

{
−1

8

(
α
∑

(x,y)∈V

[
(fx,y − fx+1,y)2 + (fx,y − fx,y+1)2

]
+ α′

∑
(x,y)∈V

[
(fx,y − fx+1,y+1)2 + (fx,y − fx+1,y−1)2

])}
(2.5)

where α defines the correlation between nearest neighbour pixels, α′ defines the correlation between
second-neighbour pixels and

Zprior (α, α′) ≡
∫

exp

{
−1

8

(
α
∑

(x,y)∈V

[
(zx,y − zx+1,y)2 + (zx,y − zx,y+1)2

]
+

α′
∑

(x,y)∈V

[
(zx,y − zx+1,y+1)2 + (zx,y − zx+1,y−1)2

])}
dz, (2.6)

with
∫

dz ≡
∫ +∞
−∞

∫ +∞
−∞ . . .

∫ +∞
−∞

∏
(x,y)∈V

dzx,y , is the normalization constant.

The prior can be rewritten using matrix notation as follows:

Pr {F = f |α, α′}

=
1

Zprior (α, α′)
exp

{
−1

8

(
α
∑

(x,y)∈V

[
(fx,y − fx+1,y)2 + (fx,y − fx,y+1)2+

α′

α

{
(fx,y − fx+1,y+1)2 + (fx,y − fx+1,y−1)2

}])}

=
1

Zprior (α, α′)
exp

{
−1

8

(
α
∑

(x,y)∈V

[
2f2

x,y − 2fx,yfx+1,y + f2
x+1,y − 2fx,yfx,y+1+

f2
x,y+1 +

α′

α

(
2f2

x,y − 2fx,yfx+1,y+1 + f2
x+1,y+1 − 2fx,yfx+1,y−1 + f2

x+1,y−1

)])}
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=
1

Zprior (α, α′)
exp

{
−1

8

(
α
∑

(x,y)∈V

[
4f2

x,y − 2fx,yfx+1,y − 2fx,yfx,y+1+

α′

α

(
4f2

x,y − 2fx,yfx+1,y+1 − 2fx,yfx+1,y−1

)])}

=
1

Zprior (α, α′)
exp

{
−1

8

(
α
∑

(x,y)∈V

[
4f2

x,y − fx,yfx+1,y − fx+1,yfx,y−

fx,yfx,y+1 − fx,y+1fx,y+

α′

α

(
4f2

x,y − fx,yfx+1,y+1 − fx+1,y+1fx,y − fx,yfx+1,y−1 − fx+1,y−1fx,y

)])}

=
1

Zprior (α, α′)
exp

{
−1

8

(
α
∑

(x,y)∈V

[
4f2

x,y − fx,yfx+1,y − fx,yfx−1,y−

fx,yfx,y+1 − fx,yfx,y−1+

α′

α

(
4f2

x,y − fx,yfx+1,y+1 − fx,yfx−1,y−1 − fx,yfx+1,y−1 − fx,yfx−1,y+1

)])}

=
1

Zprior (α, α′)
exp

{
−1

2
αfT C (α, α′) f

}
(2.7)

where C (α, α′) is a |V| × |V| matrix where the (x, y|x′, y′) elements are defined by

⟨x, y|x′, y′⟩ ≡ δx,x′δy,y′ − 1
4
δx,x′+1δy,y′ − 1

4
δx,x′−1δy,y′ − 1

4
δx,x′δy,y′+1 −

1
4
δx,x′δy,y′−1

+α2

[
δx,x′δy,y′−1

4
δx,x′+1δy,y′+1−

1
4
δx,x′−1δy,y′−1−

1
4
δx,x′+1δy,y′−1−

1
4
δx,x′−1δy,y′+1

]
[(x, y), (x′, y′) ∈ V]

(2.8)

where δa,b is the Kronecker delta and we defined α2 ≡ α′/α to simplify notations, so that we can write
C (α, α′) ≡ C (α2).

Similarly, Zprior (α, α′) can be rewritten using matrix notation as

Zprior (α, α2) ≡
∫

exp
{
−1

2
αzT C (α2) z

}
dz (2.9)

and subsequently, it can be simplified using the multidimensional Gaussian integral to give

Zprior (α, α2) =

√
(2π)|V|

α|V| det (C (α2))
. (2.10)

This model corresponds to an extension to the second-neighbour of the CAR model proposed by
Molina in [1] and its energy function is:

1
8

(
α
∑

(x,y)∈V

[
(fx,y − fx+1,y)2 + (fx,y − fx,y+1)2

]
+ α′

∑
(x,y)∈V

[
(fx,y − fx+1,y+1)2 + (fx,y − fx+1,y−1)2

])
(2.11)

We note that f is a Gaussian Markov random field (GMRF) with mean 0 and precision matrix
Q = αC (α2). In [10], Rue and Held derive the following properties for a GMRF x = (x1, . . . , xn)T with
mean µ and precision matrix Q > 0:

Pr(xi|x−i) is a normal distribution, (2.12)

E(xi|x−i) = µi −
1

Qii

∑
j:j∼i

Qij(xj − µj), (2.13)

7



Prec(xi|x−i) = Qii, (2.14)

Corr(xi, xj |x−ij) = − Qij√
QiiQjj

, i ̸= j (2.15)

where E(xi|x−i) is the expected value of xi given all other values of x (i.e. x−i ≡ {x\xi}), j : j ∼ i
means the values of j that are neighbors of i (i.e. i ̸= j and Qij ̸= 0), Prec is the precision and Corr is
the correlation. Applying these properties to our model, we obtain the following:

E(f(x,y)|f−(x,y)) = µ(x,y) −
1

Q(x,y),(x,y)

∑
(i,j):(i,j)∼(x,y)

Q(x,y),(i,j)(f(i,j) − µ(i,j))

= − 1
α + α′

∑
(i,j):(i,j)∼(x,y)

Q(x,y),(i,j)f(i,j)

= − 1
α + α′

[
−α

(
1
4
f(x+1,y) +

1
4
f(x−1,y) +

1
4
f(x,y+1) +

1
4
f(x,y−1)

)
− α′

(
1
4
f(x+1,y+1) +

1
4
f(x−1,y−1) +

1
4
f(x+1,y−1) +

1
4
f(x−1,y+1)

)]
=

1
4(α + α′)

[
α
(
f(x+1,y) + f(x−1,y) + f(x,y+1) + f(x,y−1)

)
+ α′ (f(x+1,y+1) + f(x−1,y−1) + f(x+1,y−1) + f(x−1,y+1)

)] (2.16)

and
Prec(f(x,y)|f−(x,y)) = α + α′ (2.17)

so that we have

Pr(f(x,y)|f−(x,y)) ∼ N

(
1

4(α + α′)
×
[
α
(
f(x+1,y) + f(x−1,y) + f(x,y+1) + f(x,y−1)

)
+ α′ (f(x+1,y+1) + f(x−1,y−1) + f(x+1,y−1) + f(x−1,y+1)

)]
,

1
α + α′

)
. (2.18)

Since C (α2) is a real symmetric matrix, it can be eigendecomposed to obtain

C (α2) =
(
U−1ΛU

)
(2.19)

where U is a unitary matrix with the eigenvectors of C (α2) as its column vectors. We shall use the DFT
matrix defined as

⟨x, y|U |p, q⟩ ≡ 1√
|V|

exp
[
−2πi

(
px

Vx
+

qy

Vy

)]
, (2.20)

U−1 is the conjugate transpose of U , known as the inverse DFT matrix and defined as⟨
x, y|U−1|p, q

⟩
≡ 1√

|V|
exp

[
2πi

(
px

Vx
+

qy

Vy

)]
(2.21)

and Λ is the diagonal matrix of the eigenvalues λ(p, q) of C (α2).
We shall now find the value of Λ for U by using the eigenvalue equation

Mu(x,y) = λ(x, y)u(x,y) (2.22)

for every (x, y) ∈ V. Here u(x,y) is the column vector (x, y) of U and λ(x, y) is the corresponding
eigenvalue. To simplify our calculations, we shall split C (α2) into the sum of matrices A and B as
follows

⟨x, y|A|x′, y′⟩ ≡ δx,x′δy,y′ − 1
4
δx,x′+1δy,y′ − 1

4
δx,x′−1δy,y′ − 1

4
δx,x′δy,y′+1 −

1
4
δx,x′δy,y′−1, (2.23)
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⟨x, y|B|x′, y′⟩ ≡

α2

[
δx,x′δy,y′ − 1

4
δx,x′+1δy,y′+1 −

1
4
δx,x′−1δy,y′−1 −

1
4
δx,x′+1δy,y′−1 −

1
4
δx,x′−1δy,y′+1

]
. (2.24)

We then have

C (α2) = A + B

U−1ΛU = A + B

Λ = U(A + B)U−1

Λ = UAU−1 + UBU−1

Λ = ΛA + ΛB , (2.25)

so we can find the value of Λ by finding the values of ΛA and ΛB .
We start with ΛA. We shall use the fact that the elements of A are such that

a(p,q),(r,s) =



1 if (p, q) = (r, s),
−1

4 if (p, q) = (r − 1, s),
−1

4 if (p, q) = (r + 1, s),
−1

4 if (p, q) = (r, s− 1),
−1

4 if (p, q) = (r, s + 1)
0 for every other case.

(2.26)

Line (r, s) of equation (2.22) can be rewritten as follows:∑
(p,q)∈V

a(p,q),(r,s)u(x,y),(p,q) = λa(x, y)u(x,y),(r,s) (2.27)

so by using the values of (2.26) into equation (2.27) we obtain

u(x,y),(r,s) −
(

1
4
u(x,y),(r−1,s) +

1
4
u(x,y),(r+1,s) +

1
4
u(x,y),(r,s−1) +

1
4
u(x,y),(r,s+1)

)
= λa(x, y)u(x,y),(r,s)

∴ −1
4
(
u(x,y),(r−1,s) + u(x,y),(r+1,s) + u(x,y),(r,s−1) + u(x,y),(r,s+1)

)
= (λa(x, y)− 1) u(x,y),(r,s)

∴ − 1
4
√
|V|

{
exp

[
−2πi

(
x(r − 1)

Vx
+

ys

Vy

)]
+ exp

[
−2πi

(
x(r + 1)

Vx
+

ys

Vy

)]
+exp

[
−2πi

(
xr

Vx
+

y(s− 1)
Vy

)]
+ exp

[
−2πi

(
xr

Vx
+

y(s + 1)
Vy

)]}
= (λa(x, y)− 1)

1√
|V|

exp
[
−2πi

(
xr

Vx
+

ys

Vy

)]
∴ −1

4
exp

[
2πi

(
xr

Vx
+

ys

Vy

)]{
exp

[
−2πi

(
x(r − 1)

Vx
+

ys

Vy

)]
+ exp

[
−2πi

(
x(r + 1)

Vx
+

ys

Vy

)]
+exp

[
−2πi

(
xr

Vx
+

y(s− 1)
Vy

)]
+ exp

[
−2πi

(
xr

Vx
+

y(s + 1)
Vy

)]}
= λa(x, y)− 1

∴ −1
4

{
exp

[
−2πi

−x

Vx

]
+ exp

[
−2πi

x

Vx

]
+ exp

[
−2πi

−y

Vy

]
+ exp

[
−2πi

y

Vy

]}
= λa(x, y)− 1

∴ 1− 1
4

{
cos
(

2πx

Vx

)
+ i sin

(
2πx

Vx

)
+ cos

(
−2πx

Vx

)
+ i sin

(
−2πx

Vx

)
+cos

(
2πy

Vy

)
+ i sin

(
2πy

Vy

)
+ cos

(
−2πy

Vy

)
+ i sin

(
−2πy

Vy

)}
= λa(x, y)
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∴ λa(x, y) = 1− 1
2

cos
(

2πx

Vx

)
− 1

2
cos
(

2πy

Vy

)
. (2.28)

Similarly, we find the values of ΛB by using the fact that the elements of B are such that

b(p,q),(r,s) =



α2 if (p, q) = (r, s)
− 1

4α2 if (p, q) = (r + 1, s + 1)
− 1

4α2 if (p, q) = (r − 1, s− 1)
− 1

4α2 if (p, q) = (r + 1, s− 1)
− 1

4α2 if (p, q) = (r − 1, s + 1)
0 for every other case.

(2.29)

Line (r, s) of equation (2.22) can be rewritten as follows:∑
(p,q)∈V

b(p,q),(r,s)u(x,y),(p,q) = λb(x, y)u(x,y),(r,s) (2.30)

so by using the values of (2.29) into equation (2.30) we obtain

α2

[
u(x,y),(r,s) −

1
4
(
u(x,y),(r+1,s+1) + u(x,y),(r−1,s−1) + u(x,y),(r+1,s−1) + u(x,y),(r−1,s+1)

)]
= λb(x, y)u(x,y),(r,s)

∴ −α2

4
[(

u(x,y),(r+1,s+1) + u(x,y),(r−1,s−1) + u(x,y),(r+1,s−1) + u(x,y),(r−1,s+1)

)]
= (λb(x, y)− α2)u(x,y),(r,s)

∴ − α2

4
√
|V|

{
exp

[
−2πi

(
x(r + 1)

Vx
+

y(s + 1)
Vy

)]
+ exp

[
−2πi

(
x(r − 1)

Vx
+

y(s− 1)
Vy

)]
+exp

[
−2πi

(
x(r + 1)

Vx
+

y(s− 1)
Vy

)]
+ exp

[
−2πi

(
x(r − 1)

Vx
+

y(s + 1)
Vy

)]}
= (λb(x, y)− α2)

1√
|V|

exp
[
−2πi

(
xr

Vx
+

ys

Vy

)]
∴ − exp

[
2πi

(
xr

Vx
+

ys

Vy

)]
×α2

4

{
exp

[
−2πi

(
x(r + 1)

Vx
+

y(s + 1)
Vy

)]
+ exp

[
−2πi

(
x(r − 1)

Vx
+

y(s− 1)
Vy

)]
+exp

[
−2πi

(
x(r + 1)

Vx
+

y(s− 1)
Vy

)]
+ exp

[
−2πi

(
x(r − 1)

Vx
+

y(s + 1)
Vy

)]}
= λb(x, y)− α2

∴ −α2

4

{
exp

[
−2πi(

x

Vx
+

y

Vy
)
]

+ exp
[
−2πi(− x

Vx
− y

Vy
)
]

+exp
[
−2πi(

x

Vx
− y

Vy
)
]

+ exp
[
−2πi(− x

Vx
+

y

Vy
)
]}

= λb(x, y)− α2

∴ α2

{
1− 1

4

[
cos
(
−2π(

x

Vx
+

y

Vy
)
)

+ i sin
(
−2π(

x

Vx
+

y

Vy
)
)

+ cos
(

2π(
x

Vx
+

y

Vy
)
)

+ i sin
(

2π(
x

Vx
+

y

Vy
)
)

+ cos
(
−2π(

x

Vx
− y

Vy
)
)

+ i sin
(

2π(
x

Vx
− y

Vy
)
)

+cos
(

2π(
x

Vx
− y

Vy
)
)

+ i sin
(

2π(
x

Vx
− y

Vy
)
)]}

= λb(x, y)

∴ λb(x, y) = α2

[
1− 1

2
cos
(

2π(
x

Vx
+

y

Vy
)
)
− 1

2
cos
(

2π(
x

Vx
− y

Vy
)
)]

. (2.31)
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Using the results of (2.28) and (2.31), we find

λ(p, q) = λa(p, q) + λb(p, q)

= 1− 1
2

cos
(

2πp

Vx

)
− 1

2
cos
(

2πq

Vy

)
+ α2

[
1− 1

2
cos
(

2π(
p

Vx
+

q

Vy
)
)
− 1

2
cos
(

2π(
p

Vx
− q

Vy
)
)]

(2.32)

so we have

Λ ≡
∑

(p,q)∈V

(
1− 1

2
cos
(

2πp

Vx

)
− 1

2
cos
(

2πq

Vy

)
+

α2

[
1− 1

2
cos
(

2π(
p

Vx
+

q

Vy
)
)
− 1

2
cos
(

2π(
p

Vx
− q

Vy
)
)])

Jpq,pq (2.33)

which is the diagonal matrix of the eigenvalues λ(p, q) of C (α2) where Jpq,pq is the |V |×|V | single-entry
matrix.

Using the results of this eigendecomposition, we can rewrite the expression of Zprior (α, α2) given in
(2.10) as

Zprior(α, α2) =
(

2π

α

) |V|
2 ∏

(p,q)∈V

λ (p, q)−
1
2 (2.34)

2.2.4 A Posteriori Probability Density Function

The a posteriori probability density function of having an original image configuration f given a degraded
image g is found by applying Bayes’ theorem as follows:

Pr {F = f |G = g, α, α2, σ} =
Pr {G = g|F = f , σ}Pr {F = f |α, α2}

Pr {G = g|α, α2, σ}

=
Pr {G = g|F = f , σ}Pr {F = f |α, α2}∫
Pr {G = g|F = z, σ}Pr {F = z|α, α2} dz

(2.35)

where Pr {G = g|α, α2, σ} =
∫

Pr {G = g|F = z, σ}Pr {F = z|α, α2} dz is called the evidence.
Using (2.1) and (2.7), the function can be rewritten as follows:

Pr {F = f |G = g, α, α2, σ} =

1
Znoise(σ) exp

(
− 1

2σ2

∑
(x,y)∈V

(gx,y − fx,y)2
)
× 1

Zprior(α,α2)
exp

{
− 1

2αfT C (α2) f

}
∫

1
Znoise(σ) exp

(
− 1

2σ2

∑
(x,y)∈V

(gx,y − zx,y)2
)
× 1

Zprior(α,α2)
exp

{
− 1

2αzT C (α2) z

}
dz

. (2.36)

Since Znoise and Zprior are not dependant on z, they can be taken out of the integral in the denominator
and cancel out with the numerator, so we have

Pr {F = f |G = g, α, α2, σ} =
1

Zposterior (g, α, α2, σ)
exp [−H (f |g, α, α2, σ)] (2.37)

where
Zposterior (g, α, α2, σ) =

∫
exp [−H (z|g, α, α2, σ)] dz (2.38)

and
H (f |g, α, α2, σ) =

1
2σ2

∑
(x,y)∈V

(gx,y − fx,y)2 +
1
2
αfT C (α2) f . (2.39)

We can simplify calculations by grouping all element of f in H in one single term as follows

H (f |g, α, α2, σ) =
1

2σ2
(g − f)T (g − f) +

1
2
fT αC (α2)f

11



=
1

2σ2

[
fT f − fT g − gT f + gT g

]
+

1
2
fT αC (α2) f

=
1

2σ2

(
fT f − fT g − gT f + σ2fT αC (α2) f

)
+

1
2σ2

gT g

=
1

2σ2

(
fT f − fT g − gT f + σ2fT αC (α2) f

)
+

1
2σ2

gT
(
I + σ2αC (α2)

) (
I + σ2αC (α2)

)−1
g

=
1

2σ2

[
fT f − fT g − gT f + σ2fT αC (α2)f

]
+

1
2σ2

gT
[(

I + σ2αC (α2)
)−1

+ σ2αC (α2)
(
I + σ2αC (α2)

)−1
]
g

=
1

2σ2

[
fT f − fT g − gT f + fT

(
σ2αC (α2)

)
f
]

+
1

2σ2
gT
(
I + σ2αC (α2)

)−1
g +

1
2
gT αC (α2)

(
I + σ2αC (α2)

)−1
g

=
1

2σ2

[
fT
(
I + σ2αC (α2)

)
f − fT g − gT f + gT

(
I + σ2αC (α2)

)−1
g
]

+
1
2
gT αC (α2)

(
I + σ2αC (α2)

)−1
g

=
1

2σ2

[
fT
(
I + σ2αC (α2)

)
f − fT

(
I + σ2αC (α2)

) (
I + σ2αC (α2)

)−1
g

− gT
(
I + σ2αC (α2)

)−1 (
I + σ2αC (α2)

)
f + gT

(
I + σ2αC (α2)

)−1
g
]

+
1
2
gT αC (α2)

(
I + σ2αC (α2)

)−1
g

=
1

2σ2

[
f −

(
I + σ2αC (α2)

)−1
g
]T (

I + σ2αC (α2)
)

×
[
f −

(
I + σ2αC (α2)

)−1
g
]

+
1
2
gT αC (α2)

(
I + σ2αC (α2)

)−1
g

(2.40)

where we made use of the fact that
(
I + σ2αC (α2)

)
is symmetric.

Using the eigendecomposition described in (2.19), we can rewrite the second term of (2.40) as follows

1
2
gT αC (α2)

(
I + σ2αC (α2)

)−1
g

=
1
2
gT α

(
U−1ΛU

) [
I + σ2α

(
U−1ΛU

)]−1
g

=
1
2
gT U−1αΛU

[
U−1IU + σ2U−1αΛU

]−1
g

=
1
2
gT U−1αΛU

[
U−1

(
I + σ2αΛ

)
U
]−1

g

=
1
2
gT U−1αΛ

(
I + σ2αΛ

)−1
Ug

=
1
2
−→
G†αΛ

(
I + σ2αΛ

)−1−→
G

=
1
2

∑
(p,q)∈V

G†
p,qαλ (p, q)

(
1 + σ2αλ (p, q)

)−1
Gp,q (2.41)

where

Gp,q ≡
1√
|V|

∑
(x,y)∈V

gx,y exp
[
−2πi

(
px

Vx
+

qy

Vy

)]
(2.42)

and

G†
p,q ≡

1√
|V|

∑
(x,y)∈V

gx,y exp
[
2πi

(
px

Vx
+

qy

Vy

)]
. (2.43)

Here we note that Gp,q corresponds to (Ug)p,q where (Ug) is the DFT of g. Similarly for
−→
G† using

(gT U−1), the inverse DFT.
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From the above, we conclude that

H (f |g, α, α2, σ) =
1

2σ2

[
f −

(
I + σ2αC (α2)

)−1
g
]T (

I + σ2αC (α2)
) [

f −
(
I + σ2αC (α2)

)−1
g
]

+
1
2

∑
(p,q)∈V

G†
p,qαλ (p, q)

(
1 + σ2αλ (p, q)

)−1
Gp,q. (2.44)

Using the variable substitution x =
[
z −

(
I + σ2αC (α2)

)−1
g
]

and dz = dx, Zposterior can be rewrit-
ten as

Zposterior =
∫

exp
{
− 1

2σ2
xT
(
I + σ2αC (α2)

)
x

− 1
2

∑
(p,q)∈V

G†
p,qαλ (p, q)

(
1 + σ2αλ (p, q)

)−1
Gp,q

}
dx (2.45)

which, using the multidimensional Gaussian integral becomes

Zposterior =
(
2πσ2

) |V|
2
{
det
(
I + σ2αC (α2)

)}− 1
2

× exp

−1
2

∑
(p,q)∈V

G†
p,qαλ (p, q)

(
1 + σ2αλ (p, q)

)−1
Gp,q

 . (2.46)

The determinant in equation (2.46) can be rewritten as follows:

det
(
I + ασ2C (α2)

)
= det

(
U−1IU + U−1ασ2ΛU

)
= det

[
U−1

(
I + ασ2Λ

)
U
]

= det
(
I + ασ2Λ

)
=

∏
(p,q)∈V

(
1 + ασ2λ(p, q)

)
. (2.47)

So equation (2.46) can be transformed into

Zposterior =
(
2πσ2

) |V|
2

 ∏
(p,q)∈V

(
1 + ασ2λ(p, q)

)
− 1

2

× exp

−1
2

∑
(p,q)∈V

G†
p,qαλ (p, q)

(
1 + σ2αλ (p, q)

)−1
Gp,q

 . (2.48)

2.2.5 Restored Image Equation

In our model, the estimated restored image configuration is given by the expected value of the a posteriori
probability function. This gives us the following restored image equation:

f̂ ≡
∫

z Pr {F = z|G = g, α, α2, σ} dz (2.49)

where the integral is performed over every image configuration z (range of ]−∞, +∞[ for each pixel
element) and f̂ is our restored image.

Using (2.37) we obtain

f̂ =
1

Zposterior (g, α, α2, σ)

∫
z exp [−H (z|g, α, α2, σ)] dz (2.50)
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which, using the results of (2.44) and (2.46) is rewritten as

f̂ =
1

(2πσ2)
|V|
2 det (σ2Σ−1)−1/2 exp

{
−1

2

∑
(p,q)∈V

[
G†

p,qαλ(α2, p, q) (1 + σ2αλ(α2, p, q))−1
Gp,q

]}

×
∫

z exp

(
− 1

2σ2
[z − µ]T σ2Σ−1 [z − µ]

− 1
2

∑
(p,q)∈V

[
G†

p,qαλ(α2, p, q)
(
1 + σ2αλ(α2, p, q)

)−1
Gp,q

])
dz

=
1

(2πσ2)
|V|
2 (σ2)−

|V|
2 det (Σ)1/2

∫
z exp

(
−1

2
[z − µ]T Σ−1 [z − µ]

)
dz

=
1

(2π)
|V|
2 det (Σ)1/2

∫
z exp

(
−1

2
[z − µ]T Σ−1 [z − µ]

)
dz (2.51)

with µ ≡
(
I + σ2αC (α2)

)−1
g and Σ−1 ≡ 1

σ2

(
I + σ2αC (α2)

)
, which corresponds to the expected value

equation of a multivariate Gaussian distribution. Using that fact, we conclude that

f̂ = E[z] = µ =
(
I + σ2αC (α2)

)−1
g. (2.52)

However, it is impractical to compute the inverse of such a large matrix, so we use the eigendecom-
position of (2.19) to simplify the equation as follows:

f̂ =
[
I + σ2α

(
U−1ΛU

)]−1
g

= U−1
(
I + σ2αΛ

)−1
Ug

= U−1
(
I + σ2αΛ

)−1−→
G (2.53)

Here we note that this corresponds to the inverse DFT of
(
I + σ2αΛ

)−1−→
G where

−→
G is itself the DFT

of the degraded image.
(
I + σ2αΛ

)−1 can also easily be computed since it is the inverse of a diagonal
matrix.

2.2.6 Hyperparameters Estimation

As we saw in section 2.2.5, the restored image equation depends on the values of the hyperparameters
σ, α and α2. The selection of those values shall be done by fixing the value of α2 and choosing values
for σ and α that maximize the evidence (or likelihood) of equation (2.35). Such a method is known as
Maximum Likelihood Estimation (MLE).

Using (2.35) with (2.1), (2.7) and (2.37), we find that the evidence is given by

Pr {G = g|α, α2, σ} =
Pr {G = g|F = f , σ}Pr {F = f |α, α2}

Pr {F = f |G = g, α, α2, σ}

=
1

Znoise(σ) exp
(
− 1

2σ2 ∥g − f∥2
)

1
Zprior(α,α2)

exp
{
−1

2αfT C (α2) f
}

1
Zposterior(g,α,α2,σ) exp

{
− 1

2σ2 ∥g − f∥2 − 1
2αfT C (α2) f

}
=

Zposterior(g, α, α2, σ)
Znoise(σ)Zprior(α, α2)

. (2.54)

We can simplify the calculations by finding the maximum of the log of the evidence, which gives us

(α̂, σ̂) = arg max
α,σ

[lnZposterior(g, α, α2, σ)− ln Znoise(σ)− lnZprior(α, α2)]
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= arg max
α,σ

[
|V|
2

ln(2πσ2)− 1
2

∑
(p,q)∈V

ln
(
1 + ασ2λ(α2, p, q)

)
− 1

2

∑
(p,q)∈V

G†
p,qαλ(α2, p, q)

(
1 + σ2αλ(α2, p, q)

)−1
Gp,q −

|V|
2

ln(2πσ2)

− |V|
2

ln(2π) +
|V|
2

lnα +
1
2

∑
(p,q)∈V

lnλ(α2, p, q)
]

= arg max
α,σ

[
−|V|

2
ln(2π) +

|V|
2

lnα− 1
2

∑
(p,q)∈V

ln
(
1 + ασ2λ(α2, p, q)

)
− 1

2

∑
(p,q)∈V

G†
p,qαλ(α2, p, q)

(
1 + σ2αλ(α2, p, q)

)−1
Gp,q +

1
2

∑
(p,q)∈V

lnλ(α2, p, q)
] (2.55)

where α̂ and σ̂ are the estimated values of the hyperparameters α and σ respectively.
We notice that, due to the last term of (2.55), the values of λ(α2, p, q) must be non-negative, which

imposes some restrictions on the allowed values of α2. Thus, by substituting θ = 2πp
Vx

and ϕ = 2πq
Vy

into
equation (2.32), we have

λ(α2, θ, ϕ) = 1− 1
2

cos θ − 1
2

cos ϕ + α2

(
1− 1

2
cos(θ + ϕ)− 1

2
cos(θ − ϕ)

)
= 1− 1

2
cos θ − 1

2
cos ϕ

+ α2

(
1− 1

2
(cos θ cos ϕ− sin θ sin ϕ)− 1

2
(cos θ cos ϕ + sin θ sinϕ)

)
= 1− 1

2
cos θ − 1

2
cos ϕ + α2 (1− cos θ cos ϕ)

therefore it follows that

1− 1
2

cos θ − 1
2

cos ϕ + α2 (1− cos θ cos ϕ) ≥ 0

α2 (1− cos θ cos ϕ) ≥ −1 +
1
2

cos θ +
1
2

cos ϕ. (2.56)

Here we note that

1− cos θ cos ϕ ≥ 0 (∀ϕ, θ) , (2.57)
1− cos θ cos ϕ = 0↔ (cos θ = cos ϕ = 1) ∨ (cos θ = cos ϕ = −1) . (2.58)

If we take the case cos θ = cos ϕ = 1 and apply it to (2.56), we have

0 ≥ 0 (2.59)

so there is no restriction on α2 in that case. Similarly, there is no restriction on α2 when cos θ = cos ϕ = −1
since equation (2.56) then yields

0 ≥ −2. (2.60)

For the remaining cases, applying the property (2.57) to equation (2.56) allows us to write

α2 ≥
−1 + 1

2 cos θ + 1
2 cos ϕ

1− cos θ cos ϕ
. (2.61)

We now search for the maximum value of the right side of (2.61) by finding its partial derivatives. Setting
the derivative according to θ to 0 yields

−1
2 sin θ (1− cos θ cos ϕ)− sin θ cos ϕ

(
−1 + 1

2 cos θ + 1
2cosϕ

)
(1− cos θ cos ϕ)2

= 0.
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Since we are not taking into account the case where the denominator is 0, we can write

−1
2

sin θ (1− cos θ cos ϕ)− sin θ cos ϕ

(
−1 +

1
2

cos θ +
1
2
cosϕ

)
= 0

−1
2

sin θ +
1
2

sin θ cos θ cos ϕ + sin θ cos ϕ− 1
2

sin θ cos θ cos ϕ− 1
2

sin θ cos2 ϕ = 0

sin θ
(
cos2 ϕ− 2 cos ϕ + 1

)
= 0. (2.62)

Therefore we have extrema for θ = 0 and θ = π. By noticing that equation (2.61) is symmetri-
cal with regards to θ and ϕ, we conclude that the derivative according to ϕ will yield extrema for
ϕ = 0 and ϕ = π. These results allow us to conclude that the extrema are located at (cos θ, cos ϕ) =
(1, 1), (1,−1), (−1, 1), (−1,−1). Since the right side of equation (2.61) becomes −∞ for cases 1 and 4,
we conclude that these are minima and that cases 2 and 3 are therefore maxima. For both cases 2 and
3, equation (2.61) yields

α2 ≥ −
1
2

(2.63)

which defines the validity range of α2.
Using equation (2.55), we find the value of σ̂ by solving the equation

d
dσ̂2 ln(Pr{G = g|α̂, α2, σ̂}) = 0 as follows

0 = −1
2

 ∑
(p,q)∈V

α̂λ(α2, p, q)
1 + α̂σ̂2λ(α2, p, q)

− 1
2

 ∑
(p,q)∈V

−
G†

p,qα̂
2λ(α2, p, q)2Gp,q

(1 + α̂σ̂2λ(α2, p, q))2


= − 1

2σ̂2

 ∑
(p,q)∈V

α̂σ̂2λ(α2, p, q)
1 + α̂σ̂2λ(α2, p, q)

+
1
2

 ∑
(p,q)∈V

G†
p,q

(
α̂λ(α2, p, q)

1 + α̂σ̂2λ(α2, p, q)

)2

Gp,q


= − 1

2σ̂2

{ ∑
(p,q)∈V

−1 + 1 + α̂σ̂2λ(α2, p, q)
1 + α̂σ̂2λ(α2, p, q)

}

+
1
2

 ∑
(p,q)∈V

G†
p,q

(
α̂λ(α2, p, q)

1 + α̂σ̂2λ(α2, p, q)

)2

Gp,q


= − 1

2σ̂2

 ∑
(p,q)∈V

−1
1 + α̂σ̂2λ(α2, p, q)

− 1
2σ̂2

 ∑
(p,q)∈V

1


+

1
2

 ∑
(p,q)∈V

G†
p,q

(
α̂λ(α2, p, q)

1 + α̂σ̂2λ(α2, p, q)

)2

Gp,q


|V|
2σ̂2

=
1

2σ̂2

 ∑
(p,q)∈V

1
1 + α̂σ̂2λ(α2, p, q)

+
1
2

 ∑
(p,q)∈V

G†
p,q

(
α̂λ(α2, p, q)

1 + α̂σ̂2λ(α2, p, q)

)2

Gp,q


σ̂2 =

σ̂2

|V|
∑

(p,q)∈V

{
1

1 + α̂σ̂2λ(α2, p, q)
+ σ̂2G†

p,q

(
α̂λ(α2, p, q)

1 + α̂σ̂2λ(α2, p, q)

)2

Gp,q

}
. (2.64)

Similarly, we find the value α̂ by solving the equation d
dα̂ ln(Pr{G = g|α̂, α2, σ̂}) = 0 as follows

0 =
|V|
2

1
α̂
− 1

2

 ∑
(p,q)∈V

σ̂2λ(α2, p, q)
1 + α̂σ̂2λ(α2, p, q)


− 1

2

 ∑
(p,q)∈V

G†
p,qλ(α2, p, q)Gp,q

[
1 + α̂σ̂2λ(α2, p, q)− α̂σ̂2λ(α2, p, q)

(1 + α̂σ̂2λ(α2, p, q))2

]
|V|
α̂

=
∑

(p,q)∈V

{
σ̂2λ(α2, p, q)

1 + α̂σ̂2λ(α2, p, q)
+

G†
p,qλ(α2, p, q)Gp,q

(1 + α̂σ̂2λ(α2, p, q))2

}
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α̂−1 =
1
|V|

∑
(p,q)∈V

{
σ̂2λ(α2, p, q)

1 + α̂σ̂2λ(α2, p, q)
+

G†
p,qλ(α2, p, q)Gp,q

(1 + α̂σ̂2λ(α2, p, q))2

}
(2.65)

When actually computing the value of the log of the evidence given in (2.55), we notice that the value
of the last term diverges when λ(α2, p, q) = 0. To get around this problem, we take advantage of the
fact that we have a large number of pixels to approximate the discrete sum using an integral as follows:
1

|V|
∑

(p,q)∈V

≈ 1
4π2

∫ 2π

0
dθ
∫ 2π

0
dϕ with θ = 2πq

Vy
and ϕ = 2πp

Vx
. Using this approximation and the integral

formula ∫ 2π

0

log (a + b cos x) dx = 2π log
1
2

(
a +

√
a2 − b2

)
(a ≥ |b|) (2.66)

from [11], the term can be rewritten as follows:

|V|
2

1
|V|

∑
(p,q)∈V

lnλ(α2, p, q)

≈ |V|
2

1
4π2

∫ 2π

0

∫ 2π

0

lnλ(α2, θ, ϕ)dθdϕ

=
|V|
2

1
4π2

∫ 2π

0

∫ 2π

0

ln
[
1− 1

2
cos θ − 1

2
cos ϕ + α2 −

1
2
α2 cos(θ + ϕ)− 1

2
α2 cos(θ − ϕ)

]
dθdϕ

=
|V|
2

1
4π2

∫ 2π

0

∫ 2π

0

ln
[
1− 1

2
cos θ − 1

2
cos ϕ

+ α2 −
1
2
α2 (cos θ cos ϕ− sin θ sinϕ + cos θ cos ϕ + sin θ sinϕ)

]
dθdϕ

=
|V|
2

1
4π2

∫ 2π

0

∫ 2π

0

ln
[
1− 1

2
cos θ − 1

2
cos ϕ + α2 − α2 cos θ cos ϕ

]
dθdϕ

=
|V|
2

1
4π2

∫ 2π

0

∫ 2π

0

ln
[
1− 1

2
cos ϕ + α2 −

1
2

cos θ (1 + 2α2 cos ϕ)
]
dθdϕ

=
|V|
2

1
4π2

∫ 2π

0

∫ 2π

0

ln
[
1
2
(1 + 2α2 cos ϕ)

(
2− cos ϕ + 2α2

1 + 2α2 cos ϕ
− cos θ

)]
dθdϕ

=
|V|
2

1
4π2

∫ 2π

0

∫ 2π

0

ln
[
1
2
(1 + 2α2 cos ϕ)

]
dθdϕ

+
|V|
2

1
4π2

∫ 2π

0

∫ 2π

0

ln
(

2− cos ϕ + 2α2

1 + 2α2 cos ϕ
− cos θ

)
dθdϕ

(2.67)

=
|V|
2

1
4π2

∫ 2π

0

2π ln
[
1
2
(1 + 2α2 cos ϕ)

]
dϕ

+
|V|
2

1
4π2

∫ 2π

0

2π ln

1
2

2− cos ϕ + 2α2

1 + 2α2 cos ϕ
+

√(
2− cos ϕ + 2α2

1 + 2α2 cos ϕ

)2

− 1

 dϕ

=
|V|
2

1
2π

∫ 2π

0

ln

1
4
(1 + 2α2 cos ϕ)

2− cos ϕ + 2α2

1 + 2α2 cos ϕ
+

√(
2− cos ϕ + 2α2

1 + 2α2 cos ϕ

)2

− 1

 dϕ

=
|V|
2

1
2π

∫ 2π

0

ln
[
1
4

(
2− cos ϕ + 2α2 +

√
(2− cos ϕ + 2α2)

2 − (1 + 2α2 cos ϕ)2
)]

dϕ

≈ |V|
2

1
Vy

Vx−1∑
p=0

(
ln

1
4

)
+
|V|
2

1
Vy

Vx−1∑
p=0

(
2− cos

(
2πp

Vx

)
+ 2α2

+

√(
2− cos

(
2πp

Vx

)
+ 2α2

)2

−
(

1 + 2α2 cos
(

2πp

Vx

))2
)
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≈ V 2
x

2
ln

1
4

+
Vx

2

Vx−1∑
p=0

ln

(
2− cos

(
2πp

Vx

)
+ 2α2

+

√(
2− cos

(
2πp

Vx

)
+ 2α2

)2

−
(

1 + 2α2 cos
(

2πp

Vx

))2
)

.

(2.68)

We now find the values of α2 for which the condition of (2.66) is respected at line (2.67), for any value
of ϕ. From line (2.67) we have a = 2−cos ϕ+2α2

1+2α2 cos ϕ and b = −1. So the condition of (2.66) is

a ≥ |b| ↔ 2− cos ϕ + 2α2

1 + 2α2 cos ϕ
≥ 1. (2.69)

We see that the condition is respected for −0.5 < α2 < 0.5 since we then have

a ≥ |b| ↔ 2− cos ϕ + 2α2 ≥ 1 + 2α2 cos ϕ

↔ 1 + 2α2 ≥ cos ϕ(1 + 2α2)
↔ 1 ≥ cos ϕ. (2.70)

The condition is also respected for α2 = −0.5 since we then have

a ≥ |b| ↔ 2− cos ϕ− 1
1− cos ϕ

≥ 1

↔ 1 ≥ 1. (2.71)

The condition is not respected in the case of α2 < −0.5 since for ϕ = 0, we have

a ≥ |b| ↔ 2 + 2α2 ≥ 1
↔ α2 ≥ −0.5. (2.72)

The state of the condition is unknown for α2 = 0.5 since its value diverges for ϕ = π:

2− cos ϕ + 2α2

1 + 2α2 cos ϕ
=

4
0
. (2.73)

The condition is not respected in the case of α2 > 0.5 since for such a value, with ϕ = π, we have

a ≥ |b| ↔ 3 + 2α2

1− 2α2
≥ 1

↔ 3 + 2α2 ≤ 1− 2α2

↔ 4α2 ≤ −2
↔ α2 ≤ −0.5. (2.74)

We also note that in the case of α2 = −0.5, in equation (2.68), we try to evaluate ln 0 for the term in the
sum where p = 0, so we need to reject the case where α2 = −0.5.

We shall therefore restrict the range of α2 to

−0.5 < α2 < 0.5 (2.75)

in our experiments.

2.3 Algorithm

In this section, we describe an image restoration algorithm based on our image restoration model. We use
a fixed point iteration algorithm [12] to find our maximum likelihood estimates for the hyperparameters
α and σ. As we saw in section 2.2.6, the extremum values for the hyperparameters α and σ can be
expressed in the form of the simultaneous recursive equations α(r) = f(α(r − 1), σ(r − 1)) and σ(r) =
g(α(r−1), σ(r−1)). Therefore, in our algorithm, we find new values of α̂ and σ̂ by applying their current

18



values to equations (2.64) and (2.65) and repeat that process until the algorithm converges. We shall
assume that the algorithm has converged once we achieve the following 2 halting criteria:

e1(r) =
∣∣∣∣a(r)− a(r − 1)

a(r − 1)

∣∣∣∣+ ∣∣∣∣b(r)− b(r − 1)
b(r − 1)

∣∣∣∣ < 10−4 (2.76)

e2(r) =
∣∣∣∣c(r)− c(r − 1)

c(r − 1)

∣∣∣∣ < 10−4 (2.77)

where a(x), b(x) and c(x) are the values of α̂, σ̂2 and the log of evidence, respectively, at iteration x of
the algorithm and r and r − 1 are the current and previous iterations of the algorithm, respectively.

2.3.1 Algorithm Steps

Following are the steps of the practical algorithm.
Step 1.

(i) Compute the DFT of the degraded image to obtain the value of G. We note here that G† is simply
the complex conjugate of G so it does not need to be computed explicitly.

(ii) Compute the values of λ(α2, p, q) using equation (2.33).

(iii) Initialize a(0) to 0.0001

(iv) Initialize b(0) to 10000.

(v) Initialize r to 0.

Step 2.

(i) Update r ← r + 1.

(ii) Using equation (2.65), update

a(r)←

 1
|V|

∑
(p,q)∈V

{
b(r − 1)λ(α2, p, q)

1 + a(r − 1)b(r − 1)λ(α2, p, q)
+

G†
p,qGp,qλ(α2, p, q)

(1 + a(r − 1)b(r − 1)λ(α2, p, q))2

}−1

.

(2.78)

(iii) Using equation (2.64), update

b(r)← b(r − 1)
|V|

∑
(p,q)∈V

{
1

1 + a(r − 1)b(r − 1)λ(α2, p, q)

+ b(r − 1)G†
p,qGp,q

(
a(r − 1)λ(α2, p, q)

1 + a(r − 1)b(r − 1)λ(α2, p, q)

)2
}

. (2.79)

(iv) Using equations (2.55) and (2.68), update

c(r)← −|V|
2

ln 2π +
|V|
2

ln a(r)− 1
2

∑
(p,q)∈V

ln (1 + a(r)b(r)λ(α2, p, q))

− 1
2

∑
(p,q)∈V

G†
p,qGp,q

a(r)λ(α2, p, q)
1 + a(r)b(r)λ(α2, p, q)

+
V 2

x

2
ln

1
4

+
Vx

2

Vx−1∑
p=0

ln

(
2− cos

(
2πp

Vx

)
+ 2α2 +

√(
2− cos

(
2πp

Vx

)
+ 2α2

)2

−
(

1 + 2α2 cos
(

2πp

Vx

))2
)

.

(2.80)

Here we note that since
−→
G† is the conjugate transpose of

−→
G , we can write Gp,q = a + bi and G†

p,q =
a− bi, so that G†

p,qGp,q is simply a2 + b2.
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Step 3.

(i) Check the termination conditions of equations (2.76) and (2.77).

(ii) If the termination conditions are fulfilled, proceed to step 4. Otherwise go back to step 2.

Step 4.

(i) Update α̂← a(r).

(ii) Update σ̂ ←
√

b(r).

(iii) Compute the values of
(
1 + σ̂2λ (p, q) α̂

)−1
Gp,q for each p and q.

(iv) Apply the inverse DFT to the above values to obtain the restored image as described in (2.53).

2.3.2 Computational Complexity

We now analyse the complexity of our algorithm using the Big O notation. Here n is the number of pixels
in the image, so n = |V|.

Step 1 DFT computation using the FFT algorithm: O(n log n).

Step 2 Computation of α̂(r): O(n).
Computation of σ̂(r): O(n).
Computation of the log of evidence: O(n).
Total: O(n).

Step 3 Computation of e1(r) : O(1).
Computation of e2(r) : O(1).
Total: O(1).

Step 4 Computation of the values to be used in the inverse DFT: O(n).
Restored image computation using the FFT algorithm: O(n log n).
Total: O(n log n).

This gives a total complexity of O(n log n).

2.4 Numerical Experiments

In this section, we present the numerical experiments we performed to evaluate our model as well as the
results of these experiments. We also discuss these results.

2.4.1 Experiments

We applied our program to the original 256x256 pixels 8-bit grayscale images f presented in Fig.2.1.
We first degraded the original images using additive white Gaussian noise with mean 0 and standard
deviation σ = 20 and σ = 40 to produce 10 degraded images g for each original image and noise value.
Examples of the degraded images are presented in Fig.2.2. We then applied our restoration algorithm
to the degraded images to obtain the restored images f̂ . Examples of the resulting restored images are
shown in Fig.2.12 to Fig.2.22.

2.4.2 Experimental Results

Our results are generated by fixing the value of α2 = α′

α and applying our model to restore each set of 10
degraded images described in section 2.4.1 to obtain restored image sets containing 10 restored images
for each value of α2, σ and each original image.

We then measure the value of the the mean square error (MSE) and the mean structural similarity
index (MSSIM) between the original image and the restored image as well as the log of evidence for
each restored image. These measurements allow us to calculate the sample mean and sample standard
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(a) Boat. (b) Lenna. (c) Mandrill.

Figure 2.1: Original images f used for the experiments.

deviation (s) of the MSE, MSSIM and log of evidence for each set of restored images. The sample
standard deviation is defined in equation (2.82).

The MSE is used as a measure of the efficiency of our correction and is considered to be the dominant
quantitative performance metric in the field of signal processing [13]. The MSE between two images x
and y is defined as

MSE(x, y) =
1
|V|

∑
i∈V

(xi − yi)
2 . (2.81)

The MSSIM is also used as a measure of the efficiency of our correction and is considered to yield
results that are generally closer to the human perception of image fidelity and quality [13]. To measure
the MSSIM, we use the method suggested in [14] and [15]. In particular, we use the suggested window
defined as an 11x11 circular-symmetric Gaussian weighting function with standard deviation of 1.5. We
note here that a higher value of the MSSIM indicates that the images being compared have a generally
higher structural similarity and that the maximal value of 1.0 can only be attained if both images are
identical.

We note here that the sample standard deviation is defined as

s =

√√√√ 1
N − 1

N∑
i=1

(xi − x)2. (2.82)

Here N is the size of the sample and x is the sample mean defined as x = 1
N

∑N
i=1 xi.

Figures 2.3, 2.4 and 2.5 show superpositions of 2 curves. The first curve (+ marks) shows, for various
values of α2, the values of the sample mean for the MSE, with error bars representing s. The second
curve (x marks) shows the same statistics for the log of the evidence. By looking at these figures, we
observe that an increase of the evidence is accompanied very closely by a decrease of the MSE in the
case of the Boat image and is accompanied loosely by a decrease of the MSE in the case of the Mandrill
image. However, we observe the opposite phenomenon in the case of the Lenna image, where an increase
of the evidence is accompanied by an increase of the MSE. These results can be observed for the 2 noise
levels used for our experiments.

Figures 2.6, 2.7 and 2.8 show superpositions of 2 curves. The first curve (+ marks) shows, for various
values of α2, the values of the sample mean for the estimated values of α̂, with error bars representing
s. The second curve (x marks) shows the same statistics for the estimated values of σ̂2. By looking at
these figures, we observe that an increase of the value of α2 is accompanied by a decrease of both α̂ and
σ̂2 for all images and noise levels.

Figures 2.9, 2.10 and 2.11 show superpositions of 2 curves. The first curve (+ marks) shows, for
various values of α2, the values of the sample mean for the MSE, with error bars representing s. The
second curve (x marks) shows the same statistics for the estimated values of σ̂2. By looking at these
figures, we observe that the lowest values of the MSE occur for the values of α2 where the estimated
value of σ̂2 is close to the actual value of σ2 for all images and noise levels.
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(a) Boat, σ = 20. (b) Boat, σ = 40.

(c) Lenna, σ = 20. (d) Lenna, σ = 40.

(e) Mandrill σ = 20. (f) Mandrill σ = 40.

Figure 2.2: Degraded images g used for the experiments. Degradation process is additive white Gaussian
noise with mean 0 and standard deviation σ. (a) and (b) are generated from the original image in Figure
2.1a by setting σ = 20 and σ = 40, respectively. (c) and (d) are generated from the original image in
Figure 2.1b. (e) and (f) are generated from the original image in Figure 2.1c.
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Figure 2.3: Mean square error MSE(f , f̂) (+ marks) and the log of evidence log Pr {G = g|α̂, α2, σ̂} (x
marks) for the restored versions of the Boat image (Fig. 2.1a). The degraded images were generated
with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates α̂ and σ̂ are obtained by maximizing
log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. Here, the restored image f̂ is
defined as f̂ (α̂, α2, σ̂) for each value of α2. The values shown are the sample mean values (x) of the 10
degraded images for each noise level with error bars corresponding to the sample standard deviation (s).
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Figure 2.4: Mean square error MSE(f , f̂) (+ marks) and the log of evidence log Pr {G = g|α̂, α2, σ̂} (x
marks) for the restored versions of the Lenna image (Fig. 2.1b). The degraded images were generated
with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates α̂ and σ̂ are obtained by maximizing
log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. Here, the restored image f̂ is
defined as f̂ (α̂, α2, σ̂) for each value of α2. The values shown are the sample mean values (x) of the 10
degraded images for each noise level with error bars corresponding to the sample standard deviation (s).
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Figure 2.5: Mean square error MSE(f , f̂) (+ marks) and the log of evidence log Pr {G = g|α̂, α2, σ̂} (x
marks) for the restored versions of the Mandrill image (Fig. 2.1c). The degraded images were generated
with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates α̂ and σ̂ are obtained by maximizing
log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. Here, the restored image f̂ is
defined as f̂ (α̂, α2, σ̂) for each value of α2. The values shown are the sample mean values (x) of the 10
degraded images for each noise level with error bars corresponding to the sample standard deviation (s).
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Figure 2.6: Estimates α̂ (+ marks) and σ̂2 (x marks) obtained from the degraded versions of the Boat
image (Fig. 2.1a) for various values of α2. The degraded images were generated with noise levels of
σ = 20 in (a) and σ = 40 in (b). The estimates are determined so as to maximize log Pr {G = g|α, α2, σ}
with respect to α and σ for each fixed value of α2. The values shown are the sample mean values (x)
of the 10 degraded images for each noise level with error bars corresponding to the sample standard
deviation (s).
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Figure 2.7: Estimates α̂ (+ marks) and σ̂2 (x marks) obtained from the degraded versions of the Lenna
image (Fig. 2.1b) for various values of α2. The degraded images were generated with noise levels of
σ = 20 in (a) and σ = 40 in (b). The estimates are determined so as to maximize log Pr {G = g|α, α2, σ}
with respect to α and σ for each fixed value of α2. The values shown are the sample mean values (x)
of the 10 degraded images for each noise level with error bars corresponding to the sample standard
deviation (s).
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Figure 2.8: Estimates α̂ (+ marks) and σ̂2 (x marks) obtained from the degraded versions of the Mandrill
image (Fig. 2.1c) for various values of α2. The degraded images were generated with noise levels of σ = 20
in (a) and σ = 40 in (b). The estimates are determined so as to maximize log Pr {G = g|α, α2, σ} with
respect to α and σ for each fixed value of α2. The values shown are the sample mean values (x) of the 10
degraded images for each noise level with error bars corresponding to the sample standard deviation (s).
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Figure 2.9: Mean square error MSE(f , f̂) (+ marks) and estimate σ̂2 (x marks) for the restored versions
of the Boat image (Fig. 2.1a). The degraded images were generated with noise levels of σ = 20 in (a)
and σ = 40 in (b). The estimate σ̂ is obtained by maximizing log Pr {G = g|α, α2, σ} with respect to α

and σ for each fixed value of α2. Here, the restored image f̂ is defined as f̂ (α̂, α2, σ̂) for each value of
α2. The values shown are the sample mean values (x) of the 10 degraded images for each noise level with
error bars corresponding to the sample standard deviation (s).
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Figure 2.10: Mean square error MSE(f , f̂) (+ marks) and estimate σ̂2 (x marks) for the restored versions
of the Lenna image (Fig. 2.1b). The degraded images were generated with noise levels of σ = 20 in (a)
and σ = 40 in (b). The estimate σ̂ is obtained by maximizing log Pr {G = g|α, α2, σ} with respect to α

and σ for each fixed value of α2. Here, the restored image f̂ is defined as f̂ (α̂, α2, σ̂) for each value of
α2. The values shown are the sample mean values (x) of the 10 degraded images for each noise level with
error bars corresponding to the sample standard deviation (s).
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Figure 2.11: Mean square error MSE(f , f̂) (+ marks) and estimate σ̂2 (x marks) for the restored versions
of the Mandrill image (Fig. 2.1c). The degraded images were generated with noise levels of σ = 20 in
(a) and σ = 40 in (b). The estimate σ̂ is obtained by maximizing log Pr {G = g|α, α2, σ} with respect
to α and σ for each fixed value of α2. Here, the restored image f̂ is defined as f̂ (α̂, α2, σ̂) for each value
of α2. The values shown are the sample mean values (x) of the 10 degraded images for each noise level
with error bars corresponding to the sample standard deviation (s).

Figures 2.12 to 2.22 show some results of the application of the next neighbour extension algorithm
to the Boat, Lenna and Mandrill greyscale images for noise values of σ = 20 and σ = 40.

We only show the results for values of α2 of -0.49, +0.49, 0.0, for the value producing the smallest
MSE, namely α2 = −0.45 for Boat and Lenna, and α2 = −0.1 for Mandrill, as well as for the value
producing the highest MSSIM, namely α2 = −0.49 for Boat and Lenna, as well as α2 = −0.15 and
α2 = 0.05 for Mandrill with noise levels of σ = 20 and σ = 40 respectively. Also, only one restored image
from the set of 10 is shown.

We observe that the resulting images are more blurry for low values of α2 and that they become
gradually less blurry, but more noisy, as α2 increases. This can be explained by the previous observations
where we saw that, as α2 increases, the approximated values of α̂ and σ̂ decrease, causing our model to
assume that the noise level is lower and that correlation between neighbouring pixels is also low. As a
consequence, less correction is applied, causing less blurring, but also leaving more noise in the corrected
image. We also notice some improved horizontal and vertical edge preservation accompanied by grid-like
artefacts in the restored images with a value of α2 lower than −0.4. This is due to the fact that in such
cases, our model approaches the superantiferromagnetic state, as shown in Fig. 1.1c
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(a) Degraded Image. MSE=378.
MSSIM=0.4978.

(b) Restored. α2 = −0.49. MSE=124.
MSSIM=0.7461.

(c) Restored. α2 = −0.45. MSE=120.
MSSIM=0.7270.

(d) Restored. α2 = 0.0. MSE=236.
MSSIM=0.5760.

(e) Restored. α2 = 0.49. MSE=374.
MSSIM=0.4994.

Figure 2.12: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Boat image (Fig. 2.1a). The degraded im-
age was generated with a noise level of σ = 20, has MSE (f , g) = 378, MSSIM (f , g) = 0.4978,
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 124, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.7641. (c) α2 = −0.45, MSE(f , f̂ (g, α̂, α2, σ̂)) = 120, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7270. (d)
α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 236, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.5760. (e) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 374, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.4994.
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(a) Original Image. (b) Degraded Image. MSE=378.
MSSIM=0.4978.

(c) Restored. α2 = −0.49. MSE=124.
MSSIM=0.7461

(d) Restored. α2 = −0.45. MSE=120.
MSSIM=0.7270

(e) Restored. α2 = 0.0. MSE=236.
MSSIM=0.5760

(f) Restored. α2 = 0.49. MSE=374.
MSSIM=0.4994

Figure 2.13: Details of the original image f in Fig. 2.1a, the degraded image g in Fig. 2.12a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 2.12. (a) Original image f in Fig. 2.1a. (b) Degraded image g

in Fig. 2.12a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.12b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
2.12c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.12d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.12e.
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(a) Degraded Image. MSE=1486.
MSSIM=0.2641.

(b) Restored. α2 = −0.49. MSE=236.
MSSIM=0.6189.

(c) Restored. α2 = −0.45. MSE=235.
MSSIM=0.6056.

(d) Restored. α2 = 0.0. MSE=286.
MSSIM=0.5298.

(e) Restored. α2 = 0.49. MSE=336.
MSSIM=0.4883.

Figure 2.14: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Boat image (Fig. 2.1a). The degraded im-
age was generated with a noise level of σ = 40, has MSE (f , g) = 1486, MSSIM (f , g) = 0.2641
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 236, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.6189. (c) α2 = −0.45, MSE(f , f̂ (g, α̂, α2, σ̂)) = 235, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.6056. (d)
α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 286, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.5298. (e) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 336, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.4883.
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(a) Original Image. (b) Degraded Image. MSE=1486.
MSSIM=0.2641.

(c) Restored. α2 = −0.49. MSE=236.
MSSIM=0.6189.

(d) Restored. α2 = −0.45. MSE=235.
MSSIM=0.6056.

(e) Restored. α2 = 0.0. MSE=286.
MSSIM=0.5298.

(f) Restored. α2 = 0.49. MSE=336.
MSSIM=0.4883.

Figure 2.15: Details of the original image f in Fig. 2.1a, the degraded image g in Fig. 2.14a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 2.14. (a) Original image f in Fig. 2.1a. (b) Degraded image g

in Fig. 2.14a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.14b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
2.14c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.14d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.14e.
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(a) Degraded Image. MSE=383.
MSSIM=0.4453.

(b) Restored. α2 = −0.49. MSE=117.
MSSIM=0.7393.

(c) Restored. α2 = −0.45. MSE=111.
MSSIM=0.7133.

(d) Restored. α2 = 0.0. MSE=223.
MSSIM=0.5375.

(e) Restored. α2 = 0.49. MSE=383.
MSSIM=0.4454.

Figure 2.16: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Lenna image (Fig. 2.1b). The degraded
image was generated with a noise level of σ = 20, has MSE (f , g) = 383, MSSIM (f , g) = 0.4453
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 117, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.7393. (c) α2 = −0.45, MSE(f , f̂ (g, α̂, α2, σ̂)) = 111, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7133. (d)
α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 223, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.5375. (e) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 383, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.4454.
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(a) Original Image. (b) Degraded Image. MSE=383.
MSSIM=0.4453.

(c) Restored. α2 = −0.49. MSE=117.
MSSIM=0.7393.

(d) Restored. α2 = −0.45. MSE=111.
MSSIM=0.7133.

(e) Restored. α2 = 0.0. MSE=223.
MSSIM=0.5375.

(f) Restored. α2 = 0.49. MSE=383.
MSSIM=0.4454.

Figure 2.17: Details of the original image f in Fig. 2.1b, the degraded image g in Fig. 2.16a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 2.16. (a) Original image f in Fig. 2.1b. (b) Degraded image g

in Fig. 2.16a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.16b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
2.16c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.16d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.16e.
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(a) Degraded Image. MSE=1462.
MSSIM=0.2383.

(b) Restored. α2 = −0.49. MSE=214.
MSSIM=0.6331.

(c) Restored. α2 = −0.45. MSE=212.
MSSIM=0.6085.

(d) Restored. α2 = 0.0. MSE=279.
MSSIM=0.5041.

(e) Restored. α2 = 0.49. MSE=351.
MSSIM=0.4500.

Figure 2.18: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Lenna image (Fig. 2.1b). The degraded
image was generated with a noise level of σ = 40, has MSE (f , g) = 1462, MSSIM (f , g) = 0.2383
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 214, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.6331. (c) α2 = −0.45, MSE(f , f̂ (g, α̂, α2, σ̂)) = 212, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.6085. (d)
α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 279, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.5041. (e) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 351, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.4500.
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(a) Original Image. (b) Degraded Image. MSE=1462.
MSSIM=0.2383.

(c) Restored. α2 = −0.49. MSE=214.
MSSIM=0.6331.

(d) Restored. α2 = −0.45. MSE=212.
MSSIM=0.6085.

(e) Restored. α2 = 0.0. MSE=279.
MSSIM=0.5041.

(f) Restored. α2 = 0.49. MSE=351.
MSSIM=0.4500.

Figure 2.19: Details of the original image f in Fig. 2.1b, the degraded image g in Fig. 2.18a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 2.18. (a) Original image f in Fig. 2.1b. (b) Degraded image g

in Fig. 2.18a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.18b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
2.18c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.18d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.18e.
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(a) Degraded Image. MSE=385.
MSSIM=0.6065.

(b) Restored. α2 = −0.49. MSE=272.
MSSIM=0.6099.

(c) Restored. α2 = −0.15. MSE=185.0.
MSSIM=0.7153.

(d) Restored. α2 = −0.1. MSE=184.6.
MSSIM=0.7150.

(e) Restored. α2 = 0.0. MSE=186.
MSSIM=0.7126.

(f) Restored. α2 = 0.49. MSE=203.
MSSIM=0.6959.

Figure 2.20: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Mandrill image (Fig. 2.1c). The degraded
image was generated with a noise level of σ = 20, has MSE (f , g) = 385, MSSIM (f , g) = 0.6065
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 272, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.6099. (c) α2 = −0.15, MSE(f , f̂ (g, α̂, α2, σ̂)) = 185.0, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7153.
(d) α2 = −0.1, MSE(f , f̂ (g, α̂, α2, σ̂)) = 184.6, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7150. (e)
α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 186, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7126. (f) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 203, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.6959.
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(a) Original Image. (b) Degraded Image. MSE=385.
MSSIM=0.6065.

(c) Restored. α2 = −0.49. MSE=272.
MSSIM=0.6099.

(d) Restored. α2 = −0.15. MSE=185.0.
MSSIM=0.7153.

(e) Restored. α2 = −0.1. MSE=184.6.
MSSIM=0.7150.

(f) Restored. α2 = 0.0. MSE=186.
MSSIM=0.7126.

(g) Restored. α2 = 0.49. MSE=203.
MSSIM=0.6959.

Figure 2.21: Details of the original image f in Fig. 2.1c, the degraded image g in Fig. 2.20a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 2.20. (a) Original image f in Fig. 2.1c. (b) Degraded image g

in Fig. 2.20a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.20b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
2.20c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.20d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.20e.
(g) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.20f.
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(a) Degraded Image. MSE=1518.
MSSIM=0.3364.

(b) Restored. α2 = −0.49. MSE=380.
MSSIM=0.4776.

(c) Restored. α2 = −0.05. MSE=335.1.
MSSIM=0.5438.

(d) Restored. α2 = 0.0. MSE=335.2.
MSSIM=0.54402.

(e) Restored. α2 = 0.05. MSE=335.5.
MSSIM=0.54403

(f) Restored. α2 = 0.49. MSE=341.
MSSIM=0.5410

Figure 2.22: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Mandrill image (Fig. 2.1c). The degraded im-
age was generated with a noise level of σ = 40, has MSE (f , g) = 1518, MSSIM (f , g) = 0.3364
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 380, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.4776. (c) α2 = −0.05, MSE(f , f̂ (g, α̂, α2, σ̂)) = 335.1, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.5438.
(d) α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 335.2, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.54402. (e) α2 =
0.05, MSE(f , f̂ (g, α̂, α2, σ̂)) = 335.5, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.54403. (f) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 341, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.5410.
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(a) Original Image. (b) Degraded Image. MSE=1518.
MSSIM=0.3364.

(c) Restored. α2 = −0.49. MSE=380.
MSSIM=0.4776

(d) Restored. α2 = −0.05. MSE=335.1.
MSSIM=0.5438

(e) Restored. α2 = 0.0. MSE=335.2.
MSSIM=0.54402

(f) Restored. α2 = 0.05. MSE=335.5.
MSSIM=0.54403

(g) Restored. α2 = 0.49. MSE=341.
MSSIM=0.5410

Figure 2.23: Details of the original image f in Fig. 2.1c, the degraded image g in Fig. 2.22a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 2.22. (a) Original image f in Fig. 2.1c. (b) Degraded image g

in Fig. 2.22a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.22b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
2.22c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.22d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.22e.
(g) Restored image f̂(g, α̂, α2, σ̂) in Fig. 2.22f.
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2.5 Chapter Summary

In this chapter, we described our solvable probabilistic model for greyscale images using second-neighbour
pixel interactions. We derived the mathematical expressions related to this model and proposed an
algorithm based on these results. Finally, we presented the results of numerical experiments using our
algorithm and confirmed that, with a good choice of the hyperparameter α2, we can obtain better image
correction results by using our extension to the second-neighbour pixel interactions than by using the
original model which only takes the next-neighbour pixel interactions into account. In particular, we saw
that by using negative values of α2, this model allows a better preservation of horizontal and vertical
edges in the images, but at the same time, it introduces horizontal and vertical line artefacts in the
images.
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Chapter 3

Solvable Probabilistic Model with
Second-Neighbour Interaction for
Colour Image Restoration

3.1 Chapter Outline

In this chapter, we shall describe the extension to the second-neighbour pixel interactions of the solvable
probabilistic model for colour images originally proposed by Tanaka and Horiguchi in [4]. We start
with a detailed description of the model as well as the calculations involved in its formation. This is
followed by the presentation of an image correction algorithm based on this model before concluding
with a description of the numerical experiments we performed to evaluate this model. We note that this
model constitutes an extension to colour images of the model described in Chapter 2.

3.2 Model Description

In this section we describe in detail the equations that form the basis of our solvable probabilistic model
with second-neighbour interaction for colour image restoration. From these equations, we also derive
mathematical expressions that can be used to implement an efficient image correction algorithm.

3.2.1 Image Model

We consider an image to be composed of a set of pixels on a square lattice. The lattice is defined as
V ≡ {(x, y) |x = 0, 1, . . . , V x − 1, y = 0, 1, . . . , V y − 1} with V x = V y so that the number of pixels in
an image is defined as |V| = V x2. We also consider the lattice to be on a torus so that it satisfies the
periodic boundary conditions. We define a pixel as a vector consisting of three real values corresponding
the light intensity in the three components of the RGB colour model at that location on the lattice. Thus
we have the vectors

fx,y ≡

 fx,y,red

fx,y,green

fx,y,blue

 and gx,y ≡

 gx,y,red

gx,y,green

gx,y,blue


corresponding to the pixel (x, y) in the original and the degraded images respectively. We define the colour
set K ≡ {red,green,blue} corresponding to the three colour planes of the image. Thus the configurations
of the original and degraded images are represented by f = {fx,y,κ ∈ R| (x, y) ∈ V, κ ∈ K} and g =
{gx,y,κ ∈ R| (x, y) ∈ V, κ ∈ K} respectively. We associate the random variables

F = {Fx,y,κ ∈ R| (x, y) ∈ V, κ ∈ K} and G = {Gx,y,κ ∈ R| (x, y) ∈ V, κ ∈ K}

to the original and degraded images respectively.
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3.2.2 Degradation Process Model

The model for the image degradation is additive white Gaussian noise N(0, σ2) added independently to
each color component of each pixel. Thus we have the conditional probability function

Pr {G = g|F = f , σ} ≡ 1
Znoise (σ)

exp
(
− 1

2σ2
∥g − f∥2

)
(3.1)

where

Znoise (σ) ≡
∫

exp
(
− 1

2σ2
∥z − f∥2

)
dz, (3.2)

with
∫

dz ≡
∫ +∞
−∞

∫ +∞
−∞ . . .

∫ +∞
−∞

∏
(x,y)∈V

∏
κ∈K

dzx,y,κ , is the normalization constant and

∥g − f∥2 ≡
∑

(x,y)∈V

∑
κ∈K

(gx,y,κ − fx,y,κ)2. (3.3)

By substituting (3.3) into (3.2) and using the Gaussian integral formula, we can find the value of
Znoise (σ) as follows:

Znoise (σ) =
∫

exp

− 1
2σ2

∑
(x,y)∈L

∑
κ∈K

(gx,y,κ − fx,y,κ)2
 dz

=
∫ ∏

(x,y)∈V

∏
κ∈K

exp
(
− 1

2σ2
(zx,y,κ − fx,y,κ)2

)
dz

=
∏

(x,y)∈V

∏
κ∈K

∫
exp

(
− 1

2σ2
(zx,y,κ − fx,y,κ)2

)
dzx,y,κ

=
∏

(x,y)∈V

∏
κ∈K

√
2πσ2

=
(
2πσ2

) 3|V|
2 (3.4)

3.2.3 A Priori Probability Density Function

We define the a priori probability density function (prior) that the original image F has a given configu-
ration f as

Pr {F = f |α, α′} ≡ 1
Zprior (α,α′)

exp

{
−1

8

×
∑
κ∈K

∑
κ′∈K

(
ακ,κ′

∑
(x,y)∈V

[(fx,y,κ − fx+1,y,κ)(fx,y,κ′ − fx+1,y,κ′) + (fx,y,κ − fx,y+1,κ)(fx,y,κ′ − fx,y+1,κ′)]

+α′
κ,κ′

∑
(x,y)∈V

[(fx,y,κ − fx+1,y+1,κ)(fx,y,κ′ − fx+1,y+1,κ′) + (fx,y,κ − fx+1,y−1,κ)(fx,y,κ′ − fx+1,y−1,κ′)]

)}
(3.5)

where

α ≡

 αred,red αred,green αred,blue

αgreen,red αgreen,green αgreen,blue

αblue,red αblue,green αblue,blue

 (3.6)

is a hyperparameter expressing the correlation between the colour components of nearest neighbour pixels
and is assumed to be symmetric, α′ ≡ α2α is a hyperparameter expressing the correlation between the
colour components of second-neighbour pixels and
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Zprior (α, α′) ≡
∫

exp

{
−1

8

∑
κ∈K

∑
κ′∈K(

ακ,κ′

∑
(x,y)∈V

[(fx,y,κ − fx+1,y,κ)(fx,y,κ′ − fx+1,y,κ′) + (fx,y,κ − fx,y+1,κ)(fx,y,κ′ − fx,y+1,κ′)]

+ α′
κ,κ′

∑
(x,y)∈V

[
(fx,y,κ − fx+1,y+1,κ)(fx,y,κ′ − fx+1,y+1,κ′)+

(fx,y,κ − fx+1,y−1,κ)(fx,y,κ′ − fx+1,y−1,κ′)
])}

dz (3.7)

with
∫

dz ≡
∫ +∞
−∞

∫ +∞
−∞ . . .

∫ +∞
−∞

∏
(x,y)∈V

∏
κ∈K

dzx,y,κ , is the normalization constant.

The exponential components of equation (3.5) can be rewritten using matrix notation as follows:

− 1
8

∑
κ∈K

∑
κ′∈K(

ακ,κ′

∑
(x,y)∈V

[(fx,y,κ − fx+1,y,κ)(fx,y,κ′ − fx+1,y,κ′) + (fx,y,κ − fx,y+1,κ)(fx,y,κ′ − fx,y+1,κ′)]

+ α′
κ,κ′

∑
(x,y)∈V

[
(fx,y,κ − fx+1,y+1,κ)(fx,y,κ′ − fx+1,y+1,κ′)

+ (fx,y,κ − fx+1,y−1,κ)(fx,y,κ′ − fx+1,y−1,κ′)
])

=− 1
8

∑
κ∈K

∑
κ′∈K

ακ,κ′

∑
(x,y)∈V

2fx,y,κfx,y,κ′ − fx,y,κfx+1,y,κ′ − fx+1,y,κfx,y,κ′ + fx+1,y,κfx+1,y,κ′

− fx,y,κfx,y+1,κ′ − fx,y+1,κfx,y,κ′ + fx,y+1,κfx,y+1,κ′

+ α2

[
2fx,y,κfx,y,κ′ − fx,y,κfx+1,y+1,κ′ − fx+1,y+1,κfx,y,κ′ + fx+1,y+1,κfx+1,y+1,κ′

− fx,y,κfx+1,y−1,κ′ − fx+1,y−1,κfx,y,κ′ + fx+1,y−1,κfx+1,y−1,κ′

]
=− 1

8

∑
κ∈K

∑
κ′∈K

ακ,κ′

×
∑

(x,y)∈V

4fx,y,κfx,y,κ′ − fx,y,κfx+1,y,κ′ − fx,y,κfx−1,y,κ′ − fx,y,κfx,y+1,κ′ − fx,y,κfx,y−1,κ′

+ α2

[
4fx,y,κfx,y,κ′ − fx,y,κfx+1,y+1,κ′ − fx,y,κfx−1,y−1,κ′ − fx,y,κfx+1,y−1,κ′ − fx,y,κfx−1,y+1,κ′

]
=− 1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, κ, κ′) f (3.8)

where C (α2, κ, κ′) is a 3|V| × 3|V| matrix where the (x, y, µ|x′, y′, µ′) elements are defined by

⟨x, y, µ|x′, y′, µ′⟩ ≡ δκ,µδκ′,µ′

(
δx,x′δy,y′ − 1

4
δx,x′+1δy,y′ − 1

4
δx,x′−1δy,y′ − 1

4
δx,x′δy,y′+1 −

1
4
δx,x′δy,y′−1

+ α2

[
δx,x′δy,y′ − 1

4
δx,x′+1δy,y′+1 −

1
4
δx,x′−1δy,y′−1 −

1
4
δx,x′+1δy,y′−1 −

1
4
δx,x′−1δy,y′+1

])
[(x, y), (x′, y′) ∈ V, µ, µ′ ∈ K] (3.9)

where δa,b is the Kronecker delta.
Thus equation (3.5) can be rewritten as

Pr {F = f |α, α2} ≡
1

Zprior (α, α2)
exp

(
−1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, κ, κ′) f

)
(3.10)
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with

Zprior (α, α2) ≡
∫

exp

(
−1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′zT C (α2, κ, κ′)z

)
dz. (3.11)

This model corresponds to an extension to the second-neighbour interactions of the multichannel CAR
model proposed by Tanaka and Horiguchi in [4] and its energy function is

1
8

∑
κ∈K

∑
κ′∈K

(
ακ,κ′

×
∑

(x,y)∈V

[(fx,y,κ − fx+1,y,κ)(fx,y,κ′ − fx+1,y,κ′) + (fx,y,κ − fx,y+1,κ)(fx,y,κ′ − fx,y+1,κ′)]

+α′
κ,κ′

∑
(x,y)∈V

[
(fx,y,κ−fx+1,y+1,κ)(fx,y,κ′−fx+1,y+1,κ′)+(fx,y,κ−fx+1,y−1,κ)(fx,y,κ′−fx+1,y−1,κ′)

])
(3.12)

We note that f is a Multivariate Gaussian Markov random field with dimension 3
(MGMRF3), with mean 0 and precision matrix Q =

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′). In [10], Rue and Held

derive the following properties for a MGMRFp x =
(
xT

1 , . . . ,xT
n

)T with mean µ and precision matrix
Q > 0 where dim(xi) = p:

Pr(xi|x−i) is a normal distribution (3.13)

E(xi|x−i) = µi −Q−1
ii

∑
j:j∼i

Qij(xj − µj) (3.14)

Prec(xi|x−i) = Qii (3.15)

where E(xi|x−i) is the expected value of xi given all other values of x (i.e. x−i ≡ {x\xi}), j : j ∼ i
means the values of j that are neighbors of i (i.e. i ̸= j and Qij ̸= 0), Prec is the precision matrix and
is the inverse of the covariance matrix. Applying these properties to our model, we obtain the following:

E(f(x,y)|f−(x,y)) = µ(x,y) −Q−1
(x,y),(x,y)

∑
(i,j):(i,j)∼(x,y)

Q(x,y),(i,j)(f(i,j) − µ(i,j))

= − (α + α′)−1
∑

(i,j):(i,j)∼(x,y)

Q(x,y),(i,j)f(i,j)

= − (α + α′)−1

[
−α

(
1
4
f(x+1,y) +

1
4
f(x−1,y) +

1
4
f(x,y+1) +

1
4
f(x,y−1)

)

−α′
(

1
4
f(x+1,y+1) +

1
4
f(x+1,y−1) +

1
4
f(x−1,y+1) +

1
4
f(x−1,y−1)

)]

=
1
4

(α + α′)−1
[
α
(
f(x+1,y) + f(x−1,y) + f(x,y+1) + f(x,y−1)

)
+ α′ (f(x+1,y+1) + f(x+1,y−1) + f(x−1,y+1) + f(x−1,y−1)

)] (3.16)

and
Prec(f(x,y)|f−(x,y)) = α + α′ (3.17)

so that we have

Pr(f(x,y)|f−(x,y)) ∼ N

(
1
4

(α + α′)−1
[
α
(
f(x+1,y) + f(x−1,y) + f(x,y+1) + f(x,y−1)

)
+ α′ (f(x+1,y+1) + f(x+1,y−1) + f(x−1,y+1) + f(x−1,y−1)

)]
, (α + α′)−1

)
. (3.18)
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So our model is such that the probability distribution for the value of one pixel given all the other pixels
is a Gaussian distribution with expected value equal to a weighted average of the values of its nearest
and second neighbours and covariance between the colour planes equal to (α + α′)−1.

To simplify calculations, C (α2, κ, κ′) can be decomposed as follows:

C (α2, κ, κ′) = D (α2)⊗ Jκ,κ′
(3.19)

where ⊗ is the Kronecker product, Jκ,κ′
is the single-entry 3x3 matrix, with 1 at position (κ, κ′) and

zero elsewhere and D (α2) is a |V| × |V| matrix where the (x, y|x′, y′) elements are defined by

⟨x, y|x′, y′⟩ ≡ δx,x′δy,y′ − 1
4
δx,x′+1δy,y′ − 1

4
δx,x′−1δy,y′ − 1

4
δx,x′δy,y′+1 −

1
4
δx,x′δy,y′−1

+ α2

(
δx,x′δy,y′ − 1

4
δx,x′+1δy,y′+1 −

1
4
δx,x′+1δy,y′−1 −

1
4
δx,x′−1δy,y′+1 −

1
4
δx,x′−1δy,y′−1

)
[(x, y), (x′, y′) ∈ V] . (3.20)

Here, we observe that D (α2) is identical to the matrix C (α2) defined in equation (2.8). We can then
use the eigendecomposition of equation (2.19) to obtain

D =
(
U−1ΛU

)
(3.21)

where U is the DFT matrix defined as

⟨x, y|U |p, q⟩ ≡ 1√
|V|

exp
[
−2πi

(
px

Vx
+

qy

Vy

)]
, (3.22)

U−1 is the conjugate transpose of U , known as the inverse DFT matrix and defined as

⟨
x, y|U−1|p, q

⟩
≡ 1√

|V|
exp

[
2πi

(
px

Vx
+

qy

Vy

)]
(3.23)

and

Λ ≡
∑

(p,q)∈V

(
1− 1

2
cos
(

2πp

Vx

)
− 1

2
cos
(

2πq

Vy

)
+

α2

[
1− 1

2
cos
(

2π(
p

Vx
+

q

Vy
)
)
− 1

2
cos
(

2π(
p

Vx
− q

Vy
)
)])

Jpq,pq (3.24)

is the diagonal matrix of the eigenvalues λ(α2, p, q) of D where Jpq,pq is the |L|× |L| single-entry matrix.
We can simplify the expression of Zprior. Since z in equation (3.11) is not dependent on κ and κ′, we

can take z and zT outside of the sums. We can then apply the multidimensional Gaussian integral to
the equation followed by the decompositions of (3.19) and (3.21) to obtain

Zprior(α, α2) =
∫

exp

(
−1

2
zT

[∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

]
z

)
dz

= (2π)
3|V|

2

{
det

(∑
κ∈K

∑
κ′∈K

ακ,κ′C(α2, κ, κ′)

)}− 1
2

= (2π)
3|V|

2

{
det

[∑
κ∈K

∑
κ′∈K

ακ,κ′

([
U−1ΛU

]
⊗ Jκ,κ′

)]}− 1
2

= (2π)
3|V|

2

{
det

[(
U−1ΛU

)
⊗
∑
κ∈K

∑
κ′∈K

(
ακ,κ′Jκ,κ′

)]}− 1
2

= (2π)
3|V|

2
{
det
[(

U−1ΛU
)
⊗α

]}− 1
2
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= (2π)
3|V|

2

{[
det
(
U−1ΛU

)]3
[det (α)]|V|

}− 1
2

= (2π)
3|V|

2

{
[det (Λ)]3 [det (α)]|V|

}− 1
2

= (2π)
3|V|

2

 ∏
(p,q)∈V

λ (α2, p, q)3 detα


− 1

2

. (3.25)

3.2.4 A Posteriori Probability Density Function

The a posteriori probability density function of having an original image configuration f given a degraded
image g is found by applying Bayes’ theorem as follows:

Pr {F = f |G = g, α, α2, σ} =
Pr {G = g|F = f , σ}Pr {F = f |α, α2}

Pr {G = g|α, α2, σ}

=
Pr {G = g|F = f , σ}Pr {F = f |α, α2}∫
Pr {G = g|F = z, σ}Pr {F = z|α, α2} dz

(3.26)

where Pr {G = g|α, α2, σ} =
∫

Pr {G = g|F = z, σ}Pr {F = z|α, α2} dz is called the evidence.
Using (3.1) and (3.10), the function can be rewritten as follows:

Pr {F = f |G = g,α, α2, σ} =

1
Znoise (σ)

exp

− 1
2σ2

∑
(x,y)∈V

∑
κ∈K

(gx,y,κ − fx,y,κ)2


× 1
Zprior (α, α2)

exp

{
−1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, κ, κ′) f

}

÷

[∫
1

Znoise (σ)
exp

− 1
2σ2

∑
(x,y)∈V

∑
κ∈K

(gx,y,κ − zx,y,κ)2


× 1
Zprior (α, α2)

exp

{
−1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′zT C (α2, κ, κ′)z

}
dz

]
. (3.27)

Since Znoise and Zprior are not dependant on z, they can be taken out of the integral in the denominator
and cancel out with the numerator, so we have

Pr {F = f |G = g, α, α2, σ} =
1

Zposterior (g, α, α2, σ)
exp [−H (f |g, α, α2, σ)] (3.28)

where
Zposterior (g, α, α2, σ) =

∫
exp [−H (z|g, α, α2, σ)] dz (3.29)

and

H (f |g, α, α2, σ) =
1

2σ2

∑
(x,y)∈V

∑
κ∈K

(gx,y,κ − fx,y,κ)2 +
1
2
fT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f . (3.30)

We can simplify calculations by grouping all element of f in H in one single term as follows

H (f |g,α, α2, σ) =
1

2σ2
(f − g)T (f − g) +

1
2
fT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f

=
1

2σ2

[
fT f − fT g − gT f + gT g

]
+

1
2
fT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f
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=
1

2σ2

[
fT f − fT g − gT f + σ2fT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f

]
+

1
2σ2

gT g

=
1

2σ2

[
fT f − fT g − gT f + σ2fT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f

]

+
1

2σ2
gT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)

×

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

=
1

2σ2

[
fT f − fT g − gT f + σ2fT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f

]

+
1

2σ2
gT

[(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

+ σ2

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1]
g

=
1

2σ2

[
fT f − fT g − gT f + fT

(
σ2
∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f

]

+
1

2σ2
gT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

+
1
2
gT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

=
1

2σ2

[
fT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f − fT g − gT f

+ gT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

]

+
1
2
gT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

=
1

2σ2

[
fT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f

− fT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

− gT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
f

+ gT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

]

+
1
2
gT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

47



=
1

2σ2

f −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

T

×

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)

×

f −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g


+

1
2
gT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

(3.31)

where we made use of the fact that
(

I + σ2
∑

κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)
)

is symmetric.

Using equation (3.19) and the eigendecomposition described in (3.21), we can rewrite the second term
of (3.31) as follows

1
2
gT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

=
1
2
gT

(∑
κ∈K

∑
κ′∈K

ακ,κ′
(
U−1ΛU

)
⊗ Jκ,κ′

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′
(
U−1ΛU

)
⊗ Jκ,κ′

)−1

g

=
1
2
gT

((
U−1ΛU

)
⊗
∑
κ∈K

∑
κ′∈K

ακ,κ′Jκ,κ′

)(
I + σ2

(
U−1ΛU

)
⊗
∑
κ∈K

∑
κ′∈K

ακ,κ′Jκ,κ′

)−1

g

=
1
2
gT
[(

U−1ΛU
)
⊗α

] [
I + σ2

(
U−1ΛU

)
⊗α

]−1
g

=
1
2
gT
[(

U−1ΛU
)
⊗ (eαe)

] [
I + σ2

(
U−1ΛU

)
⊗ (eαe)

]−1
g

=
1
2
gT
[(

U−1 ⊗ e
)
(Λ⊗α) (U ⊗ e)

]
×
[(

U−1 ⊗ e
)
I (U ⊗ e) + σ2

(
U−1 ⊗ e

)
(Λ⊗α) (U ⊗ e)

]−1
g

=
1
2
gT
[(

U−1 ⊗ e
)
(Λ⊗α) (U ⊗ e)

] [(
U−1 ⊗ e

) {
I + σ2 (Λ⊗α)

}
(U ⊗ e)

]−1
g

=
1
2
gT
(
U−1 ⊗ e

)
(Λ⊗α) (U ⊗ e)

(
U−1 ⊗ e

) [
I + σ2 (Λ⊗α)

]−1
(U ⊗ e) g

=
1
2
gT
(
U−1 ⊗ e

)
(Λ⊗α)

[
I + σ2 (Λ⊗α)

]−1
(U ⊗ e) g

=
1
2
[
gr

T ⊗ (1, 0, 0) + gg
T ⊗ (0, 1, 0) + gb

T ⊗ (0, 0, 1)
] (

U−1 ⊗ e
)

×

 ∑
(p,q)∈V

λ(α2, p, q)Jpq,pq ⊗α

 ∑
(p,q)∈V

Jpq,pq ⊗ e + σ2λ(α2, p, q)Jpq,pq ⊗α

−1

× (U ⊗ e)

[
gr ⊗

 1
0
0

+ gg ⊗

 0
1
0

+ gb ⊗

 0
0
1

]
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=
1
2
[(

gr
T U−1

)
⊗ (1, 0, 0) +

(
gg

T U−1
)
⊗ (0, 1, 0) +

(
gb

T U−1
)
⊗ (0, 0, 1)

]
×

 ∑
(p,q)∈V

Jpq,pq ⊗ λ(α2, p, q)α

 ∑
(p,q)∈V

Jpq,pq ⊗
[
e + σ2λ(α2, p, q)α

]−1

×

[
(Ugr)⊗

 1
0
0

+ (Ugg)⊗

 0
1
0

+ (Ugb)⊗

 0
0
1

]

=
1
2

[
Gr

† ⊗ (1, 0, 0) + Gg
† ⊗ (0, 1, 0) + Gb

† ⊗ (0, 0, 1)
]

×
∑

(p,q)∈V

Jpq,pq ⊗ λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

×

[
Gr ⊗

 1
0
0

+ Gg ⊗

 0
1
0

+ Gb ⊗

 0
0
1

]

=
1
2

∑
(p,q)∈V

Gr
†(p, q)Gr(p, q) (1, 0, 0)λ(α2, p, q)α

(
e + σ2λ(α2, p, q)α

)−1

 1
0
0


+ Gr

†(p, q)Gg(p, q) (1, 0, 0)λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

 0
1
0


+ Gr

†(p, q)Gb(p, q) (1, 0, 0) λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

 0
0
1


+ Gg

†(p, q)Gr(p, q) (0, 1, 0)λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

 1
0
0


+ Gg

†(p, q)Gg(p, q) (0, 1, 0) λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

 0
1
0


+ Gg

†(p, q)Gb(p, q) (0, 1, 0)λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

 0
0
1


+ Gb

†(p, q)Gr(p, q) (0, 0, 1) λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

 1
0
0


+ Gb

†(p, q)Gg(p, q) (0, 0, 1)λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

 0
1
0


+ Gb

†(p, q)Gb(p, q) (0, 0, 1) λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

 0
0
1
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=
1
2

∑
(p,q)∈V

[
Gr

†(p, q) (1, 0, 0) + Gg
†(p, q) (0, 1, 0) + Gb

†(p, q) (0, 0, 1)
]

× λ(α2, p, q)α
(
e + σ2λ(α2, p, q)α

)−1

Gr(p, q)

 1
0
0

+ Gg(p, q)

 0
1
0

+ Gb(p, q)

 0
0
1




=
1
2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)α

(
e + σ2λ(α2, p, q)α

)−1−→
G†(p, q) (3.32)

where e is the 3x3 identity matrix,

−→
G(p, q) =

 Gred(p, q)
Ggreen(p, q)
Gblue(p, q)

 ≡ 1√
|V|

∑
(x,y)∈V

 gx,y,red

gx,y,green

gx,y,blue

 exp
(
−2πi

(
px

Vx
+

qy

Vy

))
(3.33)

and

−→
G†(p, q) =

 G†
red(p, q)

G†
green(p, q)

G†
blue(p, q)

T

≡ 1√
|V|

∑
(x,y)∈V

(gx,y,red, gx,y,green, gx,y,blue) exp
(

2πi

(
px

Vx
+

qy

Vy

))
.

(3.34)
Here we note that Gκ(p, q) corresponds to (Ugκ)p,q where (Ugκ) is the DFT of the vector made from
only the κ color component of g. Similarly for

−→
G† using (gT

κ U−1), the inverse DFT.
From the above, we conclude that

H (f |g, α, α2, σ) =
1

2σ2

f −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g

T

×

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)f −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)−1

g


+

1
2

∑
(p,q)∈V

{−→
G†(p, q)λ(α2, p, q)α

(
e + σ2λ(α2, p, q)α

)−1−→
G(p, q)

}
. (3.35)

Using the variable substitution x =

[
z −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)
)−1

g

]
and

dz = dx, Zposterior can be rewritten as

Zposterior =
∫

exp
{
−1
2σ2

xT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
x

− 1
2

∑
(p,q)∈V

[−→
G†(p, q)λ(α2, p, q)α

(
e + σ2λ(α2, p, q)α

)−1−→
G(p, q)

]}
dx (3.36)

which, using the multidimensional Gaussian integral becomes

Zposterior =
(
2πσ2

) 3|V|
2

{
det

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)}− 1
2

× exp

−1
2

∑
(p,q)∈V

[−→
G†(p, q)λ(α2, p, q)α

(
e + σ2λ(α2, p, q)α

)−1−→
G(p, q)

] . (3.37)

Using the same eigendecomposition as in (3.25), the determinant in equation (3.37) can be rewritten as
follows:

det

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, κ, κ′)

)
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= det
[
I + σ2

(
U−1ΛU

)
⊗α

]
= det

[
I ⊗ e + σ2

(
U−1ΛU

)
⊗α

]
= det

[
U−1U ⊗ ee + σ2

(
U−1ΛU

)
⊗ eαe

]
= det

[(
U−1 ⊗ e

)
(U ⊗ e) + σ2

(
U−1 ⊗ e

)
(Λ⊗α) (U ⊗ e)

]
= det

[(
U−1 ⊗ e

) {
I + σ2 (Λ⊗α)

}
(U ⊗ e)

]
= det

[
I + σ2 (Λ⊗α)

]
. (3.38)

Here we notice that I + σ2 (Λ⊗α) is a block diagonal matrix, so we can rewrite the previous line as

det
[
I + σ2 (Λ⊗α)

]
= det

[
diag

(
A11, A12, . . . ,AVxVy

)]
with Apq = e + σ2λ(α2, p, q)α

=
∏

(p,q)∈V

det
(
e + σ2λ(α2, p, q)α

)
(3.39)

where diag(A1, ...,An) means creating a block diagonal matrix whose diagonal entries starting in the
upper left corner are matrices A1, ...,An. So equation (3.37) can be transformed into

Zposterior (g,α, α2, σ) =
(
2πσ2

) 3|V|
2

∏
(p,q)∈V

[
det
(
e + σ2λ(α2, p, q)α

)]− 1
2

× exp

−1
2

∑
(p,q)∈V

[−→
G†(p, q)λ(α2, p, q)α

(
e + σ2λ(α2, p, q)α

)−1−→
G(p, q)

] . (3.40)

3.2.5 Restored Image Equation

In our model, the estimated restored image configuration is given by the expected value of the a posteriori
probability function. This gives us the following restored image equation:

f̂ ≡
∫

z Pr {F = z|G = g, α, α2, σ} dz (3.41)

where the integral is performed over every image configuration z (range of ]−∞, +∞[ for each colour
component) and f̂ is our restored image.

Using equation (3.28) we obtain

f̂ =
1

Zposterior (g, α, α2, σ)

∫
z exp [−H (z|g, α, α2, σ)] dz (3.42)

which, using the results of equations (3.35) and (3.37) is rewritten as

f̂ =
1

(2πσ2)
3|V|

2 det (σ2Σ−1)−
1
2 exp

{
− 1

2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)α (e + σ2λ(α2, p, q)α)−1−→

G(p, q)

}

×
∫

z exp

(
− 1

2σ2
[z − µ]T σ2Σ−1 [z − µ]

− 1
2

∑
(p,q)∈V

[−→
G†(p, q)λ(α2, p, q)α

(
e + σ2λ(α2, p, q)α

)−1−→
G(p, q)

])
dz

=
1

(2πσ2)
3|V|

2 (σ2)−
3|V|

2 det (Σ)
1
2

∫
z exp

(
−1

2
[z − µ]T Σ−1 [z − µ]

)
dz

=
1

(2π)
3|V|

2 det (Σ)
1
2

∫
z exp

(
−1

2
[z − µ]T Σ−1 [z − µ]

)
dz (3.43)
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with µ ≡
(

I + σ2
∑

κ∈K

∑
κ′∈K

ακ,κ′C(α2, κ, κ′)
)−1

g

and Σ−1 ≡ 1
σ2

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C(α2, κ, κ′)
)

which corresponds to the expected value equation of a multivariate Gaussian distribution. Using that
fact, we conclude that

f̂ = E[z] = µ =

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C(α2, κ, κ′)

)−1

g. (3.44)

However, it is impractical to compute the inverse of such a large matrix, so we use the same eigende-
composition as in (3.25) to simplify the equation as follows:

f̂ =
[
I + σ2

(
U−1ΛU

)
⊗α

]−1
g

=
[
U−1U ⊗ ee + σ2

(
U−1ΛU

)
⊗ eαe

]−1
g

=
[(

U−1 ⊗ e
)
(U ⊗ e) + σ2

(
U−1 ⊗ e

)
(Λ⊗α) (U ⊗ e)

]−1
g

=
(
U−1 ⊗ e

) [
I + σ2 (Λ⊗α)

]−1
(U ⊗ e) g

=
(
U−1 ⊗ e

) ∑
(p,q)∈V

Jpq,pq ⊗
(
e + σ2λ (α2, p, q) α

)−1

(U ⊗ e) g

=
∑

(p,q)∈V

(
U−1 (p, q)⊗

(
e + σ2λ (α2, p, q)α

)−1
)−→

G (p, q) (3.45)

so that we have
f̂x,y =

∑
(p,q)∈V

U−1
(x,y),(p,q)

(
e + σ2λ (α2, p, q)α

)−1−→
G (p, q). (3.46)

Here we note that this corresponds to the inverse DFT of
(
e + σ2λ (α2, p, q)α

)−1−→
G (p, q) where

−→
G(p, q)

itself is the DFT of the degraded image.

3.2.6 Hyperparameters Estimation

As we saw in section 3.2.5, the restored image equation depends on the values of the hyperparameters
σ, α and α2. The selection of those values shall be done by fixing the value of α2 and choosing values
for σ and α that maximize the evidence (or likelihood) of equation (3.26). Such a method is known as
Maximum Likelihood Estimation (MLE).

Using equation (3.26) with (3.1), (3.10) and (3.28), we find that the evidence is given by

Pr {G = g|α, α2, σ} =
Pr {G = g|F = f , σ}Pr {F = f |α, α2}

Pr {F = f |G = g, α, α2, σ}

=

1
Znoise(σ) exp

(
− 1

2σ2 ∥g − f∥2
)

1
Zprior(α,α2)

exp
(
−1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, κ, κ′)f

)
1

Zposterior(g,α,α2,σ) exp
[
− 1

2σ2 ∥g − f∥2 − 1
2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, κ, κ′)f
]

=
Zposterior(g, α, α2, σ)
Znoise(σ)Zprior(α, α2)

(3.47)

We can simplify the calculations by finding the maximum of the log of the evidence, which gives us

(α̂, σ̂) = arg max
α,σ

[lnZposterior(g, α, α2, σ)− lnZnoise(σ)− lnZprior(α, α2)]
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= arg max
α,σ

[
3 |V|

2
ln(2πσ2)− 1

2

∑
(p,q)∈V

ln
(
det
[
e + σ2λ(α2, p, q)α

])
− 1

2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)α

[
e + σ2λ(α2, p, q)α

]−1−→
G(p, q)− 3 |V|

2
ln(2πσ2)

− 3 |V|
2

ln(2π) +
1
2

∑
(p,q)∈V

ln (det [λ(α2, p, q)α])
]

= arg max
α,σ

[
−3 |V|

2
ln(2π)− 1

2

∑
(p,q)∈V

ln
(
det
[
e + σ2λ(α2, p, q)α

])
− 1

2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)α

[
e + σ2λ(α2, p, q)α

]−1−→
G(p, q)

+
1
2

∑
(p,q)∈V

ln (det [λ(α2, p, q)α])
]

= arg max
α,σ

[
−3 |V|

2
ln(2π)− 1

2

∑
(p,q)∈V

ln
(
det
[
e + σ2λ(α2, p, q)α

])
− 1

2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)α

[
e + σ2λ(α2, p, q)α

]−1−→
G(p, q)

+
1
2

∑
(p,q)∈V

ln
(
λ(α2, p, q)3 det α

)]

= arg max
α,σ

[
−3 |V|

2
ln(2π)− 1

2

∑
(p,q)∈V

ln
(
det
[
e + σ2λ(α2, p, q)α

])
− 1

2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)α

[
e + σ2λ(α2, p, q)α

]−1−→
G(p, q)

+
|V|
2

ln (detα) +
3
2

∑
(p,q)∈V

ln [λ(α2, p, q)]
] (3.48)

where α̂ and σ̂ are the estimated values of the hyperparameters α and σ respectively.
We showed in equation (2.63) that last term of equation (3.48) imposes the restriction

α2 ≥ − 1
2 .

Using equation (3.48), we find the value of σ̂ by solving the equation
d

dσ̂2 ln(Pr{G = g|α̂, α2, σ̂}) = 0 as follows

0 = −1
2

∑
(p,q)∈V

tr
(
λ(α2, p, q)α̂

[
e + σ̂2λ(α2, p, q)α̂

]−1
)

− 1
2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)α̂

×
(
−
[
e + σ̂2λ(α2, p, q)α̂

]−1
(λ(α2, p, q)α̂)

[
e + σ̂2λ(α2, p, q)α̂

]−1
)−→

G(p, q)

= − 1
2σ̂2

∑
(p,q)∈V

tr
(
σ̂2λ(α2, p, q)α̂

(
e + σ̂2λ(α2, p, q)α̂

)−1
)

+
1
2

∑
(p,q)∈V

−→
G†(p, q)

(
λ(α2, p, q)α̂

[
e + σ̂2λ(α2, p, q)α̂

]−1
)2−→

G(p, q)

= − 1
2σ̂2

∑
(p,q)∈V

tr
[(
−e + e + σ̂2λ(α2, p, q)α̂

) (
e + σ̂2λ(α2, p, q)α̂

)−1
]

+
1
2

∑
(p,q)∈V

−→
G†(p, q)

(
λ(α2, p, q)α̂

[
e + σ̂2λ(α2, p, q)α̂

]−1
)2−→

G(p, q)
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= − 1
2σ̂2

∑
(p,q)∈V

tr
[
−e
(
e + σ̂2λ(α2, p, q)α̂

)−1
]
− 1

2σ̂2

∑
(p,q)∈V

tr (e)

+
1
2

∑
(p,q)∈V

−→
G†(p, q)

(
λ(α2, p, q)α̂

[
e + σ̂2λ(α2, p, q)α̂

]−1
)2−→

G(p, q)

3 |V|
2σ̂2

=
1

2σ̂2

∑
(p,q)∈V

tr
(
e + σ̂2λ(α2, p, q)α̂

)−1

+
1
2

∑
(p,q)∈V

−→
G†(p, q)

(
λ(α2, p, q)α̂

[
e + σ̂2λ(α2, p, q)α̂

]−1
)2−→

G(p, q)

σ̂2 =
σ̂2

3 |V|
∑

(p,q)∈V

[
tr
(
e + σ̂2λ(α2, p, q)α̂

)−1

+ σ̂2−→G†(p, q)
(
λ(α2, p, q)α̂

[
e + σ̂2λ(α2, p, q)α̂

]−1
)2−→

G(p, q)
]
.

(3.49)

Similarly, we find the value α̂ by solving the equation d
dα̂ ln(Pr{G = g|α̂, α2, σ̂}) = 0. Here we shall

make use of the following properties of matrix derivatives taken from [16]:
For a symmetric matrix X,

d ln det (X)
dX

= 2X−1 −
(
X−1 ◦ I

)
(3.50)

and
dX

dXij
= J ij + J ji − J ijJ ji (3.51)

where ◦ means the Hadamard product so that X ◦ I = diag(X) where diag(X) means the diagonal
matrix made from only the main diagonal of X. Also, for a general matrix,

∂
(
X−1

)
= −X−1 (∂X) X−1. (3.52)

Using these, we obtain

0 = −1
2

∑
(p,q)∈V

σ̂2λ(α2, p, q)
(
2
[
e + σ̂2λ(α2, p, q)α̂

]−1 − diag
{[

e + σ̂2λ(α2, p, q)α̂
]−1
})

+
|V|
2
[
2α̂−1 − diag

(
α̂−1

)]
− 1

2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)

d

dα̂

{
α̂
[
e + σ̂2λ(α2, p, q)α̂

]−1
}−→

G(p, q)

= −
∑

(p,q)∈V

σ̂2λ(α2, p, q)
(
2
[
e + σ̂2λ(α2, p, q)α̂

]−1 − diag
{[

e + σ̂2λ(α2, p, q)α̂
]−1
})

+ 2|V|α̂−1 − |V|diag
(
α̂−1

)
−

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)

d

dα̂

{
α̂
[
e + σ̂2λ(α2, p, q)α̂

]−1
}−→

G(p, q)

2|V|α̂−1 =
∑

(p,q)∈V

σ̂2λ(α2, p, q)
(
2
[
e + σ̂2λ(α2, p, q)α̂

]−1 − diag
{[

e + σ̂2λ(α2, p, q)α̂
]−1
})

+ |V|diag
(
α̂−1

)
+

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)

d

dα̂

{
α̂
[
e + σ̂2λ(α2, p, q)α̂

]−1
}−→

G(p, q)
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α̂−1 =
1

2|V|

×
∑

(p,q)∈V

σ̂2λ(α2, p, q)
(
2
[
e + σ̂2λ(α2, p, q)α̂

]−1 − diag
{[

e + σ̂2λ(α2, p, q)α̂
]−1
})

+
1
2
diag

(
α̂−1

)
+

1
2|V|

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)

d

dα̂

{
α̂
[
e + σ̂2λ(α2, p, q)α̂

]−1
}−→

G(p, q)

α̂−1 =
1

2|V|

×
∑

(p,q)∈V

σ̂2λ(α2, p, q)
(
2
[
e + σ̂2λ(α2, p, q)α̂

]−1 − diag
{[

e + σ̂2λ(α2, p, q)α̂
]−1
})

+
1
2
diag

(
α̂−1

)
+

1
2|V|

∑
κ∈K

∑
κ′∈K

Jκ,κ′

×
∑

(p,q)∈V

−→
G†(p, q)λ(α2, p, q)

d

dα̂κ,κ′

{[
α̂−1 + σ̂2λ(α2, p, q)e

]−1
}−→

G(p, q)

α̂−1 =
1

2|V|

×
∑

(p,q)∈V

σ̂2λ(α2, p, q)
(
2
[
e + σ̂2λ(α2, p, q)α̂

]−1 − diag
{[

e + σ̂2λ(α2, p, q)α̂
]−1
})

+
1
2
diag

(
α̂−1

)
+

1
2|V|

∑
κ∈K

∑
κ′∈K

Jκ,κ′ ∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)

{
−
[
α̂−1 + σ̂2λ(α2, p, q)e

]−1

×
(

d

dα̂κ,κ′

[
α̂−1 + σ̂2λ(α2, p, q)e

]) [
α̂−1 + σ̂2λ(α2, p, q)e

]−1
}
−→
G(p, q)

α̂−1 =
1

2|V|

×
∑

(p,q)∈V

σ̂2λ(α2, p, q)
(
2
[
e + σ̂2λ(α2, p, q)α̂

]−1 − diag
{[

e + σ̂2λ(α2, p, q)α̂
]−1
})

+
1
2
diag

(
α̂−1

)
+

1
2|V|

∑
κ∈K

∑
κ′∈K

Jκ,κ′ ∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)

{
−
[
α̂−1 + σ̂2λ(α2, p, q)e

]−1

×
[
−α̂−1

(
Jκ,κ′

+ Jκ′,κ − Jκ,κ′
Jκ′,κ

)
α̂−1

] [
α̂−1 + σ̂2λ(α2, p, q)e

]−1
}
−→
G(p, q)

α̂−1 =
1

2|V|

×
∑

(p,q)∈V

σ̂2λ(α2, p, q)
(
2
[
e + σ̂2λ(α2, p, q)α̂

]−1 − diag
{[

e + σ̂2λ(α2, p, q)α̂
]−1
})

+
1
2
diag

(
α̂−1

)
+

1
2|V|

∑
κ∈K

∑
κ′∈K

Jκ,κ′ ∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)

[
e + σ̂2λ(α2, p, q)α̂

]−1

×
(
Jκ,κ′

+ Jκ′,κ − Jκ,κ′
Jκ′,κ

) [
e + σ̂2λ(α2, p, q)α̂

]−1−→
G(p, q)

(3.53)

so that we have
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α̂−1 − 1
2
diag

(
α̂−1

)
=

1
2 |V|

×
∑

(p,q)∈V

(
σ̂2λ(α2, p, q)

{
2
[
e + σ̂2λ(α2, p, q)α̂

]−1 − diag
([

e + σ̂2λ(α2, p, q)α̂
]−1
)}

+
∑
κ∈K

∑
κ′∈K

[
Jκ,κ′−→

G†(p, q)λ(α2, p, q)
[
e + σ̂2λ(α2, p, q)α̂

]−1
(
Jκ,κ′

+ Jκ′,κ − Jκ,κ′
Jκ,κ′

)
×
[
e + σ̂2λ(α2, p, q)α̂

]−1−→
G(p, q)

])
. (3.54)

When actually computing the value of the log of the evidence given in equation (3.48), we notice that
the value of the last term diverges when λ(α2, p, q) = 0. As shown in section 2.2.6 using equation (2.66),
we can get around this problem by using the following approximation:

3
2

∑
(p,q)∈V

ln [λ(α2, p, q)] ≈ 3V 2
x

2
ln

1
4

+
3Vx

2

Vx−1∑
p=0

ln

[
2− cos

(
2πp

Vx

)
+ 2α2

+

√(
2− cos

(
2πp

Vx

)
+ 2α2

)2

−
(

1 + 2α2 cos
(

2πp

Vx

))2
]
. (3.55)

We also concluded in the same section that we should restrict the range of α2 to −0.5 < α2 < 0.5.

3.3 Algorithm

In this section, we describe an image restoration algorithm based on our image restoration model. We use
a fixed point iteration algorithm [12] to find our maximum likelihood estimates for the hyperparameters
α and σ. As we saw in section 3.2.6, the extremum values for the hyperparameters α and σ can
be expressed in the form of the simultaneous recursive equations α(r) = f(α(r − 1), σ(r − 1)) and
σ(r) = g(α(r − 1), σ(r − 1)). Therefore, in our algorithm, we find new values of α̂ and σ̂ by applying
their current values to equations (3.49) and (3.54) and repeat that process until the algorithm converges.
We shall assume that the algorithm has converged once we achieve the following 2 halting criteria:

e1(r) =

{∑
κ∈K

∑
κ′∈K

∣∣∣∣aκ,κ′(r)− aκ,κ′(r − 1)
aκ,κ′(r − 1)

∣∣∣∣
}

+
∣∣∣∣b(r)− b(r − 1)

b(r − 1)

∣∣∣∣ < 10−4 (3.56)

e2(r) =
∣∣∣∣c(r)− c(r − 1)

c(r − 1)

∣∣∣∣ < 10−4 (3.57)

where aκ,κ′(x), b(x) and c(x) are the values of α̂κ,κ′ , σ̂2 and the log of evidence, respectively, at iteration
x of the algorithm and r and r− 1 are the current and previous iterations of the algorithm, respectively.

3.3.1 Algorithm Steps

Following are the steps of the practical algorithm.
Step 1.

(i) Compute the DFT of the degraded image to obtain the value of
−→
G . We note here that

−→
G† is simply

the complex conjugate of
−→
G so it does not need to be computed explicitly.

(ii) Compute the values of λ(α2, p, q) using (3.24)

(iii) Initialize a(0) to

 1 1/2 1/2
1/2 1 1/2
1/2 1/2 1

.

(iv) Initialize b(0) to 1.

(v) Initialize r to 0.
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Step 2.

(i) Update r ← r + 1.

(ii) Compute the right side of equation (3.54) given by

x =
1

2 |V|
∑

(p,q)∈V

(
b(r − 1)λ(α2, p, q)

{
2 [e + b(r − 1)λ(α2, p, q)a(r − 1)]−1

− diag
(
[e + b(r − 1)λ(α2, p, q)a(r − 1)]−1

)}
+
∑
κ∈K

∑
κ′∈K

[
Jκ,κ′−→

G†(p, q)λ(α2, p, q) [e + b(r − 1)λ(α2, p, q)a(r − 1)]−1

×
(
Jκ,κ′

+ Jκ′,κ − Jκ,κ′
Jκ,κ′

)
[e + b(r − 1)λ(α2, p, q)a(r − 1)]−1−→

G(p, q)
])

. (3.58)

(iii) Using equation (3.54), update a(r)← (x + diag(x))−1.

(iv) Using equation (3.49), update

b(r)← b(r − 1)
3 |V|

∑
(p,q)∈V

[
tr (e + b(r − 1)λ(α2, p, q)a(r − 1))−1

+ b(r − 1)
−→
G†(p, q)

(
λ(α2, p, q)a(r − 1) [e + b(r − 1)λ(α2, p, q)a(r − 1)]−1

)2−→
G(p, q)

]
. (3.59)

(v) Using equations (3.48) and (3.55), update

c(r)← −3 |V|
2

ln(2π)− 1
2

∑
(p,q)∈V

ln (det [e + b(r − 1)λ(α2, p, q)a(r − 1)])

− 1
2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, p, q)a(r − 1) [e + b(r − 1)λ(α2, p, q)a(r − 1)]−1−→

G(p, q)

+
|V|
2

ln (det a(r − 1)) +
3V 2

x

2
ln

1
4

+
3Vx

2

Vx−1∑
p=0

ln

[
2− cos

(
2πp

Vx

)
+ 2α2

+

√(
2− cos

(
2πp

Vx

)
+ 2α2

)2

−
(

1 + 2α2 cos
(

2πp

Vx

))2
]

(3.60)

Here we note that since
−→
G†(p, q) is the conjugate transpose of

−→
G(p, q) and that, since a(r) is a

symmetric matrix, the matrices involved in their multiplications are all symmetric, the imaginary terms
of those multiplications will vanish.

Step 3.

(i) Check the termination conditions of equations (3.56) and (3.57).

(ii) If the termination conditions are fulfilled, proceed to step 4. Otherwise go back to step 2.

Step 4.

(i) Update α̂← a(r).

(ii) Update σ̂ ←
√

b(r).

(iii) Compute the values of
(
e + σ̂2λ (α2, p, q) α̂

)−1−→
G (p, q) for each p and q.

(iv) Apply the inverse DFT to the above values to obtain the restored image as described in (3.46).
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3.3.2 Computational Complexity

We now analyse the complexity of our algorithm using the Big O notation. Here n is the number of pixels
in the image, so n = |V|.

Step 1 DFT computation using the FFT algorithm: O(n log n).

Step 2 Computation of α̂(r): O(n).
Computation of σ̂(r): O(n).
Computation of the log of evidence: O(n).
Total: O(n).

Step 3 Computation of e1(r) : O(1).
Computation of e2(r) : O(1).
Total: O(1).

Step 4 Computation of the values to be used in the inverse DFT: O(n).
Restored image computation using the FFT algorithm: O(n log n).
Total: O(n log n).

This gives a total complexity of O(n log n).

3.4 Numerical Experiments

In this section, we present the numerical experiments we performed to evaluate our model as well as the
results of these experiments. We also discuss these results.

3.4.1 Experiments

We applied our program to the original 512x512 pixels 24-bit truecolor images f presented in Fig.3.1.
We first degraded the original images using additive white Gaussian noise with mean 0 and standard
deviation σ = 20 and σ = 40 to produce 10 degraded images g for each original image and noise value.
Examples of the degraded images are presented in Fig.3.2. We then applied our restoration algorithm
to the degraded images to obtain the restored images f̂ . Examples of the resulting restored images are
shown in Fig.3.15 to Fig.3.25.

(a) Peppers. (b) Lenna. (c) Mandrill.

Figure 3.1: Original images f used for the experiments.
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(a) Peppers, σ = 20. (b) Peppers, σ = 40.

(c) Lenna, σ = 20. (d) Lenna, σ = 40.

(e) Mandrill σ = 20. (f) Mandrill σ = 40.

Figure 3.2: Degraded images g used for the experiments. Degradation process is additive white Gaussian
noise with mean 0 and standard deviation σ. (a) and (b) are generated from the original image in Figure
3.1a by setting σ = 20 and σ = 40, respectively. (c) and (d) are generated from the original image in
Figure 3.1b. (e) and (f) are generated from the original image in Figure 3.1c.
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3.4.2 Experimental Results

Our results are generated by fixing the value of α2 (we remember that α′ = α2α) and applying our
model to restore each set of 10 degraded images described in section 3.4.1 to obtain restored image sets
containing 10 restored images for each value of α2, σ and each original image.

We then measure the value of the the mean square error (MSE) and the mean structural similarity
index (MSSIM) between the original image and the restored image as well as the log of evidence for
each restored image. These measurements allow us to calculate the sample mean and sample standard
deviation (s) of the MSE, MSSIM and log of evidence for each set of restored images. The sample
standard deviation is defined in equation (2.82).

The MSE is used as a measure of the efficiency of our correction. The MSE between two colour images
x and y is defined as

MSE(x, y) ≡ 1
3|V|

∑
i∈V

∑
κ∈K

(xi,κ − yi,κ)2 . (3.61)

The MSSIM is also used as a measure of the efficiency of our correction. Since there is no formal
definition of a method to compute the MSSIM for colour images, we compute it as follows:

(i) Generate 3 images, where each image is a monochrome image corresponding to one of the colour
components of the initial image (red, green or blue component).

(ii) Compute the MSSIM for each image generated previously using the same method as in 2.4.2 to
obtain the values MSSIMred, MSSIMgreen and MSSIMblue.

(iii) The value of the MSSIM for the colour image is obtained by taking the average of the 3 colour
components of the MSSIM:

MSSIM =
1
3

(MSSIMred + MSSIMgreen + MSSIMblue) . (3.62)

More details about the MSE and MSSIM can be found in section 2.4.2.
Figures 3.3, 3.4 and 3.5 show superpositions of 2 curves. The first curve shows, for various values of

α2, the values of the sample mean for the MSE, with error bars representing s. The second curve shows
the same statistics for the log of the evidence. By looking at these figures, we observe that an increase
of the evidence is generally accompanied by a decrease of the MSE for all images. However, in the case
of the Lenna and Mandrill images, we observe a rise in the values of the MSE for highly negative values
of α2, even though the log of evidence also continues to rise. These results are very similar for the two
noise levels used for our experiments.

Figures 3.6 to 3.11 show the effect of α2 on the estimated values of the components of α̂. By looking
at these figures, we observe that as the value of α2 increases, the values of all the components of α̂ move
towards 0 (their absolute value decreases) for all images and noise levels. We also observe that the values
and behaviour of α̂ are very similar between the two noise levels for the same image.

Figures 3.12, 3.13 and 3.14 show superpositions of 2 curves. The first curve (+ marks) shows, for
various values of α2, the values of the sample mean for the MSE, with error bars representing s. The
second curve (x marks) shows the same statistics for the estimated values of σ̂2. By looking at these
figures, we observe that an increase of the value of α2 is accompanied by a decrease of σ̂2 for all images
and noise levels. We also observe that the lowest values of the MSE occur for the values of α2 where the
estimated value of σ̂2 is close to the actual value of σ2 for all images and noise levels.

Figures 3.15 to 3.25 show some results of the application of the next neighbour extension algorithm
to the Peppers, Lenna and Mandrill colour images for noise values of σ = 20 and σ = 40.

We only show the results for values of α2 of -0.49, +0.49, 0.0, for the value producing the smallest
MSE, namely α2 = −0.49 for Peppers, α2 = −0.45 for Lenna, α2 = −0.25 and α2 = −0.3 for Mandrill
with noise levels σ = 20 and σ = 40 respectively, as well as for the value producing the highest MSSIM,
namely α2 = −0.49 for Peppers and Lenna, as well as α2 = −0.4 and α2 = −0.35 for Mandrill with noise
levels of σ = 20 and σ = 40 respectively. Also, only one restored image from the set of 10 is shown.

We observe that the resulting images are more blurry for low values of α2 and that they become
gradually less blurry, but more noisy, as α2 increases. This can be explained by the previous observations
where we saw that, as α2 increases, the approximated absolute values of the components of α̂ and the
value of σ̂ decrease, causing our model to assume that the noise level is lower and that correlation between
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Figure 3.3: Mean square error MSE(f , f̂) (+ marks) and the log of evidence log Pr {G = g|α̂, α2, σ̂} (x
marks) for the restored versions of the Peppers image (Fig. 3.1a). The degraded images were generated
with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates α̂ and σ̂ are obtained by maximizing
log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. Here, the restored image f̂ is
defined as f̂ (α̂, α2, σ̂) for each value of α2. The values shown are the sample mean values (x) of the 10
degraded images for each noise level with error bars corresponding to the sample standard deviation (s).
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Figure 3.4: Mean square error MSE(f , f̂) (+ marks) and the log of evidence log Pr {G = g|α̂, α2, σ̂} (x
marks) for the restored versions of the Lenna image (Fig. 3.1b). The degraded images were generated
with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates α̂ and σ̂ are obtained by maximizing
log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. Here, the restored image f̂ is
defined as f̂ (α̂, α2, σ̂) for each value of α2. The values shown are the sample mean values (x) of the 10
degraded images for each noise level with error bars corresponding to the sample standard deviation (s).
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Figure 3.5: Mean square error MSE(f , f̂) (+ marks) and the log of evidence log Pr {G = g|α̂, α2, σ̂} (x
marks) for the restored versions of the Mandrill image (Fig. 3.1c). The degraded images were generated
with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates α̂ and σ̂ are obtained by maximizing
log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. Here, the restored image f̂ is
defined as f̂ (α̂, α2, σ̂) for each value of α2. The values shown are the sample mean values (x) of the 10
degraded images for each noise level with error bars corresponding to the sample standard deviation (s).
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Figure 3.6: Estimates α̂red,red (+ marks), α̂green,green (x marks) and α̂blue,blue (* marks) obtained from
the degraded versions of the Peppers image (Fig. 3.1a) for various values of α2. The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates are determined so
as to maximize log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. The values
shown are the sample mean values (x) of the 10 degraded images for each noise level with error bars
corresponding to the sample standard deviation (s).
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Figure 3.7: Estimates α̂red,green (+ marks), α̂red,blue (x marks) and α̂green,blue (* marks) obtained from
the degraded versions of the Peppers image (Fig. 3.1a) for various values of α2. The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates are determined so
as to maximize log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. The values
shown are the sample mean values (x) of the 10 degraded images for each noise level with error bars
corresponding to the sample standard deviation (s).
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Figure 3.8: Estimates α̂red,red (+ marks), α̂green,green (x marks) and α̂blue,blue (* marks) obtained from
the degraded versions of the Lenna image (Fig. 3.1b) for various values of α2. The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates are determined so
as to maximize log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. The values
shown are the sample mean values (x) of the 10 degraded images for each noise level with error bars
corresponding to the sample standard deviation (s).
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Figure 3.9: Estimates α̂red,green (+ marks), α̂red,blue (x marks) and α̂green,blue (* marks) obtained from
the degraded versions of the Lenna image (Fig. 3.1b) for various values of α2. The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates are determined so
as to maximize log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. The values
shown are the sample mean values (x) of the 10 degraded images for each noise level with error bars
corresponding to the sample standard deviation (s).
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Figure 3.10: Estimates α̂red,red (+ marks), α̂green,green (x marks) and α̂blue,blue (* marks) obtained from
the degraded versions of the Mandrill image (Fig. 3.1c) for various values of α2. The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates are determined so
as to maximize log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. The values
shown are the sample mean values (x) of the 10 degraded images for each noise level with error bars
corresponding to the sample standard deviation (s).
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Figure 3.11: Estimates α̂red,green (+ marks), α̂red,blue (x marks) and α̂green,blue (* marks) obtained from
the degraded versions of the Mandrill image (Fig. 3.1c) for various values of α2. The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates are determined so
as to maximize log Pr {G = g|α, α2, σ} with respect to α and σ for each fixed value of α2. The values
shown are the sample mean values (x) of the 10 degraded images for each noise level with error bars
corresponding to the sample standard deviation (s).
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Figure 3.12: Mean square error MSE(f , f̂) (+ marks) and estimate σ̂2 (x marks) for the restored versions
of the Peppers image (Fig. 3.1a). The degraded images were generated with noise levels of σ = 20 in (a)
and σ = 40 in (b). The estimate σ̂ is obtained by maximizing log Pr {G = g|α, α2, σ} with respect to α

and σ for each fixed value of α2. Here, the restored image f̂ is defined as f̂ (α̂, α2, σ̂) for each value of
α2. The values shown are the sample mean values (x) of the 10 degraded images for each noise level with
error bars corresponding to the sample standard deviation (s).
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Figure 3.13: Mean square error MSE(f , f̂) (+ marks) and estimate σ̂2 (x marks) for the restored versions
of the Lenna image (Fig. 3.1b). The degraded images were generated with noise levels of σ = 20 in (a)
and σ = 40 in (b). The estimate σ̂ is obtained by maximizing log Pr {G = g|α, α2, σ} with respect to α

and σ for each fixed value of α2. Here, the restored image f̂ is defined as f̂ (α̂, α2, σ̂) for each value of
α2. The values shown are the sample mean values (x) of the 10 degraded images for each noise level with
error bars corresponding to the sample standard deviation (s).
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Figure 3.14: Mean square error MSE(f , f̂) (+ marks) and estimate σ̂2 (x marks) for the restored versions
of the Mandrill image (Fig. 3.1c). The degraded images were generated with noise levels of σ = 20 in
(a) and σ = 40 in (b). The estimate σ̂ is obtained by maximizing log Pr {G = g|α, α2, σ} with respect
to α and σ for each fixed value of α2. Here, the restored image f̂ is defined as f̂ (α̂, α2, σ̂) for each value
of α2. The values shown are the sample mean values (x) of the 10 degraded images for each noise level
with error bars corresponding to the sample standard deviation (s).
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neighbouring pixels is also low. As a consequence, less correction is applied, causing less blurring, but
also leaving more noise in the corrected image. We also notice some improved horizontal and vertical
edge preservation accompanied by grid-like artefacts in the restored images with a value of α2 lower than
−0.4. This is due to the fact that in such cases, our model approaches the superantiferromagnetic state,
as shown in Fig. 1.1c.

(a) Degraded Image. MSE=367.
MSSIM=0.6716.

(b) Restored. α2 = −0.49. MSE=79.
MSSIM=0.8557.

(c) Restored. α2 = 0.0. MSE=107.
MSSIM=0.8065.

(d) Restored. α2 = 0.49. MSE=130.
MSSIM=0.7854.

Figure 3.15: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Peppers image (Fig. 3.1a). The degraded im-
age was generated with a noise level of σ = 20, has MSE (f , g) = 367, MSSIM (f , g) = 0.6716 and
is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 79, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.8557.
(c) α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 107, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.8065. (d) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 130, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7854.
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(a) Original Image. (b) Degraded Image. MSE=367.
MSSIM=0.6716.

(c) Restored. α2 = −0.49. MSE=79.
MSSIM=0.8557.

(d) Restored. α2 = 0.0. MSE=107.
MSSIM=0.8065.

(e) Restored. α2 = 0.49. MSE=130.
MSSIM=0.7854.

Figure 3.16: Details of the original image f in Fig. 3.1a, the degraded image g in Fig. 3.15a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 3.15. (a) Original image f in Fig. 3.1a. (b) Degraded image g in
Fig. 3.15a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.15b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
3.15c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.15d.

68



(a) Degraded Image. MSE=1367.
MSSIM=0.4247.

(b) Restored. α2 = −0.49. MSE=151.
MSSIM=0.7664.

(c) Restored. α2 = 0.0. MSE=186.
MSSIM=0.7104.

(d) Restored. α2 = 0.49. MSE=203.
MSSIM=0.6958.

Figure 3.17: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Peppers image (Fig. 3.1a). The degraded image
was generated with a noise level of σ = 40, has MSE (f , g) = 1367, MSSIM (f , g) = 0.4247 and is
shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 151, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7664.
(c) α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 186, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7104. (d) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 203, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.6958.
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(a) Original Image. (b) Degraded Image. MSE=1367.
MSSIM=0.4247.

(c) Restored. α2 = −0.49. MSE=151.
MSSIM=0.7664.

(d) Restored. α2 = 0.0. MSE=186.
MSSIM=0.7104.

(e) Restored. α2 = 0.49. MSE=203.
MSSIM=0.6958.

Figure 3.18: Details of the original image f in Fig. 3.1a, the degraded image g in Fig. 3.17a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 3.17. (a) Original image f in Fig. 3.1a. (b) Degraded image g in
Fig. 3.17a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.17b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
3.17c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.17d.
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(a) Degraded Image. MSE=373.
MSSIM=0.6796.

(b) Restored. α2 = −0.49. MSE=59.
MSSIM=0.8871.

(c) Restored. α2 = −0.45. MSE=58.
MSSIM=0.8810.

(d) Restored. α2 = 0.0. MSE=67.
MSSIM=0.8660.

(e) Restored. α2 = 0.49. MSE=73.
MSSIM=0.8589.

Figure 3.19: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Lenna image (Fig. 3.1b). The degraded
image was generated with a noise level of σ = 20, has MSE (f , g) = 373, MSSIM (f , g) = 0.6796
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 59, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.8871. (c) α2 = −0.45, MSE(f , f̂ (g, α̂, α2, σ̂)) = 58, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.8810. (d)
α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 67, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.8660. (e) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 73, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.8589.
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(a) Original Image. (b) Degraded Image. MSE=373.
MSSIM=0.6796.

(c) Restored. α2 = −0.49. MSE=59.
MSSIM=0.8871.

(d) Restored. α2 = −0.45. MSE=58.
MSSIM=0.8810.

(e) Restored. α2 = 0.0. MSE=67.
MSSIM=0.8660.

(f) Restored. α2 = 0.49. MSE=73.
MSSIM=0.8589.

Figure 3.20: Details of the original image f in Fig. 3.1b, the degraded image g in Fig. 3.19a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 3.19. (a) Original image f in Fig. 3.1b. (b) Degraded image g

in Fig. 3.19a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.19b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
3.19c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.19d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.19e.
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(a) Degraded Image. MSE=1418.
MSSIM=0.4310.

(b) Restored. α2 = −0.49. MSE=110.
MSSIM=0.8080.

(c) Restored. α2 = −0.45. MSE=109.
MSSIM=0.7976.

(d) Restored. α2 = 0.0. MSE=122.
MSSIM=0.7778.

(e) Restored. α2 = 0.49. MSE=130.
MSSIM=0.7714.

Figure 3.21: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Lenna image (Fig. 3.1b). The degraded
image was generated with a noise level of σ = 40, has MSE (f , g) = 1418, MSSIM (f , g) = 0.4310
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 110, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.8080. (c) α2 = −0.45, MSE(f , f̂ (g, α̂, α2, σ̂)) = 109, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7976. (d)
α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 122, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7778. (e) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 130, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.7714.

73



(a) Original Image. (b) Degraded Image. MSE=1418.
MSSIM=0.4310.

(c) Restored. α2 = −0.49. MSE=110.
MSSIM=0.8080.

(d) Restored. α2 = −0.45. MSE=109.
MSSIM=0.7976.

(e) Restored. α2 = 0.0. MSE=122.
MSSIM=0.7778.

(f) Restored. α2 = 0.49. MSE=130.
MSSIM=0.7714.

Figure 3.22: Details of the original image f in Fig. 3.1b, the degraded image g in Fig. 3.21a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 3.21. (a) Original image f in Fig. 3.1b. (b) Degraded image g

in Fig. 3.21a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.21b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
3.21c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.21d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.21e.
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(a) Degraded Image. MSE=375.
MSSIM=0.8518.

(b) Restored. α2 = −0.49. MSE=186.
MSSIM=0.9055.

(c) Restored. α2 = −0.4. MSE=158.
MSSIM=0.9112.

(d) Restored. α2 = −0.25. MSE=156.
MSSIM=0.9108.

(e) Restored. α2 = 0.0. MSE=157.
MSSIM=0.9099.

(f) Restored. α2 = 0.49. MSE=162.
MSSIM=0.9089.

Figure 3.23: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Mandrill image (Fig. 3.1c). The degraded
image was generated with a noise level of σ = 20, has MSE (f , g) = 375, MSSIM (f , g) = 0.8518
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 186, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.9055. (c) α2 = −0.4, MSE(f , f̂ (g, α̂, α2, σ̂)) = 158, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.9112.
(d) α2 = −0.25, MSE(f , f̂ (g, α̂, α2, σ̂)) = 156, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.9108. (e)
α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 157, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.9099. (f) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 162, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.9089.
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(a) Original Image. (b) Degraded Image. MSE=375.
MSSIM=0.8518.

(c) Restored. α2 = −0.49. MSE=186.
MSSIM=0.9055.

(d) Restored. α2 = −0.4. MSE=158.
MSSIM=0.9112.

(e) Restored. α2 = −0.25. MSE=156.
MSSIM=0.9108.

(f) Restored. α2 = 0.0. MSE=157.
MSSIM=0.9099.

(g) Restored. α2 = 0.49. MSE=162.
MSSIM=0.9089.

Figure 3.24: Details of the original image f in Fig. 3.1c, the degraded image g in Fig. 3.23a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 3.23. (a) Original image f in Fig. 3.1c. (b) Degraded image g in
Fig. 3.23a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.23b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
3.23c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.23d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.23e.
(g) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.23f.
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(a) Degraded Image. MSE=1436.
MSSIM=0.6468.

(b) Restored. α2 = −0.49. MSE=365.
MSSIM=0.7976.

(c) Restored. α2 = −0.35. MSE=320.8.
MSSIM=0.8116.

(d) Restored. α2 = −0.30. MSE=320.7.
MSSIM=0.8114.

(e) Restored. α2 = 0.0. MSE=327.
MSSIM=0.8098.

(f) Restored. α2 = 0.49. MSE=336.
MSSIM=0.8083.

Figure 3.25: Restored images f̂(g, α̂, α2, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Mandrill image (Fig. 3.1c). The degraded
image was generated with a noise level of σ = 40, has MSE (f , g) = 1436, MSSIM (f , g) = 0.6468
and is shown in (a). (b) α2 = −0.49, MSE(f , f̂ (g, α̂, α2, σ̂)) = 365, MSSIM(f , f̂ (g, α̂, α2, σ̂)) =
0.7976. (c) α2 = −0.35, MSE(f , f̂ (g, α̂, α2, σ̂)) = 320.8, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.8116.
(d) α2 = −0.30, MSE(f , f̂ (g, α̂, α2, σ̂)) = 320.7, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.8114. (e)
α2 = 0.0, MSE(f , f̂ (g, α̂, α2, σ̂)) = 327, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.8098. (f) α2 = 0.49,
MSE(f , f̂ (g, α̂, α2, σ̂)) = 336, MSSIM(f , f̂ (g, α̂, α2, σ̂)) = 0.8083.
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(a) Original Image. (b) Degraded Image. MSE=1436.
MSSIM=0.6468.

(c) Restored. α2 = −0.49. MSE=365.
MSSIM=0.7976.

(d) Restored. α2 = −0.35. MSE=320.8.
MSSIM=0.8116.

(e) Restored. α2 = −0.30. MSE=320.7.
MSSIM=0.8114.

(f) Restored. α2 = 0.0. MSE=327.
MSSIM=0.8098.

(g) Restored. α2 = 0.49. MSE=336.
MSSIM=0.8083.

Figure 3.26: Details of the original image f in Fig. 3.1c, the degraded image g in Fig. 3.25a and the
restored images f̂(g, α̂, α2, σ̂) in Fig. 3.25. (a) Original image f in Fig. 3.1c. (b) Degraded image g in
Fig. 3.25a. (c) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.25b. (d) Restored image f̂(g, α̂, α2, σ̂) in Fig.
3.25c. (e) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.25d. (f) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.25e.
(g) Restored image f̂(g, α̂, α2, σ̂) in Fig. 3.25f.
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3.5 Chapter Summary

In this chapter, we described our solvable probabilistic model for colour images using second-neighbour
pixel interactions. We derived the mathematical expressions related to this model and proposed an
algorithm based on these results. Finally, we presented the results of numerical experiments using our
algorithm and confirmed that, with a good choice of the hyperparameter α2, we can obtain better image
correction results by using our extension to the second-neighbour pixel interactions than by using the
original model which only takes the next-neighbour pixel interactions into account. In particular, we saw
that by using negative values of α2, this model allows a better preservation of horizontal and vertical
edges in the images, but at the same time, it introduces horizontal and vertical line artefacts in the
images.
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Chapter 4

Solvable Probabilistic Model with
Third-Neighbour Interaction for
Grayscale Image Restoration

4.1 Chapter Outline

In this chapter, we shall describe the extension to the third-neighbour pixel interactions of the solvable
probabilistic model for greyscale images originally proposed by Tanaka in [3]. We start with a detailed
description of the model as well as the calculations involved in its formation. This is followed by the
presentation of an image correction algorithm based on this model before concluding with a description
of the numerical experiments we performed to evaluate this model.

4.2 Model Description

In this section we describe in detail the equations that form the basis of our solvable probabilistic model
with third-neighbour interaction for grayscale image restoration. From these equations, we also derive
mathematical expressions that can be used to implement an efficient image correction algorithm. We
shall use the same image and degradation process models as those for the second-neighbour extension
model described in Sections 2.2.1 and 2.2.2 respectively.

4.2.1 A Priori Probability Density Function

We define the a priori probability density function (prior) that the original image F has a given configu-
ration f as

Pr {F = f |α, α′, α′′} ≡

1
Zprior (α, α′, α′′)

exp

{
−1

8

(
α
∑

(x,y)∈V

[
(fx,y − fx+1,y)2 + (fx,y − fx,y+1)2

]
+ α′

∑
(x,y)∈V

[
(fx,y − fx+1,y+1)2 + (fx,y − fx+1,y−1)2

]
+ α′′

∑
(x,y)∈V

[
(fx,y − fx+2,y)2 + (fx,y − fx,y+2)2

])}
(4.1)

where α defines the correlation between nearest neighbour pixels, α′ defines the correlation between
second-neighbour pixels, α′′ defines the correlation between third-neighbour pixels and

Zprior (α, α′, α′′) ≡
∫

exp

{
−1

8

(
α
∑

(x,y)∈V

[
(zx,y − zx+1,y)2 + (zx,y − zx,y+1)2

]
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+ α′
∑

(x,y)∈V

[
(zx,y − zx+1,y+1)2 + (zx,y − zx+1,y−1)2

]
+ α′′

∑
(x,y)∈V

[
(fx,y − fx+2,y)2 + (fx,y − fx,y+2)2

])}
dz, (4.2)

with
∫

dz ≡
∫ +∞
−∞

∫ +∞
−∞ . . .

∫ +∞
−∞

∏
(x,y)∈V

dzx,y , is the normalization constant.

The prior can be rewritten using matrix notation as follows:

Pr {F = f |α, α′, α′′}

=
1

Zprior (α, α′, α′′)
exp

{
−1

8

(
α
∑

(x,y)∈V

[
(fx,y − fx+1,y)2 + (fx,y − fx,y+1)2

+
α′

α

{
(fx,y − fx+1,y+1)2 + (fx,y − fx+1,y−1)2

}])

− 1
8
α′′

∑
(x,y)∈V

[
(fx,y − fx+2,y)2 + (fx,y − fx,y+2)2

]}

=
1

Zprior (α, α′, α′′)
exp

{
−1

8

(
α
∑

(x,y)∈V

[
4f2

x,y − fx,yfx+1,y − fx,yfx−1,y

− fx,yfx,y+1 − fx,yfx,y−1

+
α′

α

(
4f2

x,y − fx,yfx+1,y+1 − fx,yfx−1,y−1 − fx,yfx+1,y−1 − fx,yfx−1,y+1

)])

− 1
8
α′′

∑
(x,y)∈V

[
(fx,y − fx+2,y)2 + (fx,y − fx,y+2)2

]}
,

(4.3)

where we used the results of equation (2.7). The summation in the last term of the exponential can be
rewritten in the following way:∑

(x,y)∈V

[
(fx,y − fx+2,y)2 + (fx,y − fx,y+2)2

]
=

∑
(x,y)∈V

[
f2

x,y − 2fx,yfx+2,y + f2
x+2,y + f2

x,y − 2fx,yfx,y+2 + f2
x,y+2

]
=

∑
(x,y)∈V

[
4f2

x,y − 2fx,yfx+2,y − 2fx,yfx,y+2

]
=

∑
(x,y)∈V

[
4f2

x,y − fx,yfx+2,y − fx,yfx−2,y − fx,yfx,y+2 − fx,yfx,y−2

]
. (4.4)

By inserting (4.4) into (4.3), we have

Pr {F = f |α, α′, α′′}

=
1

Zprior (α, α′, α′′)
exp

{
−1

8

(
α

×
∑

(x,y)∈V

[
4f2

x,y − fx,yfx+1,y − fx,yfx−1,y − fx,yfx,y+1 − fx,yfx,y−1

+
α′

α

(
4f2

x,y − fx,yfx+1,y+1 − fx,yfx−1,y−1 − fx,yfx+1,y−1 − fx,yfx−1,y+1

)])

− 1
8
α′′

∑
(x,y)∈V

[
4f2

x,y − fx,yfx+2,y − fx,yfx−2,y − fx,yfx,y+2 − fx,yfx,y−2

]}
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=
1

Zprior (α, α′, α′′)
exp

{
−1

8

(
α

×
∑

(x,y)∈V

[
4f2

x,y − fx,yfx+1,y − fx,yfx−1,y − fx,yfx,y+1 − fx,yfx,y−1

+
α′

α

(
4f2

x,y − fx,yfx+1,y+1 − fx,yfx−1,y−1 − fx,yfx+1,y−1 − fx,yfx−1,y+1

)
+

α′′

α

(
4f2

x,y − fx,yfx+2,y − fx,yfx−2,y − fx,yfx,y+2 − fx,yfx,y−2

)])}

=
1

Zprior (α, α′, α′′)
exp

{
−1

2
αfT C (α, α′, α′′) f

}
(4.5)

where C (α, α′, α′′) is a |V| × |V| matrix where the (x, y|x′, y′) elements are defined by

⟨x, y|x′, y′⟩ ≡ δx,x′δy,y′ − 1
4
δx,x′+1δy,y′ − 1

4
δx,x′−1δy,y′ − 1

4
δx,x′δy,y′+1 −

1
4
δx,x′δy,y′−1

+ α2

[
δx,x′δy,y′ − 1

4
δx,x′+1δy,y′+1 −

1
4
δx,x′−1δy,y′−1 −

1
4
δx,x′+1δy,y′−1 −

1
4
δx,x′−1δy,y′+1

]
+ α3

[
δx,x′δy,y′ − 1

4
δx,x′+2δy,y′ − 1

4
δx,x′−2δy,y′ − 1

4
δx,x′δy,y′+2 −

1
4
δx,x′δy,y′−2

]
[(x, y), (x′, y′) ∈ V] (4.6)

where δa,b is the Kronecker delta and we defined α2 ≡ α′/α and α3 ≡ α′′/α to simplify notations, so that
we can write C (α, α′, α′′) ≡ C (α2, α3).

Similarly, Zprior (α, α′, α′′) can be rewritten using matrix notation as

Zprior (α, α2, α3) ≡
∫

exp
{
−1

2
αzT C (α2, α3) z

}
dz (4.7)

and subsequently, it can be simplified using the multidimensional Gaussian integral to give

Zprior (α, α2, α3) =

√
(2π)|V|

α|V| det (C (α2, α3))
. (4.8)

This model corresponds to an extension to the third-neighbour of the CAR model proposed by Molina
in [1] and its energy function is:

1
8

(
α
∑

(x,y)∈V

[
(fx,y − fx+1,y)2 + (fx,y − fx,y+1)2

]
+ α′

∑
(x,y)∈V

[
(fx,y − fx+1,y+1)2 + (fx,y − fx+1,y−1)2

]
+ α′′

∑
(x,y)∈V

[
(fx,y − fx+2,y)2 + (fx,y − fx,y+2)2

])
(4.9)

We note that f is a Gaussian Markov random field (GMRF) with mean 0 and precision matrix
Q = αC (α2, α3), so that by using the properties of GMRFs described in section 2.2.3, we obtain the
following properties for our model:

E(f(x,y)|f−(x,y)) = µ(x,y) −
1

Q(x,y),(x,y)

∑
(i,j):(i,j)∼(x,y)

Q(x,y),(i,j)(f(i,j) − µ(i,j))

= − 1
α + α′ + α′′

∑
(i,j):(i,j)∼(x,y)

Q(x,y),(i,j)f(i,j)

= − 1
α + α′ + α′′

[
−α

(
1
4
f(x+1,y) +

1
4
f(x−1,y) +

1
4
f(x,y+1) +

1
4
f(x,y−1)

)
− α′

(
1
4
f(x+1,y+1) +

1
4
f(x−1,y−1) +

1
4
f(x+1,y−1) +

1
4
f(x−1,y+1)

)
− α′′

(
1
4
f(x+2,y) +

1
4
f(x−2,y) +

1
4
f(x,y+2) +

1
4
f(x,y−2)

)]
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=
1

4(α + α′ + α′′)

[
α
(
f(x+1,y) + f(x−1,y) + f(x,y+1) + f(x,y−1)

)
+ α′ (f(x+1,y+1) + f(x−1,y−1) + f(x+1,y−1) + f(x−1,y+1)

)
+ α′′ (f(x+2,y) + f(x−2,y) + f(x,y+2) + f(x,y−2)

)] (4.10)

and
Prec(f(x,y)|f−(x,y)) = α + α′ + α′′ (4.11)

so that we have

Pr(f(x,y)|f−(x,y)) ∼ N

(
1

4(α + α′ + α′′)

[
α
(
f(x+1,y) + f(x−1,y) + f(x,y+1) + f(x,y−1)

)
+ α′ (f(x+1,y+1) + f(x−1,y−1) + f(x+1,y−1) + f(x−1,y+1)

)
+ α′′ (f(x+2,y) + f(x−2,y) + f(x,y+2) + f(x,y−2)

)]
,

1
α + α′ + α′′

)
. (4.12)

Since C (α2, α3) is a real symmetric matrix, it can be eigendecomposed to obtain

C (α2, α3) =
(
U−1ΛU

)
(4.13)

where U is a unitary matrix with the eigenvectors of C (α2, α3) as its column vectors. We shall use the
DFT matrix defined as

⟨x, y|U |p, q⟩ ≡ 1√
|V|

exp
[
−2πi

(
px

Vx
+

qy

Vy

)]
, (4.14)

U−1 is the conjugate transpose of U , known as the inverse DFT matrix and defined as⟨
x, y|U−1|p, q

⟩
≡ 1√

|V|
exp

[
2πi

(
px

Vx
+

qy

Vy

)]
(4.15)

and Λ is the diagonal matrix of the eigenvalues λ(α2, α3, p, q) of C (α2, α3).
We shall now find the value of Λ for U by using the eigenvalue equation

Mu(x,y) = λ(x, y)u(x,y) (4.16)

for every (x, y) ∈ V. Here u(x,y) is the column vector (x, y) of U and λ(x, y) is the corresponding
eigenvalue. To simplify our calculations, we shall split C (α2, α3) into the sum of matrices A, B and D
as follows

⟨x, y|A|x′, y′⟩ ≡ δx,x′δy,y′ − 1
4
δx,x′+1δy,y′ − 1

4
δx,x′−1δy,y′ − 1

4
δx,x′δy,y′+1 −

1
4
δx,x′δy,y′−1, (4.17)

⟨x, y|B|x′, y′⟩ ≡

α2

[
δx,x′δy,y′ − 1

4
δx,x′+1δy,y′+1 −

1
4
δx,x′−1δy,y′−1 −

1
4
δx,x′+1δy,y′−1 −

1
4
δx,x′−1δy,y′+1

]
, (4.18)

⟨x, y|D|x′, y′⟩ ≡

α3

[
δx,x′δy,y′ − 1

4
δx,x′+2δy,y′ − 1

4
δx,x′−2δy,y′ − 1

4
δx,x′δy,y′+2 −

1
4
δx,x′δy,y′−2

]
. (4.19)

We then have

C (α2, α3) = A + B + D

U−1ΛU = A + B + D

Λ = U(A + B + D)U−1
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Λ = UAU−1 + UBU−1 + UDU−1

Λ = ΛA + ΛB + ΛD, (4.20)

so we can find the value of Λ by finding the values of ΛA, ΛB and ΛD.
We already found the values of ΛA and ΛB in equations (2.28) and (2.31) respectively. We apply a

similar method to find the values of ΛD by using the fact that the elements of D are such that

d(p,q),(r,s) =



α3 if (p, q) = (r, s),
−1

4α3 if (p, q) = (r − 2, s),
−1

4α3 if (p, q) = (r + 2, s),
−1

4α3 if (p, q) = (r, s− 2),
−1

4α3 if (p, q) = (r, s + 2),
0 for every other case.

(4.21)

Line (r, s) of equation (4.16) can be rewritten as follows:∑
(p,q)∈V

d(p,q),(r,s)u(x,y),(p,q) = λd(x, y)u(x,y),(r,s) (4.22)

so by using the values of (4.21) into equation (4.22) we obtain

α3u(x,y),(r,s) −
(α3

4
u(x,y),(r−2,s) +

α3

4
u(x,y),(r+2,s) +

α3

4
u(x,y),(r,s−2) +

α3

4
u(x,y),(r,s+2)

)
= λd(x, y)u(x,y),(r,s)

∴ −α3

4
(
u(x,y),(r−2,s) + u(x,y),(r+2,s) + u(x,y),(r,s−2) + u(x,y),(r,s+2)

)
= (λd(x, y)− α3)u(x,y),(r,s)

∴ − α3

4
√
|V|

{
exp

[
−2πi

(
x(r − 2)

Vx
+

ys

Vy

)]
+ exp

[
−2πi

(
x(r + 2)

Vx
+

ys

Vy

)]
+exp

[
−2πi

(
xr

Vx
+

y(s− 2)
Vy

)]
+ exp

[
−2πi

(
xr

Vx
+

y(s + 2)
Vy

)]}
= (λd(x, y)− α3)

1√
|V|

exp
[
−2πi

(
xr

Vx
+

ys

Vy

)]
∴ −α3

4
exp

[
2πi

(
xr

Vx
+

ys

Vy

)]{
exp

[
−2πi

(
x(r − 2)

Vx
+

ys

Vy

)]
+ exp

[
−2πi

(
x(r + 2)

Vx
+

ys

Vy

)]
+exp

[
−2πi

(
xr

Vx
+

y(s− 2)
Vy

)]
+ exp

[
−2πi

(
xr

Vx
+

y(s + 2)
Vy

)]}
= λd(x, y)− α3

∴ −α3

4

{
exp

[
−2πi

−2x

Vx

]
+ exp

[
−2πi

2x

Vx

]
+ exp

[
−2πi

−2y

Vy

]
+ exp

[
−2πi

2y

Vy

]}
= λd(x, y)− α3

∴ α3 −
α3

4

{
cos
(

4πx

Vx

)
+ i sin

(
4πx

Vx

)
+ cos

(
−4πx

Vx

)
+ i sin

(
−4πx

Vx

)
+cos

(
4πy

Vy

)
+ i sin

(
4πy

Vy

)
+ cos

(
−4πy

Vy

)
+ i sin

(
−4πy

Vy

)}
= λd(x, y)

∴ λd(x, y) = α3

[
1− 1

2
cos
(

4πx

Vx

)
− 1

2
cos
(

4πy

Vy

)]
. (4.23)

Using the results of (2.28), (2.31) and (4.23), we find

λ(p, q) = λa(p, q) + λb(p, q) + λd(p, q)
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= 1− 1
2

cos
(

2πp

Vx

)
− 1

2
cos
(

2πq

Vy

)
+ α2

[
1− 1

2
cos
(

2π(
p

Vx
+

q

Vy
)
)
− 1

2
cos
(

2π(
p

Vx
− q

Vy
)
)]

+ α3

[
1− 1

2
cos
(

4πp

Vx

)
− 1

2
cos
(

4πq

Vy

)] (4.24)

so we have

Λ ≡
∑

(p,q)∈V

(
1− 1

2
cos
(

2πp

Vx

)
− 1

2
cos
(

2πq

Vy

)

+ α2

[
1− 1

2
cos
(

2π(
p

Vx
+

q

Vy
)
)
− 1

2
cos
(

2π(
p

Vx
− q

Vy
)
)]

+ α3

[
1− 1

2
cos
(

4πp

Vx

)
− 1

2
cos
(

4πq

Vy

)])
Jpq,pq (4.25)

which is the diagonal matrix of the eigenvalues λ(α2, α3, p, q) of C (α2, α3) where Jpq,pq is the |V | × |V |
single-entry matrix.

Using the results of this eigendecomposition, we can rewrite the expression of Zprior (α, α2, α3) given
in (4.8) as

Zprior(α, α2, α3) =
(

2π

α

) |V|
2 ∏

(p,q)∈V

λ (α2, α3, p, q)−
1
2 (4.26)

4.2.2 A Posteriori Probability Density Function

The a posteriori probability density function of having an original image configuration f given a degraded
image g is found by applying Bayes’ theorem as follows:

Pr {F = f |G = g, α, α2, α3, σ} =
Pr {G = g|F = f , σ}Pr {F = f |α, α2, α3}

Pr {G = g|α, α2, α3, σ}

=
Pr {G = g|F = f , σ}Pr {F = f |α, α2, α3}∫
Pr {G = g|F = z, σ}Pr {F = z|α, α2, α3} dz

(4.27)

where Pr {G = g|α, α2, α3, σ} =
∫

Pr {G = g|F = z, σ}Pr {F = z|α, α2, α3} dz is called the evidence.
Using (2.1) and (4.5), the function can be rewritten as follows:

Pr {F = f |G = g, α, α2, α3, σ} =

1
Znoise(σ) exp

(
− 1

2σ2

∑
(x,y)∈V

(gx,y − fx,y)2
)
× 1

Zprior(α,α2,α3)
exp

{
− 1

2αfT C (α2, α3) f

}
∫

1
Znoise(σ) exp

(
− 1

2σ2

∑
(x,y)∈V

(gx,y − zx,y)2
)
× 1

Zprior(α,α2,α3)
exp

{
− 1

2αzT C (α2, α3) z

}
dz

. (4.28)

Since Znoise and Zprior are not dependant on z, they can be taken out of the integral in the denominator
and cancel out with the numerator, so we have

Pr {F = f |G = g, α, α2, α3, σ} =
1

Zposterior (g, α, α2, α3, σ)
exp [−H (f |g, α, α2, α3, σ)] (4.29)

where
Zposterior (g, α, α2, α3, σ) =

∫
exp [−H (z|g, α, α2, α3, σ)] dz (4.30)

and
H (f |g, α, α2, α3, σ) =

1
2σ2

∑
(x,y)∈V

(gx,y − fx,y)2 +
1
2
αfT C (α2, α3) f . (4.31)
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We can simplify calculations by grouping all element of f in H in one single term in the same manner
as in equation (2.40) to obtain

H (f |g, α, α2, α3, σ) =
1

2σ2

[
f −

(
I + σ2αC (α2, α3)

)−1
g
]T (

I + σ2αC (α2, α3)
)

×
[
f −

(
I + σ2αC (α2, α3)

)−1
g
]

+
1
2
gT αC (α2, α3)

(
I + σ2αC (α2, α3)

)−1
g. (4.32)

Using the eigendecomposition described in (4.13), we can rewrite the second term of (4.32) as

1
2
gT αC (α2, α3)

(
I + σ2αC (α2, α3)

)−1
g =

1
2

∑
(p,q)∈V

G†
p,qαλ (α2, α3, p, q)

(
1 + σ2αλ (α2, α3, p, q)

)−1
Gp,q

(4.33)
where

Gp,q ≡
1√
|V|

∑
(x,y)∈V

gx,y exp
[
−2πi

(
px

Vx
+

qy

Vy

)]
(4.34)

and

G†
p,q ≡

1√
|V|

∑
(x,y)∈V

gx,y exp
[
2πi

(
px

Vx
+

qy

Vy

)]
. (4.35)

The detailed computations can be found at (2.41). Here we note that Gp,q corresponds to (Ug)p,q where
(Ug) is the DFT of g. Similarly for

−→
G† using (gT U−1), the inverse DFT.

From the above, we conclude that

H (f |g, α, α2, α3, σ) =
1

2σ2

[
f −

(
I + σ2αC (α2, α3)

)−1
g
]T (

I + σ2αC (α2, α3)
)

×
[
f −

(
I + σ2αC (α2, α3)

)−1
g
]

+
1
2

∑
(p,q)∈V

G†
p,qαλ (α2, α3, p, q)

(
1 + σ2αλ (α2, α3, p, q)

)−1
Gp,q.

(4.36)

Using the variable substitution x =
[
z −

(
I + σ2αC (α2, α3)

)−1
g
]

and dz = dx, Zposterior can be
rewritten as

Zposterior =
∫

exp
{
− 1

2σ2
xT
(
I + σ2αC (α2, α3)

)
x

− 1
2

∑
(p,q)∈V

G†
p,qαλ (α2, α3, p, q)

(
1 + σ2αλ (α2, α3, p, q)

)−1
Gp,q

}
dx (4.37)

which, using the multidimensional Gaussian integral becomes

Zposterior =
(
2πσ2

) |V|
2
{
det
(
I + σ2αC (α2, α3)

)}− 1
2

× exp

−1
2

∑
(p,q)∈V

G†
p,qαλ (α2, α3, p, q)

(
1 + σ2αλ (α2, α3, p, q)

)−1
Gp,q

 . (4.38)

The determinant in equation (4.38) can be rewritten as

det
(
I + ασ2C (α2, α3)

)
=

∏
(p,q)∈V

(
1 + ασ2λ(α2, α3, p, q)

)
(See equation (2.47)). (4.39)

So equation (4.38) can be transformed into

Zposterior =
(
2πσ2

) |V|
2

 ∏
(p,q)∈V

(
1 + ασ2λ(α2, α3, p, q)

)
− 1

2

× exp

−1
2

∑
(p,q)∈V

G†
p,qαλ (α2, α3, p, q)

(
1 + σ2αλ (α2, α3, p, q)

)−1
Gp,q

 . (4.40)
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4.2.3 Restored Image Equation

In our model, the estimated restored image configuration is given by the expected value of the a posteriori
probability function. This gives us the following restored image equation:

f̂ ≡
∫

z Pr {F = z|G = g, α, α2, α3, σ} dz (4.41)

where the integral is performed over every image configuration z (range of ]−∞, +∞[ for each pixel
element) and f̂ is our restored image.

Using (4.29) we obtain

f̂ =
1

Zposterior (g, α, α2, α3, σ)

∫
z exp [−H (z|g, α, α2, α3, σ)] dz (4.42)

which, using the results of (4.36) and (4.38) is rewritten as

f̂ =
1

(2πσ2)
|V|
2 det (σ2Σ−1)−1/2

× 1

exp

{
− 1

2

∑
(p,q)∈V

[
G†

p,qαλ(α2, α3, p, q) (1 + σ2αλ(α2, α3, p, q))−1
Gp,q

]}

×
∫

z exp

(
− 1

2σ2
[z − µ]T σ2Σ−1 [z − µ]

− 1
2

∑
(p,q)∈V

[
G†

p,qαλ(α2, α3, p, q)
(
1 + σ2αλ(α2, α3, p, q)

)−1
Gp,q

])
dz

=
1

(2π)
|V|
2 det (Σ)1/2

∫
z exp

(
−1

2
[z − µ]T Σ−1 [z − µ]

)
dz (4.43)

with µ ≡
(
I + σ2αC (α2, α3)

)−1
g and Σ−1 ≡ 1

σ2

(
I + σ2αC (α2, α3)

)
, which corresponds to the ex-

pected value equation of a multivariate Gaussian distribution. Using that fact, we conclude that

f̂ = E[z] = µ =
(
I + σ2αC (α2, α3)

)−1
g. (4.44)

However, it is impractical to compute the inverse of such a large matrix, so we use the eigendecom-
position of (4.13) to simplify the equation as follows:

f̂ =
[
I + σ2α

(
U−1ΛU

)]−1
g

= U−1
(
I + σ2αΛ

)−1
Ug

= U−1
(
I + σ2αΛ

)−1−→
G (4.45)

Here we note that this corresponds to the inverse DFT of
(
I + σ2αΛ

)−1−→
G where

−→
G is itself the DFT

of the degraded image.
(
I + σ2αΛ

)−1 can also easily be computed since it is the inverse of a diagonal
matrix.

4.2.4 Hyperparameters Estimation

As we saw in section 4.2.3, the restored image equation depends on the values of the hyperparameters
σ, α, α2 and α3. The selection of those values shall be done by fixing the values of α2 and α3 and then
choosing values for σ and α that maximize the evidence (or likelihood) of equation (4.27). Such a method
is known as Maximum Likelihood Estimation (MLE).

Using (4.27) with (2.1), (4.5) and (4.29), we find that the evidence is given by

Pr {G = g|α, α2, α3, σ} =
Pr {G = g|F = f , σ}Pr {F = f |α, α2, α3}

Pr {F = f |G = g, α, α2, α3, σ}
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=
1

Znoise(σ) exp
(
− 1

2σ2 ∥g − f∥2
)

1
Zprior(α,α2,α3)

exp
{
−1

2αfT C (α2, α3)f
}

1
Zposterior(g,α,α2,α3,σ) exp

{
− 1

2σ2 ∥g − f∥2 − 1
2αfT C (α2, α3) f

}
=

Zposterior(g, α, α2, α3, σ)
Znoise(σ)Zprior(α, α2, α3)

. (4.46)

We can simplify the calculations by finding the maximum of the log of the evidence, which gives us

(α̂, σ̂) = arg max
α,σ

[lnZposterior(g, α, α2, α3, σ)− ln Znoise(σ)− lnZprior(α, α2, α3)]

= arg max
α,σ

[
−|V|

2
ln(2π) +

|V|
2

lnα− 1
2

∑
(p,q)∈V

ln
(
1 + ασ2λ(α2, α3, p, q)

)
− 1

2

∑
(p,q)∈V

G†
p,qαλ(α2, α3, p, q)

(
1 + σ2αλ(α2, α3, p, q)

)−1
Gp,q

+
1
2

∑
(p,q)∈V

lnλ(α2, α3, p, q)
]
.

(4.47)

where α̂ and σ̂ are the estimated values of the hyperparameters α and σ respectively.
Using the above, we find the value of σ̂ by solving the equation

d
dσ̂2 ln(Pr{G = g|α̂, α2, α3, σ̂}) = 0 to obtain

σ̂2 =
σ̂2

|V|
∑

(p,q)∈V

{
1

1 + α̂σ̂2λ(α2, α3, p, q)
+ σ̂2G†

p,q

(
α̂λ(α2, α3, p, q)

1 + α̂σ̂2λ(α2, α3, p, q)

)2

Gp,q

}
. (4.48)

The details of the computation are the same as in equation (2.64).
Similarly, we find the value α̂ by solving the equation d

dα̂ ln(Pr{G = g|α̂, α2, α3, σ̂}) = 0 to obtain

α̂−1 =
1
|V|

∑
(p,q)∈V

{
σ̂2λ(α2, α3, p, q)

1 + α̂σ̂2λ(α2, α3, p, q)
+

G†
p,qλ(α2, α3, p, q)Gp,q

(1 + α̂σ̂2λ(α2, α3, p, q))2

}
(4.49)

Refer to equation (2.65) for the detailed computation.
When actually computing the value of the log of the evidence given in (4.47), we notice that the

value of the last term diverges when λ(α2, α3, p, q) = 0. We have not yet found a way to get around this
problem, so we do not compute the value of the evidence in our algorithm. This is not a major problem
since our algorithm depends on the derivates of the evidence and not on the actual value of the evidence.

4.3 Algorithm

In this section, we describe an image restoration algorithm based on our image restoration model. We use
a fixed point iteration algorithm [12] to find our maximum likelihood estimates for the hyperparameters
α and σ. As we saw in section 4.2.4, the extremum values for the hyperparameters α and σ can be
expressed in the form of the simultaneous recursive equations α(r) = f(α(r − 1), σ(r − 1)) and σ(r) =
g(α(r−1), σ(r−1)). Therefore, in our algorithm, we find new values of α̂ and σ̂ by applying their current
values to equations (4.48) and (4.49) and repeat that process until the algorithm converges. We shall
assume that the algorithm has converged once we achieve the following halting criterion:

e1(r) =
∣∣∣∣a(r)− a(r − 1)

a(r − 1)

∣∣∣∣+ ∣∣∣∣b(r)− b(r − 1)
b(r − 1)

∣∣∣∣ < 10−4 (4.50)

where a(x) and b(x) are the values of α̂ and σ̂2, respectively, at iteration x of the algorithm and r and
r − 1 are the current and previous iterations of the algorithm, respectively.

4.3.1 Algorithm Steps

Following are the steps of the practical algorithm.
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Step 1.

(i) Compute the DFT of the degraded image to obtain the value of G. We note here that G† is simply
the complex conjugate of G so it does not need to be computed explicitly.

(ii) Compute the values of λ(α2, α3, p, q) using equation (4.25).

(iii) Initialize a(0) to 0.0001

(iv) Initialize b(0) to 10000.

(v) Initialize r to 0.

Step 2.

(i) Update r ← r + 1.

(ii) Using equation (4.49), update

a(r)←

(
1
|V|

×
∑

(p,q)∈V

{
b(r − 1)λ(α2, α3, p, q)

1 + a(r − 1)b(r − 1)λ(α2, α3, p, q)
+

G†
p,qGp,qλ(α2, α3, p, q)

(1 + a(r − 1)b(r − 1)λ(α2, α3, p, q))2

})−1

.

(4.51)

(iii) Using equation (4.48), update

b(r)← b(r − 1)
|V|

∑
(p,q)∈V

{
1

1 + a(r − 1)b(r − 1)λ(α2, α3, p, q)

+ b(r − 1)G†
p,qGp,q

(
a(r − 1)λ(α2, α3, p, q)

1 + a(r − 1)b(r − 1)λ(α2, α3, p, q)

)2
}

. (4.52)

Here we note that since
−→
G† is the conjugate transpose of

−→
G , we can write Gp,q = a + bi and G†

p,q =
a− bi, so that G†

p,qGp,q is simply a2 + b2.
Step 3.

(i) Check the termination condition of equation (4.50).

(ii) If the termination condition is fulfilled, proceed to step 4. Otherwise go back to step 2.

Step 4.

(i) Update α̂← a(r).

(ii) Update σ̂ ←
√

b(r).

(iii) Compute the values of
(
1 + σ̂2λ (α2, α3, p, q) α̂

)−1
Gp,q for each p and q.

(iv) Apply the inverse DFT to the above values to obtain the restored image as described in (4.45).

4.3.2 Computational Complexity

We now analyse the complexity of our algorithm using the Big O notation. Here n is the number of pixels
in the image, so n = |V|.

Step 1 DFT computation using the FFT algorithm: O(n log n).

Step 2 Computation of α̂(r): O(n).
Computation of σ̂(r): O(n).
Total: O(n).
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Step 3 Computation of e1(r) : O(1).
Total: O(1).

Step 4 Computation of the values to be used in the inverse DFT: O(n).
Restored image computation using the FFT algorithm: O(n log n).
Total: O(n log n).

This gives a total complexity of O(n log n).

4.4 Numerical Experiments

In this section, we present the numerical experiments we performed to evaluate our model as well as the
results of these experiments. We also discuss these results.

4.4.1 Experiments

We tested our algorithm against the original 256x256 pixels 8-bit grayscale images f presented in Fig.2.1,
using the same degraded images g as those introduced in section 2.4.1. Examples of the degraded images
are presented in Fig.2.2. We then applied our restoration algorithm to the degraded images to obtain the
restored images f̂ . Examples of the resulting restored images are shown in Fig.4.10 to Fig.4.20.

4.4.2 Experimental Results

Our results are generated by fixing the values of α2 = α̂′

α̂ and α3 = α̂′′

α̂ and applying our model to restore
each set of 10 degraded images described in section 2.4.1 to obtain restored image sets containing 10
restored images for each combination of the values of α2 and α3, σ and each original image. We apply
that procedure for values of α2 and α3 in the range of ] − 0.5, 0.5[ with a step of 0.1 (we use the values
−0.49 and 0.49 as the higher and lower bounds).

We then measure the value of the the mean square error (MSE) and the mean structural similarity
index (MSSIM) between the original image and the restored image for each restored image. These
measurements allow us to calculate the sample mean of the MSE and MSSIM for each set of restored
images. The MSE is used as a measure of the efficiency of our correction and is defined in equation (2.81).
The MSSIM is also used as a measure of the efficiency of our correction and is described in section 2.4.2.
More details about the MSE and MSSIM can be found in section 2.4.2.

Figures 4.1, 4.2 and 4.3 show, for various values of α2 and α3, the values of the sample mean for the
MSE. By looking at these figures, we observe that the MSE has similar levels along the lines of direction
α3 = −α2

2 + b for all images and noise levels. We also notice that the values of the MSE suddenly become
very large in the region α3 < −α2

2 − 0.25 for all images and noise levels. In the case of the Boat and
Lenna images, we observe the lowest values of the MSE in the region around the line α3 = −α2

2 − 0.25,
right next to the limit where the MSE suddenly increases dramatically. In the case of the Mandrill image,
the lowest MSE is more to the right, in the region around the line α3 = −α2

2 + 0.1 for both noise levels.
Figures 4.4, 4.5 and 4.6 show, for various values of α̂2 and α3, the values of the sample mean for the

estimated values of α̂. By looking at these figures, we observe that the values of α̂ become very large or
even negative in the region α3 < −α2

2 − 0.25 for all images and noise levels. We believe that this is due
to a diverging value of the evidence in that region.

Figures 4.7, 4.8 and 4.9 show, for various values of α2 and α3, the values of the sample mean for the
estimated values of σ̂2. By looking at these figures, we observe again that the values of σ̂2 become very
large or even negative in the region α3 < −α2

2 − 0.25 for all images and noise levels. As for α̂, we believe
that this is due to a diverging value of the evidence in that region.

Figures 4.10 to 4.20 show some results of the application of the third neighbour extension algorithm
to the Boat, Lenna and Mandrill greyscale images for noise values of σ = 20 and σ = 40.

We only show the results for values of (α2, α3) of (−0.2,−0.1) and (−0.3,−0.1), since we expect these
values to approach the Mexican Hat weighting function shown in Fig 1.2, the combinations producing
the smallest MSE, namely (−0.49, 0.0) for Boat, (0.49,−0.49) and (0.4,−0.4) for Lenna with σ = 20
and σ = 40 respectively, and (−0.1, 0.0) for Mandrill, as well as the combinations producing the highest
MSSIM, namely (−0.3,−0.1) for Boat and Lenna, (−0.1, 0) and (0, 0) for Mandrill with σ = 20 and
σ = 40 respectively. Also, only one restored image from the set of 10 is shown.
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Figure 4.1: Mean square error MSE(f , f̂) for the restored versions of the Boat image (Fig. 2.1a). The
degraded images were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates
α̂ and σ̂ are obtained by maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each fixed
value of α2 and α3. Here, the restored image f̂ is defined as f̂ (α̂, α2, α3, σ̂) for each value of α2 and α3.
The values shown are the sample mean values (x) of the 10 degraded images for each noise level.
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Figure 4.2: Mean square error MSE(f , f̂) for the restored versions of the Lenna image (Fig. 2.1b). The
degraded images were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates
α̂ and σ̂ are obtained by maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each fixed
value of α2 and α3. Here, the restored image f̂ is defined as f̂ (α̂, α2, α3, σ̂) for each value of α2 and α3.
The values shown are the sample mean values (x) of the 10 degraded images for each noise level.
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Figure 4.3: Mean square error MSE(f , f̂) for the restored versions of the Mandrill image (Fig. 2.1c).
The degraded images were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates
α̂ and σ̂ are obtained by maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each fixed
value of α2 and α3. Here, the restored image f̂ is defined as f̂ (α̂, α2, α3, σ̂) for each value of α2 and α3.
The values shown are the sample mean values (x) of the 10 degraded images for each noise level.
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Figure 4.4: Estimate α̂ obtained from the degraded versions of the Boat image (Fig. 2.1a) for various
combinations of values of α2 and α3. The degraded images were generated with noise levels of σ = 20
in (a) and σ = 40 in (b). The estimates are determined so as to maximize log Pr {G = g|α, α2, α3, σ}
with respect to α and σ for each combination of the fixed values of α2 and α3. The values shown are the
sample mean values (x) of the 10 degraded images for each noise level.
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Figure 4.5: Estimate α̂ obtained from the degraded versions of the Lenna image (Fig. 2.1b) for various
combinations of values of α2 and α3. The degraded images were generated with noise levels of σ = 20
in (a) and σ = 40 in (b). The estimates are determined so as to maximize log Pr {G = g|α, α2, α3, σ}
with respect to α and σ for each combination of the fixed values of α2 and α3. The values shown are the
sample mean values (x) of the 10 degraded images for each noise level.
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Figure 4.6: Estimate α̂ obtained from the degraded versions of the Mandrill image (Fig. 2.1c) for various
combinations of values of α2 and α3. The degraded images were generated with noise levels of σ = 20
in (a) and σ = 40 in (b). The estimates are determined so as to maximize log Pr {G = g|α, α2, α3, σ}
with respect to α and σ for each combination of the fixed values of α2 and α3. The values shown are the
sample mean values (x) of the 10 degraded images for each noise level.
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Figure 4.7: Estimate σ̂2 for the restored versions of the Boat image (Fig. 2.1a). The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimate σ̂ is obtained by
maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each combination of the fixed values
of α2 and α3. The values shown are the sample mean values (x) of the 10 degraded images for each noise
level.
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Figure 4.8: Estimate σ̂2 for the restored versions of the Lenna image (Fig. 2.1b). The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimate σ̂ is obtained by
maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each combination of the fixed values
of α2 and α3. The values shown are the sample mean values (x) of the 10 degraded images for each noise
level.

94



-0.5
-0.4

-0.3
-0.2

-0.1
 0
 0.1

 0.2
 0.3

 0.4
 0.5 -0.5-0.4-0.3-0.2-0.1  0  0.1  0.2  0.3  0.4  0.5

 0

 400

 800

 1200

 1600

 2000

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

Mean of σ2σ2

α2

α3

(a) σ = 20.

-0.5
-0.4

-0.3
-0.2

-0.1
 0
 0.1

 0.2
 0.3

 0.4
 0.5 -0.5-0.4-0.3-0.2-0.1  0  0.1  0.2  0.3  0.4  0.5

 500
 1000
 1500
 2000
 2500
 3000
 3500

 500

 1000

 1500

 2000

 2500

 3000

 3500

Mean of σ2σ2

α2

α3

(b) σ = 40.

Figure 4.9: Estimate σ̂2 for the restored versions of the Mandrill image (Fig. 2.1c). The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimate σ̂ is obtained by
maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each combination of the fixed values
of α2 and α3. The values shown are the sample mean values (x) of the 10 degraded images for each noise
level.

A visual inspection of the corrected images for Boat (Figs 4.10 - 4.13) and Lenna (Figs 4.14 - 4.17)
reveals that, although it does not produce the lowest MSE nor the highest MSSIM, the best correction,
from a human perception point of view, is achieved with values of (α2, α3) = (−0.2,−0.1). Indeed that
choice of values offers good noise reduction with less blurring than with (α2, α3) = (−0.3,−0.1) and
without the introduction of artefacts such as the horizontal-vertical grid-like artefacts observed in the
boat images with the lowest MSE as well as the diagonal grid-like artefacts observed in the Lenna images
with the lowest MSE. However, in the case of the Mandrill images (Figs 4.18 - 4.21), the best correction
from a human perception point of view matches the image with the highest MSSIM and is obtained with
values of (α2, α3) = (0.0, 0.0). This is probably due to the fact that a stronger correction (larger absolute
values of α2 and α3) tends to blur the texture of the fur too much. Also, from a visual point of view, it
is difficult to distinguish the noise from the texture of the fur.
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(a) (α2, α3) = (−0.2,−0.1). MSE=127.
MSSIM=0.7078.

(b) (α2, α3) = (−0.3,−0.1). MSE=130.
MSSIM=0.7550.

(c) (α2, α3) = (−0.49, 0.0). MSE=124.
MSSIM=0.7461.

Figure 4.10: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Boat image (Fig. 2.1a). The degraded image
was generated with a noise level of σ = 20 and is shown in Fig. 2.12a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 127, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.7078. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 130, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.7550. (c) α2 = −0.49, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 124, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.7461.
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(a) (α2, α3) = (−0.2,−0.1). MSE=127.
MSSIM=0.7078.

(b) (α2, α3) = (−0.3,−0.1). MSE=130.
MSSIM=0.7550.

(c) (α2, α3) = (−0.49, 0.0). MSE=124.
MSSIM=0.7461.

Figure 4.11: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 4.10. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.10a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 4.10b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.10c.
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(a) (α2, α3) = (−0.2,−0.1). MSE=239.
MSSIM=0.6049.

(b) (α2, α3) = (−0.3,−0.1). MSE=263.
MSSIM=0.6246.

(c) (α2, α3) = (−0.49, 0.0). MSE=236.
MSSIM=0.6189.

Figure 4.12: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov ran-
dom field model for one of the degraded versions of the Boat image (Fig. 2.1a). The degraded image
was generated with a noise level of σ = 40 and is shown in Fig. 2.14a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 239, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.6049. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 263, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.6246. (c) α2 = −0.49, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 236, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.6189.
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(a) (α2, α3) = (−0.2,−0.1). MSE=239.
MSSIM=0.6049.

(b) (α2, α3) = (−0.3,−0.1). MSE=263.
MSSIM=0.6246.

(c) (α2, α3) = (−0.49, 0.0). MSE=236.
MSSIM=0.6189.

Figure 4.13: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 4.12. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.12a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 4.12b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.12c.
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(a) (α2, α3) = (−0.2,−0.1). MSE=113.
MSSIM=0.6938.

(b) (α2, α3) = (−0.3,−0.1). MSE=105.
MSSIM=0.7799.

(c) (α2, α3) = (0.49,−0.49). MSE=104.
MSSIM=0.7675.

Figure 4.14: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Lenna image (Fig. 2.1b). The degraded image
was generated with a noise level of σ = 20 and is shown in Fig. 2.16a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 113, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.6938. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 105, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.7799. (c) α2 = 0.49, α3 = −0.49,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 104, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.7675.
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(a) (α2, α3) = (−0.2,−0.1). MSE=113.
MSSIM=0.6938.

(b) (α2, α3) = (−0.3,−0.1). MSE=105.
MSSIM=0.7799.

(c) (α2, α3) = (0.49,−0.49). MSE=104.
MSSIM=0.7675.

Figure 4.15: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 4.14. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.14a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 4.14b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.14c.
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(a) (α2, α3) = (−0.2,−0.1). MSE=207.
MSSIM=0.6151.

(b) (α2, α3) = (−0.3,−0.1). MSE=211.
MSSIM=0.6910.

(c) (α2, α3) = (0.4,−0.4). MSE=203.
MSSIM=0.6379.

Figure 4.16: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Lenna image (Fig. 2.1b). The degraded image
was generated with a noise level of σ = 40 and is shown in Fig. 2.18a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 207, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.6151. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 211, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.6910. (c) α2 = 0.40, α3 = −0.40,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 203, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.6379.
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(a) (α2, α3) = (−0.2,−0.1). MSE=207.
MSSIM=0.6151.

(b) (α2, α3) = (−0.3,−0.1). MSE=211.
MSSIM=0.6910.

(c) (α2, α3) = (0.4,−0.4). MSE=203.
MSSIM=0.6379.

Figure 4.17: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 4.16. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.16a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 4.16b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.16c.
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(a) (α2, α3) = (−0.2,−0.1). MSE=216.
MSSIM=0.6879.

(b) (α2, α3) = (−0.3,−0.1). MSE=297.
MSSIM=0.5868.

(c) (α2, α3) = (−0.1, 0.0). MSE=185.
MSSIM=0.7150.

Figure 4.18: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Mandrill image (Fig. 2.1c). The degraded image
was generated with a noise level of σ = 20 and is shown in Fig. 2.20a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 216, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.6879. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 297, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.5868. (c) α2 = −0.1, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 185, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.7150.

104



(a) (α2, α3) = (−0.2,−0.1). MSE=216.
MSSIM=0.6879.

(b) (α2, α3) = (−0.3,−0.1). MSE=297.
MSSIM=0.5868.

(c) (α2, α3) = (−0.1, 0.0). MSE=185.
MSSIM=0.7150.

Figure 4.19: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 4.18. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.18a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 4.18b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.18c.
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(a) (α2, α3) = (−0.2,−0.1). MSE=354.
MSSIM=0.5202.

(b) (α2, α3) = (−0.3,−0.1). MSE=417.
MSSIM=0.4367.

(c) (α2, α3) = (−0.1, 0.0). MSE=335.21.
MSSIM=0.5434.

(d) (α2, α3) = (0.0, 0.0). MSE=335.24.
MSSIM=0.5440.

Figure 4.20: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Mandrill image (Fig. 2.1c). The degraded image
was generated with a noise level of σ = 40 and is shown in Fig. 2.22a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 354, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.5202. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 417, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.4367. (c) α2 = −0.1, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 335.21, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.5434. (d) α2 = 0.0, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 335.24, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.5440.
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(a) (α2, α3) = (−0.2,−0.1). MSE=354.
MSSIM=0.5202.

(b) (α2, α3) = (−0.3,−0.1). MSE=417.
MSSIM=0.4367.

(c) (α2, α3) = (−0.1, 0.0). MSE=335.21.
MSSIM=0.5434.

(d) (α2, α3) = (0.0, 0.0). MSE=335.24.
MSSIM=0.5440.

Figure 4.21: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 4.20. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.20a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 4.20b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 4.20c. (d) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 4.20d.
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4.5 Chapter Summary

In this chapter, we described our solvable probabilistic model for greyscale images using third-neighbour
pixel interactions. We derived the mathematical expressions related to this model and proposed an
algorithm based on these results. Finally, we presented the results of numerical experiments using our
algorithm and confirmed that, with a good combination of the hyperparameters α2 and α3, we can
generally obtain better image correction results by using our extension to the third-neighbour pixel
interactions than by taking only the nearest- and second-neighbour pixel interactions into account. In
particular, we saw that, for the Boat and Lenna images, by using values of (α2, α3) close to (−0.2,−0.1),
this model allows better noise reduction than the second-neighbour model without introducing too much
blurring and without creating the horizontal and vertical line artefacts observed with the second-neighbour
model.
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Chapter 5

Solvable Probabilistic Model with
Third-Neighbour Interaction for
Colour Image Restoration

5.1 Chapter Outline

In this chapter, we shall describe the extension to the third-neighbour pixel interactions of the solvable
probabilistic model for colour images originally proposed by Tanaka and Horiguchi in [4]. We start
with a detailed description of the model as well as the calculations involved in its formation. This is
followed by the presentation of an image correction algorithm based on this model before concluding
with a description of the numerical experiments we performed to evaluate this model. We note that this
model constitutes an extension to colour images of the model described in Chapter 4.

5.2 Model Description

In this section we describe in detail the equations that form the basis of our solvable probabilistic model
with third-neighbour interaction for colour image restoration. From these equations, we also derive
mathematical expressions that can be used to implement an efficient image correction algorithm. We
shall use the same image and degradation process models as those for the second-neighbour extension
model described in Sections 3.2.1 and 3.2.2 respectively.

5.2.1 A Priori Probability Density Function

We define the a priori probability density function (prior) that the original image F has a given configu-
ration f as

Pr {F = f |α, α′, α′′} ≡ 1
Zprior (α, α′, α′′)

exp

{
−1

8

×
∑
κ∈K

∑
κ′∈K

(
ακ,κ′

∑
(x,y)∈V

[(fx,y,κ − fx+1,y,κ)(fx,y,κ′ − fx+1,y,κ′) + (fx,y,κ − fx,y+1,κ)(fx,y,κ′ − fx,y+1,κ′)]

+ α′
κ,κ′

∑
(x,y)∈V

[(fx,y,κ − fx+1,y+1,κ)(fx,y,κ′ − fx+1,y+1,κ′) + (fx,y,κ − fx+1,y−1,κ)(fx,y,κ′ − fx+1,y−1,κ′)]

+ α′′
κ,κ′

∑
(x,y)∈V

[(fx,y,κ − fx+2,y,κ)(fx,y,κ′ − fx+2,y,κ′) + (fx,y,κ − fx,y+2,κ)(fx,y,κ′ − fx,y+2,κ′)]

)}
(5.1)
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where

α ≡

 αred,red αred,green αred,blue

αgreen,red αgreen,green αgreen,blue

αblue,red αblue,green αblue,blue

 (5.2)

is a hyperparameter expressing the correlation between the colour components of nearest neighbour pixels
and is assumed to be symmetric, α′ ≡ α2α and α′′ ≡ α3α are hyperparameters expressing the correlation
between the colour components of second- and third-neighbour pixels respectively and

Zprior (α, α′, α′′) ≡
∫

exp

{
−1

8

∑
κ∈K

∑
κ′∈K(

ακ,κ′

∑
(x,y)∈V

[(fx,y,κ − fx+1,y,κ)(fx,y,κ′ − fx+1,y,κ′) + (fx,y,κ − fx,y+1,κ)(fx,y,κ′ − fx,y+1,κ′)]

+ α′
κ,κ′

∑
(x,y)∈V

[
(fx,y,κ − fx+1,y+1,κ)(fx,y,κ′ − fx+1,y+1,κ′) + (fx,y,κ − fx+1,y−1,κ)(fx,y,κ′ − fx+1,y−1,κ′)

]
+ α′′

κ,κ′

∑
(x,y)∈V

[
(fx,y,κ − fx+2,y,κ)(fx,y,κ′ − fx+2,y,κ′) + (fx,y,κ − fx,y+2,κ)(fx,y,κ′ − fx,y+2,κ′)

])}
dz

(5.3)

with
∫

dz ≡
∫ +∞
−∞

∫ +∞
−∞ . . .

∫ +∞
−∞

∏
(x,y)∈V

∏
κ∈K

dzx,y,κ , is the normalization constant.

The exponential components of equation (5.1) can be rewritten using matrix notation as follows:

− 1
8

∑
κ∈K

∑
κ′∈K(

ακ,κ′

∑
(x,y)∈V

[(fx,y,κ − fx+1,y,κ)(fx,y,κ′ − fx+1,y,κ′) + (fx,y,κ − fx,y+1,κ)(fx,y,κ′ − fx,y+1,κ′)]

+ α′
κ,κ′

∑
(x,y)∈V

[
(fx,y,κ − fx+1,y+1,κ)(fx,y,κ′ − fx+1,y+1,κ′) + (fx,y,κ − fx+1,y−1,κ)(fx,y,κ′ − fx+1,y−1,κ′)

+ α′′
κ,κ′

∑
(x,y)∈V

[
(fx,y,κ − fx+2,y,κ)(fx,y,κ′ − fx+2,y,κ′) + (fx,y,κ − fx,y+2,κ)(fx,y,κ′ − fx,y+2,κ′)

])

=− 1
8

∑
κ∈K

∑
κ′∈K

ακ,κ′

∑
(x,y)∈V

2fx,y,κfx,y,κ′ − fx,y,κfx+1,y,κ′ − fx+1,y,κfx,y,κ′ + fx+1,y,κfx+1,y,κ′

− fx,y,κfx,y+1,κ′ − fx,y+1,κfx,y,κ′ + fx,y+1,κfx,y+1,κ′

+ α2

[
2fx,y,κfx,y,κ′ − fx,y,κfx+1,y+1,κ′ − fx+1,y+1,κfx,y,κ′ + fx+1,y+1,κfx+1,y+1,κ′

− fx,y,κfx+1,y−1,κ′ − fx+1,y−1,κfx,y,κ′ + fx+1,y−1,κfx+1,y−1,κ′

]
+ α3

[
2fx,y,κfx,y,κ′ − fx,y,κfx+2,y,κ′ − fx+2,y,κfx,y,κ′ + fx+2,y,κfx+2,y,κ′

− fx,y,κfx,y+2,κ′ − fx,y+2,κfx,y,κ′ + fx,y+2,κfx,y+2,κ′

]
=− 1

8

∑
κ∈K

∑
κ′∈K

ακ,κ′

×
∑

(x,y)∈V

4fx,y,κfx,y,κ′ − fx,y,κfx+1,y,κ′ − fx,y,κfx−1,y,κ′ − fx,y,κfx,y+1,κ′ − fx,y,κfx,y−1,κ′

+ α2

[
4fx,y,κfx,y,κ′ − fx,y,κfx+1,y+1,κ′ − fx,y,κfx−1,y−1,κ′ − fx,y,κfx+1,y−1,κ′ − fx,y,κfx−1,y+1,κ′

]
+ α3

[
4fx,y,κfx,y,κ′ − fx,y,κfx+2,y,κ′ − fx,y,κfx−2,y,κ′ − fx,y,κfx,y+2,κ′ − fx,y,κfx,y−2,κ′

]
=− 1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, α3, κ, κ′)f (5.4)
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where C (α2, α3, κ, κ′) is a 3|V| × 3|V| matrix where the (x, y, µ|x′, y′, µ′) elements are defined by

⟨x, y, µ|x′, y′, µ′⟩ ≡ δκ,µδκ′,µ′

(
δx,x′δy,y′ − 1

4
δx,x′+1δy,y′ − 1

4
δx,x′−1δy,y′ − 1

4
δx,x′δy,y′+1 −

1
4
δx,x′δy,y′−1

+ α2

[
δx,x′δy,y′ − 1

4
δx,x′+1δy,y′+1 −

1
4
δx,x′−1δy,y′−1 −

1
4
δx,x′+1δy,y′−1 −

1
4
δx,x′−1δy,y′+1

]
+ α3

[
δx,x′δy,y′ − 1

4
δx,x′+2δy,y′ − 1

4
δx,x′−2δy,y′ − 1

4
δx,x′δy,y′+2 −

1
4
δx,x′δy,y′−2

])
[(x, y), (x′, y′) ∈ V, µ, µ′ ∈ K] (5.5)

where δa,b is the Kronecker delta.
Thus equation (5.1) can be rewritten as

Pr {F = f |α, α2, α3} ≡
1

Zprior (α, α2, α3)
exp

(
−1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, α3, κ, κ′) f

)
(5.6)

with

Zprior (α, α2, α3) ≡
∫

exp

(
−1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′zT C (α2, α3, κ, κ′) z

)
dz. (5.7)

This model corresponds to an extension to the third-neighbour interactions of the multichannel CAR
model proposed by Tanaka and Horiguchi in [4] and its energy function is

1
8

∑
κ∈K

∑
κ′∈K

(
ακ,κ′

×
∑

(x,y)∈V

[(fx,y,κ − fx+1,y,κ)(fx,y,κ′ − fx+1,y,κ′) + (fx,y,κ − fx,y+1,κ)(fx,y,κ′ − fx,y+1,κ′)]

+ α′
κ,κ′

∑
(x,y)∈V

[
(fx,y,κ − fx+1,y+1,κ)(fx,y,κ′ − fx+1,y+1,κ′) + (fx,y,κ − fx+1,y−1,κ)(fx,y,κ′ − fx+1,y−1,κ′)

]

+ α′′
κ,κ′

∑
(x,y)∈V

[
(fx,y,κ − fx+2,y,κ)(fx,y,κ′ − fx+2,y,κ′) + (fx,y,κ − fx,y+2,κ)(fx,y,κ′ − fx,y+2,κ′)

])
(5.8)

We note that f is a Multivariate Gaussian Markov random field with dimension 3 (MGMRF3), with
mean 0 and precision matrix Q =

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′), so that by using the properties of

GMRFs described in section 3.2.3, we obtain the following properties for our model:

E(f(x,y)|f−(x,y)) = µ(x,y) −Q−1
(x,y),(x,y)

∑
(i,j):(i,j)∼(x,y)

Q(x,y),(i,j)(f(i,j) − µ(i,j))

= − (α + α′ + α′′)−1
∑

(i,j):(i,j)∼(x,y)

Q(x,y),(i,j)f(i,j)

= − (α + α′ + α′′)−1

[
−α

(
1
4
f(x+1,y) +

1
4
f(x−1,y) +

1
4
f(x,y+1) +

1
4
f(x,y−1)

)
−α′

(
1
4
f(x+1,y+1) +

1
4
f(x+1,y−1) +

1
4
f(x−1,y+1) +

1
4
f(x−1,y−1)

)
−α′′

(
1
4
f(x+2,y) +

1
4
f(x−2,y) +

1
4
f(x,y+2) +

1
4
f(x,y−2)

)]

=
1
4

(α + α′ + α′′)−1
[
α
(
f(x+1,y) + f(x−1,y) + f(x,y+1) + f(x,y−1)

)
+ α′ (f(x+1,y+1) + f(x+1,y−1) + f(x−1,y+1) + f(x−1,y−1)

)
+ α′′ (f(x+2,y) + f(x−2,y) + f(x,y+2) + f(x,y−2)

)] (5.9)
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and
Prec(f(x,y)|f−(x,y)) = α + α′ + α′′ (5.10)

so that we have

Pr(f(x,y)|f−(x,y)) ∼ N

(
1
4

(α + α′ + α′′)−1
[
α
(
f(x+1,y) + f(x−1,y) + f(x,y+1) + f(x,y−1)

)
+ α′ (f(x+1,y+1) + f(x+1,y−1) + f(x−1,y+1) + f(x−1,y−1)

)
+ α′′ (f(x+2,y) + f(x−2,y) + f(x,y+2) + f(x,y−2)

)]
, (α + α′ + α′′)−1

)
. (5.11)

To simplify calculations, C (α2, α3, κ, κ′) can be decomposed as follows:

C (α2, α3, κ, κ′) = D (α2, α3)⊗ Jκ,κ′
(5.12)

where ⊗ is the Kronecker product, Jκ,κ′
is the single-entry 3x3 matrix, with 1 at position (κ, κ′) and

zero elsewhere and D (α2, α3) is a |V| × |V| matrix where the (x, y|x′, y′) elements are defined by

⟨x, y|x′, y′⟩ ≡ δx,x′δy,y′ − 1
4
δx,x′+1δy,y′ − 1

4
δx,x′−1δy,y′ − 1

4
δx,x′δy,y′+1 −

1
4
δx,x′δy,y′−1

+ α2

(
δx,x′δy,y′ − 1

4
δx,x′+1δy,y′+1 −

1
4
δx,x′+1δy,y′−1 −

1
4
δx,x′−1δy,y′+1 −

1
4
δx,x′−1δy,y′−1

)
+ α3

(
δx,x′δy,y′ − 1

4
δx,x′+2δy,y′ − 1

4
δx,x′−2δy,y′ − 1

4
δx,x′δy,y′+2 −

1
4
δx,x′δy,y′−2

)
[(x, y), (x′, y′) ∈ V] . (5.13)

Here, we observe that D (α2, α3) is identical to the matrix C (α2, α3) defined in equation (4.6). We
can then use the eigendecomposition of equation (4.13) to obtain

D =
(
U−1ΛU

)
(5.14)

where U is the DFT matrix defined in equation (4.14), U−1 is the conjugate transpose of U , known as
the inverse DFT matrix and defined in equation (4.15) and Λ is the diagonal matrix of the eigenvalues
λ(α2, α3, p, q) of D and is defined in equation (4.25).

We can simplify the expression of Zprior in (5.7) by applying the multidimensional Gaussian integral
as shown in equation (3.25) and using the results of the eigendecomposition above to obtain

Zprior = (2π)
3|V|

2

 ∏
(p,q)∈V

λ (α2, α3, p, q)3 detα


− 1

2

. (5.15)

5.2.2 A Posteriori Probability Density Function

The a posteriori probability density function of having an original image configuration f given a degraded
image g is found by applying Bayes’ theorem as follows:

Pr {F = f |G = g, α, α2, α3, σ} =
Pr {G = g|F = f , σ}Pr {F = f |α, α2, α3}

Pr {G = g|α, α2, α3, σ}

=
Pr {G = g|F = f , σ}Pr {F = f |α, α2, α3}∫
Pr {G = g|F = z, σ}Pr {F = z|α, α2, α3} dz

(5.16)

where Pr {G = g|α, α2, α3, σ} =
∫

Pr {G = g|F = z, σ}Pr {F = z|α, α2, α3} dz is called the evidence.
Using (3.1) and (5.6), the function can be rewritten as follows:

Pr {F = f |G = g,α, α2, α3, σ} =
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1
Znoise (σ)

exp

− 1
2σ2

∑
(x,y)∈V

∑
κ∈K

(gx,y,κ − fx,y,κ)2


× 1
Zprior (α, α2, α3)

exp

{
−1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, α3, κ, κ′) f

}

÷

[∫
1

Znoise (σ)
exp

− 1
2σ2

∑
(x,y)∈V

∑
κ∈K

(gx,y,κ − zx,y,κ)2


× 1
Zprior (α, α2, α3)

exp

{
−1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′zT C (α2, α3, κ, κ′)z

}
dz

]
. (5.17)

Since Znoise and Zprior are not dependant on z, they can be taken out of the integral in the denominator
and cancel out with the numerator, so we have

Pr {F = f |G = g,α, α2, α3, σ} =
1

Zposterior (g, α, α2, α3, σ)
exp [−H (f |g,α, α2, α3, σ)] (5.18)

where
Zposterior (g, α, α2, α3, σ) =

∫
exp [−H (z|g, α, α2, α3, σ)] dz (5.19)

and

H (f |g, α, α2, α3, σ) =
1

2σ2

∑
(x,y)∈V

∑
κ∈K

(gx,y,κ − fx,y,κ)2 +
1
2
fT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)
f .

(5.20)
We can simplify calculations by grouping all element of f in H in one single term in the same manner

as in equation (3.31) to obtain

H (f |g, α, α2, α3, σ) =
1

2σ2

f −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)−1

g

T

×

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)f −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)−1

g


+

1
2
gT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)−1

g (5.21)

Using the eigendecomposition described in (5.14), we can rewrite the second term of (5.21) as

1
2
gT

(∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)−1

g

=
1
2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, α3, p, q)α

(
e + σ2λ(α2, α3, p, q)α

)−1−→
G†(p, q) (5.22)

where e is the 3x3 identity matrix and
−→
G(p, q) and

−→
G†(p, q) are defined in equations (3.33) and (3.34)

respectively. The detailed computations can be found at (3.32).
From the above, we conclude that

H (f |g, α, α2, α3, σ) =
1

2σ2

f −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)−1

g

T
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×

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)f −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)−1

g


+

1
2

∑
(p,q)∈V

{−→
G†(p, q)λ(α2, α3, p, q)α

(
e + σ2λ(α2, α3, p, q)α

)−1−→
G(p, q)

}
. (5.23)

Using the variable substitution x =

[
z −

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)
)−1

g

]
and

dz = dx, Zposterior can be rewritten as

Zposterior =
∫

exp
{
−1
2σ2

xT

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)
x

− 1
2

∑
(p,q)∈V

[−→
G†(p, q)λ(α2, α3, p, q)α

(
e + σ2λ(α2, α3, p, q)α

)−1−→
G(p, q)

]}
dx (5.24)

which, using the multidimensional Gaussian integral becomes

Zposterior =
(
2πσ2

) 3|V|
2

{
det

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)}− 1
2

× exp

−1
2

∑
(p,q)∈V

[−→
G†(p, q)λ(α2, α3, p, q)α

(
e + σ2λ(α2, α3, p, q)α

)−1−→
G(p, q)

] . (5.25)

The determinant in equation (5.25) can be rewritten as

det

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C (α2, α3, κ, κ′)

)
=

∏
(p,q)∈V

det
(
e + σ2λ(α2, α3, p, q)α

)
See equation (3.39).

(5.26)

So equation (5.25) can be transformed into

Zposterior (g,α, α2, α3, σ) =
(
2πσ2

) 3|V|
2

∏
(p,q)∈V

[
det
(
e + σ2λ(α2, α3, p, q)α

)]− 1
2

× exp

−1
2

∑
(p,q)∈V

[−→
G†(p, q)λ(α2, α3, p, q)α

(
e + σ2λ(α2, α3, p, q)α

)−1−→
G(p, q)

] . (5.27)

5.2.3 Restored Image Equation

In our model, the estimated restored image configuration is given by the expected value of the a posteriori
probability function. This gives us the following restored image equation:

f̂ ≡
∫

z Pr {F = z|G = g,α, α2, α3, σ} dz (5.28)

where the integral is performed over every image configuration z (range of ]−∞, +∞[ for each colour
component) and f̂ is our restored image.

Using equation (5.18) we obtain

f̂ =
1

Zposterior (g, α, α2, α3, σ)

∫
z exp [−H (z|g, α, α2, α3, σ)] dz (5.29)
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which, using the results of equations (5.23) and (5.25) is rewritten as

f̂ =
1

(2πσ2)
3|V|

2 det (σ2Σ−1)−
1
2 exp

{
− 1

2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, α3, p, q)α (e + σ2λ(α2, α3, p, q)α)−1−→

G(p, q)

}

×
∫

z exp

(
− 1

2σ2
[z − µ]T σ2Σ−1 [z − µ]

− 1
2

∑
(p,q)∈V

[−→
G†(p, q)λ(α2, α3, p, q)α

(
e + σ2λ(α2, α3, p, q)α

)−1−→
G(p, q)

])
dz

=
1

(2πσ2)
3|V|

2 (σ2)−
3|V|

2 det (Σ)
1
2

∫
z exp

(
−1

2
[z − µ]T Σ−1 [z − µ]

)
dz

=
1

(2π)
3|V|

2 det (Σ)
1
2

∫
z exp

(
−1

2
[z − µ]T Σ−1 [z − µ]

)
dz (5.30)

with µ ≡
(

I + σ2
∑

κ∈K

∑
κ′∈K

ακ,κ′C(α2, α3, κ, κ′)
)−1

g

and Σ−1 ≡ 1
σ2

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C(α2, α3, κ, κ′)
)

which corresponds to the expected value equation of a multivariate Gaussian distribution. Using that
fact, we conclude that

f̂ = E[z] = µ =

(
I + σ2

∑
κ∈K

∑
κ′∈K

ακ,κ′C(α2, α3, κ, κ′)

)−1

g. (5.31)

However, it is impractical to compute the inverse of such a large matrix, so we use the same eigende-
composition as in (5.15) to simplify the equation as shown in (3.45) and obtain

f̂x,y =
∑

(p,q)∈V

U−1
(x,y),(p,q)

(
e + σ2λ (α2, α3, p, q) α

)−1−→
G (p, q). (5.32)

Here we note that this corresponds to the inverse DFT of
(
e + σ2λ (α2, α3, p, q)α

)−1−→
G (p, q) where

−→
G(p, q) itself is the DFT of the degraded image.

5.2.4 Hyperparameters Estimation

As we saw in section 5.2.3, the restored image equation depends on the values of the hyperparameters
σ, α, α2 and α3. The selection of those values shall be done by fixing the values of α2 and α3 and then
choosing values for σ and α that maximize the evidence (or likelihood) of equation (5.16). Such a method
is known as Maximum Likelihood Estimation (MLE).

Using equation (5.16) with (3.1), (5.6) and (5.18), we find that the evidence is given by

Pr {G = g|α, α2, α3, σ} =
Pr {G = g|F = f , σ}Pr {F = f |α, α2, α3}

Pr {F = f |G = g, α, α2, α3, σ}

=

1
Znoise(σ) exp

(
− 1

2σ2 ∥g − f∥2
)

1
Zprior(α,α2,α3)

exp
(
− 1

2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, α3, κ, κ′)f

)
1

Zposterior(g,α,α2,α3,σ) exp
[
− 1

2σ2 ∥g − f∥2 − 1
2

∑
κ∈K

∑
κ′∈K

ακ,κ′fT C (α2, α3, κ, κ′)f
]

=
Zposterior(g, α, α2, α3, σ)
Znoise(σ)Zprior(α, α2, α3)

(5.33)
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We can simplify the calculations by finding the maximum of the log of the evidence as in equation
(3.48), which gives us

(α̂, σ̂) = arg max
α,σ

[lnZposterior(g, α, α2, α3, σ)− lnZnoise(σ)− lnZprior(α, α2, α3)]

= arg max
α,σ

[
−3 |V|

2
ln(2π)− 1

2

∑
(p,q)∈V

ln
(
det
[
e + σ2λ(α2, α3, p, q)α

])
− 1

2

∑
(p,q)∈V

−→
G†(p, q)λ(α2, α3, p, q)α

[
e + σ2λ(α2, α3, p, q)α

]−1−→
G(p, q)

+
|V|
2

ln (detα) +
3
2

∑
(p,q)∈V

ln [λ(α2, α3, p, q)]
] (5.34)

where α̂ and σ̂ are the estimated values of the hyperparameters α and σ respectively.
Using the above, we find the value of σ̂ by solving the equation

d
dσ̂2 ln(Pr{G = g|α̂, α2, α3, σ̂}) = 0 to obtain

σ̂2 =
σ̂2

3 |V|
∑

(p,q)∈V

[
tr
(
e + σ̂2λ(α2, α3, p, q)α̂

)−1

+ σ̂2−→G†(p, q)
(
λ(α2, α3, p, q)α̂

[
e + σ̂2λ(α2, α3, p, q)α̂

]−1
)2−→

G(p, q)
]
. (5.35)

The details of the computation are the same as in equation (3.49).
Similarly, we find the value α̂ by solving the equation d

dα̂ ln(Pr{G = g|α̂, α2, α3, σ̂}) = 0 to obtain

α̂−1 − 1
2
diag

(
α̂−1

)
=

1
2 |V|

×
∑

(p,q)∈V

(
σ̂2λ(α2, α3, p, q)

{
2
[
e + σ̂2λ(α2, α3, p, q)α̂

]−1 − diag
([

e + σ̂2λ(α2, α3, p, q)α̂
]−1
)}

+
∑
κ∈K

∑
κ′∈K

[
Jκ,κ′−→

G†(p, q)λ(α2, α3, p, q)
[
e + σ̂2λ(α2, α3, p, q)α̂

]−1
(
Jκ,κ′

+ Jκ′,κ − Jκ,κ′
Jκ,κ′

)
×
[
e + σ̂2λ(α2, α3, p, q)α̂

]−1−→
G(p, q)

])
. (5.36)

Refer to equation (3.54) for the detailed computation.
When actually computing the value of the log of the evidence given in (5.34), we notice that the

value of the last term diverges when λ(α2, α3, p, q) = 0. We have not yet found a way to get around this
problem, so we do not compute the value of the evidence in our algorithm. This is not a major problem
since our algorithm depends on the derivates of the evidence and not on the actual value of the evidence.

5.3 Algorithm

In this section, we describe an image restoration algorithm based on our image restoration model. We use
a fixed point iteration algorithm [12] to find our maximum likelihood estimates for the hyperparameters
α and σ. As we saw in section 5.2.4, the extremum values for the hyperparameters α and σ can
be expressed in the form of the simultaneous recursive equations α(r) = f(α(r − 1), σ(r − 1)) and
σ(r) = g(α(r − 1), σ(r − 1)). Therefore, in our algorithm, we find new values of α̂ and σ̂ by applying
their current values to equations (5.35) and (5.36) and repeat that process until the algorithm converges.
We shall assume that the algorithm has converged once we achieve the following halting criterion:

e1(r) =

{∑
κ∈K

∑
κ′∈K

∣∣∣∣aκ,κ′(r)− aκ,κ′(r − 1)
aκ,κ′(r − 1)

∣∣∣∣
}

+
∣∣∣∣b(r)− b(r − 1)

b(r − 1)

∣∣∣∣ < 10−4 (5.37)

where aκ,κ′(x) and b(x) are the values of α̂κ,κ′ and σ̂2, respectively, at iteration x of the algorithm
and r and r − 1 are the current and previous iterations of the algorithm, respectively.
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5.3.1 Algorithm Steps

Following are the steps of the practical algorithm.
Step 1.

(i) Compute the DFT of the degraded image to obtain the value of
−→
G . We note here that

−→
G† is simply

the complex conjugate of
−→
G so it does not need to be computed explicitly.

(ii) Compute the values of λ(α2, α3, p, q) using (4.25)

(iii) Initialize a(0) to

 1 1/2 1/2
1/2 1 1/2
1/2 1/2 1

.

(iv) Initialize b(0) to 1.

(v) Initialize r to 0.

Step 2.

(i) Update r ← r + 1.

(ii) Compute the right side of equation (5.36) given by

x =
1

2 |V|
∑

(p,q)∈V

(
b(r − 1)λ(α2, α3, p, q)

{
2 [e + b(r − 1)λ(α2, α3, p, q)a(r − 1)]−1

− diag
(
[e + b(r − 1)λ(α2, α3, p, q)a(r − 1)]−1

)}
+
∑
κ∈K

∑
κ′∈K

[
Jκ,κ′−→

G†(p, q)λ(α2, α3, p, q) [e + b(r − 1)λ(α2, α3, p, q)a(r − 1)]−1

×
(
Jκ,κ′

+ Jκ′,κ − Jκ,κ′
Jκ,κ′

)
[e + b(r − 1)λ(α2, α3, p, q)a(r − 1)]−1−→

G(p, q)
])

. (5.38)

(iii) Using equation (5.36), update a(r)← (x + diag(x))−1.

(iv) Using equation (5.35), update

b(r)← b(r − 1)
3 |V|

∑
(p,q)∈V

[
tr (e + b(r − 1)λ(α2, α3, p, q)a(r − 1))−1

+ b(r − 1)
−→
G†(p, q)

(
λ(α2, α3, p, q)a(r − 1) [e + b(r − 1)λ(α2, α3, p, q)a(r − 1)]−1

)2−→
G(p, q)

]
.

(5.39)

Here we note that since
−→
G†(p, q) is the conjugate transpose of

−→
G(p, q) and that, since a(r) is a

symmetric matrix, the matrices involved in their multiplications are all symmetric, the imaginary terms
of those multiplications will vanish.

Step 3.

(i) Check the termination condition of equation (5.37).

(ii) If the termination condition is fulfilled, proceed to step 4. Otherwise go back to step 2.

Step 4.

(i) Update α̂← a(r).

(ii) Update σ̂ ←
√

b(r).

(iii) Compute the values of
(
e + σ̂2λ (α2, α3, p, q) α̂

)−1−→
G (p, q) for each p and q.

(iv) Apply the inverse DFT to the above values to obtain the restored image as described in (5.32).
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5.3.2 Computational Complexity

We now analyse the complexity of our algorithm using the Big O notation. Here n is the number of pixels
in the image, so n = |V|.

Step 1 DFT computation using the FFT algorithm: O(n log n).

Step 2 Computation of α̂(r): O(n).
Computation of σ̂(r): O(n).
Total: O(n).

Step 3 Computation of e1(r) : O(1).
Total: O(1).

Step 4 Computation of the values to be used in the inverse DFT: O(n).
Restored image computation using the FFT algorithm: O(n log n).
Total: O(n log n).

This gives a total complexity of O(n log n).

5.4 Numerical Experiments

In this section, we present the numerical experiments we performed to evaluate our model as well as the
results of these experiments. We also discuss these results.

5.4.1 Experiments

We applied our program to the original 512x512 pixels 24-bit truecolor images f presented in Fig.3.1.
We first degraded the original images using additive white Gaussian noise with mean 0 and standard
deviation σ = 20 and σ = 40 to produce 10 degraded images g for each original image and noise value.
Examples of the degraded images are presented in Fig.3.2. We then applied our restoration algorithm
to the degraded images to obtain the restored images f̂ . Examples of the resulting restored images are
shown in Fig.5.7 to Fig.5.17.

5.4.2 Experimental Results

Our results are generated by fixing the values of α2 and α3 (we remember that α′ = α2α and that
α′′ = α3α) and applying our model to restore each set of 10 degraded images described in section 5.4.1
to obtain restored image sets containing 10 restored images for each combination of the values of α2 and
α3, σ and each original image. We apply that procedure for values of α2 and α3 in the range of ]−0.5, 0.5[
with a step of 0.1 (we use the values −0.49 and 0.49 as the higher and lower bounds).

We then measure the value of the the mean square error (MSE) and the mean structural similarity
index (MSSIM) between the original image and the restored image for each restored image. These
measurements allow us to calculate the sample mean of the MSE and MSSIM for each set of restored
images. The MSE is used as a measure of the efficiency of our correction and is defined in equation (3.61).
The MSSIM is also used as a measure of the efficiency of our correction and is described in section 3.4.2.
Additional details about the MSE and MSSIM can also be found in section 2.4.2.

Figures 5.1, 5.2 and 5.3 show, for various values of α2 and α3, the values of the sample mean for the
MSE. By looking at these figures, we observe that the MSE has similar levels along the lines of direction
α3 = −α2

2 + b for all images and noise levels. We also notice that the values of the MSE suddenly become
very large in the region α3 < −α2

2 − 0.25 for all images and noise levels. In the case of the Peppers and
Lenna images, we observe the lowest values of the MSE in the region around the line α3 = −α2

2 − 0.25,
right next to the limit where the MSE suddenly increases dramatically. In the case of the Mandrill image,
the lowest MSE is more to the right, in the region around (α2, α3) = (−0.2, 0) for both noise levels.

Figures 5.4, 5.5 and 5.6 show, for various values of α2 and α3, the values of the sample mean for the
estimated values of σ̂2. By looking at these figures, we observe that the values of σ̂2 become very large
or even negative in the region α3 < −α2

2 − 0.25 for all images and noise levels. We believe that this is
due to a diverging value of the evidence in that region.
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Figure 5.1: Mean square error MSE(f , f̂) for the restored versions of the Peppers image (Fig. 3.1a).
The degraded images were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates
α̂ and σ̂ are obtained by maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each fixed
value of α2 and α3. Here, the restored image f̂ is defined as f̂ (α̂, α2, α3, σ̂) for each value of α2 and α3.
The values shown are the sample mean values (x) of the 10 degraded images for each noise level.
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Figure 5.2: Mean square error MSE(f , f̂) for the restored versions of the Lenna image (Fig. 3.1b). The
degraded images were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates
α̂ and σ̂ are obtained by maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each fixed
value of α2 and α3. Here, the restored image f̂ is defined as f̂ (α̂, α2, α3, σ̂) for each value of α2 and α3.
The values shown are the sample mean values (x) of the 10 degraded images for each noise level.
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Figure 5.3: Mean square error MSE(f , f̂) for the restored versions of the Mandrill image (Fig. 3.1c).
The degraded images were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimates
α̂ and σ̂ are obtained by maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each fixed
value of α2 and α3. Here, the restored image f̂ is defined as f̂ (α̂, α2, α3, σ̂) for each value of α2 and α3.
The values shown are the sample mean values (x) of the 10 degraded images for each noise level.
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Figure 5.4: Estimate σ̂2 for the restored versions of the Peppers image (Fig. 3.1a). The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimate σ̂ is obtained by
maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each combination of the fixed values
of α2 and α3. The values shown are the sample mean values (x) of the 10 degraded images for each noise
level.
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Figure 5.5: Estimate σ̂2 for the restored versions of the Lenna image (Fig. 3.1b). The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimate σ̂ is obtained by
maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each combination of the fixed values
of α2 and α3. The values shown are the sample mean values (x) of the 10 degraded images for each noise
level.
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Figure 5.6: Estimate σ̂2 for the restored versions of the Mandrill image (Fig. 3.1c). The degraded images
were generated with noise levels of σ = 20 in (a) and σ = 40 in (b). The estimate σ̂ is obtained by
maximizing log Pr {G = g|α, α2, α3, σ} with respect to α and σ for each combination of the fixed values
of α2 and α3. The values shown are the sample mean values (x) of the 10 degraded images for each noise
level.
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Figures 5.7 to 5.17 show some results of the application of the third neighbour extension algorithm
to the Peppers, Lenna and Mandrill colour images for noise values of σ = 20 and σ = 40.

We only show the results for values of (α2, α3) of (−0.2,−0.1) and (−0.3,−0.1), since we expect these
values to approach the Mexican Hat weighting function shown in Fig 1.2, the combinations producing
the smallest MSE, namely (−0.49, 0.0) for Peppers, (−0.3,−0.1) and (0.4,−0.4) for Lenna with σ = 20
and σ = 40 respectively, as well as (−0.25, 0.0) and (−0.3, 0.0) for Mandrill with σ = 20 and σ = 40
respectively, as well as the combinations producing the highest MSSIM, namely (−0.3,−0.1) for Peppers,
(−0.1,−0.2) and (−0.3,−0.1) for Lenna with σ = 20 and σ = 40 respectively, as well as (−0.4, 0.0) and
(−0.35, 0.0) for Mandrill with σ = 20 and σ = 40 respectively. Also, only one restored image from the
set of 10 is shown.

A visual inspection of the corrected images reveals that, although it does not produce the lowest
MSE nor the highest MSSIM, the best correction, from a human perception point of view, is achieved
with values of (α2, α3) = (−0.2,−0.1). Indeed that choice of values offers good noise reduction with
less blurring than with (α2, α3) = (−0.3,−0.1) and without the introduction of artefacts such as the
horizontal-vertical grid-like artefacts observed in the Peppers images with the lowest MSE as well as the
diagonal grid-like artefacts observed in the Lenna images with the highest MSSIM. In the case of the
Mandrill images (Figs 5.15 - 5.18), it is difficult to choose which corrected image is the best one, but in
our opinion, the images for values of (α2, α3) = (−0.2,−0.1) offer the best compromise between blurring
as observed in Fig. 5.17b and residual noise as observed in Figs 5.17c and 5.17d.
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(a) (α2, α3) = (−0.2,−0.1). MSE=88.
MSSIM=0.8421.

(b) (α2, α3) = (−0.3,−0.1). MSE=92.
MSSIM=0.8733.

(c) (α2, α3) = (−0.49, 0.0). MSE=79.
MSSIM=0.8557.

Figure 5.7: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Peppers image (Fig. 3.1a). The degraded image
was generated with a noise level of σ = 20 and is shown in Fig. 3.15a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 88, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8421. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 92, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8733. (c) α2 = −0.49, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 79, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8557.
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(a) (α2, α3) = (−0.2,−0.1). MSE=88.
MSSIM=0.8421.

(b) (α2, α3) = (−0.3,−0.1). MSE=92.
MSSIM=0.8733.

(c) (α2, α3) = (−0.49, 0.0). MSE=79.
MSSIM=0.8557.

Figure 5.8: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 5.7. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.7a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 5.7b. (c) Restored im-
age f̂(g, α̂, α2, α3, σ̂) in Fig. 5.7c.
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(a) (α2, α3) = (−0.2,−0.1). MSE=161.
MSSIM=0.7469.

(b) (α2, α3) = (−0.3,−0.1). MSE=159.
MSSIM=0.8024.

(c) (α2, α3) = (−0.49, 0.0). MSE=151.
MSSIM=0.7664.

Figure 5.9: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Peppers image (Fig. 3.1a). The degraded image
was generated with a noise level of σ = 40 and is shown in Fig. 3.17a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 161, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.7469. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 159, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8024. (c) α2 = −0.49, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 151, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.7664.
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(a) (α2, α3) = (−0.2,−0.1). MSE=161.
MSSIM=0.7469.

(b) (α2, α3) = (−0.3,−0.1). MSE=159.
MSSIM=0.8024.

(c) (α2, α3) = (−0.49, 0.0). MSE=151.
MSSIM=0.7664.

Figure 5.10: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 5.9. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.9a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 5.9b. (c) Restored im-
age f̂(g, α̂, α2, α3, σ̂) in Fig. 5.9c.
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(a) (α2, α3) = (−0.2,−0.1). MSE=56.5.
MSSIM=0.87982.

(b) (α2, α3) = (−0.3,−0.1). MSE=55.6.
MSSIM=0.89495.

(c) (α2, α3) = (−0.1,−0.2). MSE=55.7.
MSSIM=0.89498.

Figure 5.11: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Lenna image (Fig. 3.1b). The degraded image
was generated with a noise level of σ = 20 and is shown in Fig. 3.19a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 56.5, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.87982. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 55.6, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.89495. (c) α2 = −0.1, α3 = −0.2,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 55.7, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.89498.
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(a) (α2, α3) = (−0.2,−0.1). MSE=56.5.
MSSIM=0.87982.

(b) (α2, α3) = (−0.3,−0.1). MSE=55.6.
MSSIM=0.89495.

(c) (α2, α3) = (−0.1,−0.2). MSE=55.7.
MSSIM=0.89498.

Figure 5.12: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 5.11. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.11a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 5.11b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.11c.
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(a) (α2, α3) = (−0.2,−0.1). MSE=106.5.
MSSIM=0.7972.

(b) (α2, α3) = (−0.3,−0.1). MSE=105.4.
MSSIM=0.8291.

(c) (α2, α3) = (0.4,−0.4). MSE=104.8.
MSSIM=0.8047.

Figure 5.13: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Lenna image (Fig. 3.1b). The degraded image
was generated with a noise level of σ = 40 and is shown in Fig. 3.21a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 106.5, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.7972. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 105.4, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8291. (c) α2 = 0.4, α3 = −0.4,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 104.8, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8047.
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(a) (α2, α3) = (−0.2,−0.1). MSE=106.5.
MSSIM=0.7972.

(b) (α2, α3) = (−0.3,−0.1). MSE=105.4.
MSSIM=0.8291.

(c) (α2, α3) = (0.4,−0.4). MSE=104.8.
MSSIM=0.8047.

Figure 5.14: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 5.13. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.13a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 5.13b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.13c.
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(a) (α2, α3) = (−0.2,−0.1). MSE=160.
MSSIM=0.9107.

(b) (α2, α3) = (−0.3,−0.1). MSE=180.
MSSIM=0.9045.

(c) (α2, α3) = (−0.25, 0.0). MSE=156.
MSSIM=0.9108.

(d) (α2, α3) = (−0.4, 0.0). MSE=158.
MSSIM=0.9112.

Figure 5.15: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Mandrill image (Fig. 3.1c). The degraded image
was generated with a noise level of σ = 20 and is shown in Fig. 3.23a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 160, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.9107. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 180, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.9045. (c) α2 = −0.25, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 156, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.9108. (d) α2 = −0.4, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 158, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.9112.
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(a) (α2, α3) = (−0.2,−0.1). MSE=160.
MSSIM=0.9107.

(b) (α2, α3) = (−0.3,−0.1). MSE=180.
MSSIM=0.9045.

(c) (α2, α3) = (−0.25, 0.0). MSE=156.
MSSIM=0.9108.

(d) (α2, α3) = (−0.4, 0.0). MSE=158.
MSSIM=0.9112.

Figure 5.16: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 5.15. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.15a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 5.15b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.15c. (d) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 5.15d.
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(a) (α2, α3) = (−0.2,−0.1). MSE=325.6.
MSSIM=0.8115.

(b) (α2, α3) = (−0.3,−0.1). MSE=360.8.
MSSIM=0.8010.

(c) (α2, α3) = (−0.3, 0.0). MSE=320.7.
MSSIM=0.8114.

(d) (α2, α3) = (−0.35, 0.0). MSE=320.8.
MSSIM=0.8116.

Figure 5.17: Restored images f̂(g, α̂, α2, α3, σ̂) obtained by means of the proposed Gauss-Markov random
field model for one of the degraded versions of the Mandrill image (Fig. 3.1c). The degraded image
was generated with a noise level of σ = 40 and is shown in Fig. 3.25a. (a) α2 = −0.2, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 325.6, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8115. (b) α2 = −0.3, α3 = −0.1,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 360.8, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8010. (c) α2 = −0.3, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 320.7, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8114. (d) α2 = −0.35, α3 = 0.0,
MSE(f , f̂ (g, α̂, α2, α3, σ̂)) = 320.8, MSSIM(f , f̂ (g, α̂, α2, α3, σ̂)) = 0.8116.
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(a) (α2, α3) = (−0.2,−0.1). MSE=325.6.
MSSIM=0.8115.

(b) (α2, α3) = (−0.3,−0.1). MSE=360.8.
MSSIM=0.8010.

(c) (α2, α3) = (−0.3, 0.0). MSE=320.7.
MSSIM=0.8114.

(d) (α2, α3) = (−0.35, 0.0). MSE=320.8.
MSSIM=0.8116.

Figure 5.18: Details of the restored images f̂(g, α̂, α2, α3, σ̂) in Fig. 5.17. (a) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.17a. (b) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 5.17b. (c) Restored image
f̂(g, α̂, α2, α3, σ̂) in Fig. 5.17c. (d) Restored image f̂(g, α̂, α2, α3, σ̂) in Fig. 5.17d.
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5.5 Chapter Summary

In this chapter, we described our solvable probabilistic model for colour images using third-neighbour pixel
interactions. We derived the mathematical expressions related to this model and proposed an algorithm
based on these results. Finally, we presented the results of numerical experiments using our algorithm
and confirmed that, with a good combination of the hyperparameters α2 and α3, we can generally obtain
better image correction results by using our extension to the third-neighbour pixel interactions than by
taking only the nearest- and second-neighbour pixel interactions into account. In particular, we saw
that by using values of (α2, α3) close to (−0.2,−0.1), this model allows better noise reduction than the
second-neighbour model without introducing too much blurring and without creating the horizontal and
vertical line artefacts observed with the second-neighbour model.
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Chapter 6

Conclusion

6.1 Summary and Concluding Remarks

In this thesis, we investigated the extension to second- and third-neighbour pixel interactions of the CAR
model defined by Molina in [1] and developed by Tanaka and Inoue in [2], by Tanaka in [3] as well as by
Tanaka and Horiguchi in [4] in the context of noise correction in digital images. We defined an extension to
the second-neighbour pixel interactions for greyscale images in chapter 2 and for colour images in chapter
3. We then proposed extensions to the third-neighbour pixel interactions for greyscale images in chapter
4 and for colour images in chapter 5. In each of these chapters, we also proposed algorithms based on the
described models and performed numerical experiments using these algorithms to evaluate the quality
of the resulting image correction. We used the MSE and MSSIM as tools to evaluate the performance
of our algorithms and the results showed that, with a good choice of the hyperparameters controlling
the models, the second-neighbour model has a better performance than the original model and that the
third-neighbour model has a better performance than the second-neighbour model. Visual inspection of
the results also revealed that the second-neighbour model allows a good preservation of horizontal and
vertical edges in the images, but that it also introduces horizontal and vertical line artefacts. On the other
hand, the third-neighbour model manages to reduce significantly the noise level without causing too much
blurring and without introducing visible artefacts. We also calculated the computational complexity for
each algorithm and saw that, if we ignore the problem of the selection of the hyperparameters α2 and
α3, the extension of the models to the second- and third-neighbour pixel interactions has no significant
impact on the complexity of the algorithms.

6.2 Future Problems

As mentioned above, we did not investigate the problem of the selection of the hyperparameters α2

and α3 controlling our models. Indeed, in our experiments, we tried numerous combinations of these
parameters and then compared the results obtained. Such a method is computationally intensive. For
instance, it took more than 2 weeks of continuous processing to produce the 7260 result images for the
numerical experiment of chapter 5 (we had 3 original images x 2 noise levels x 10 degraded image versions
x 11 values of α2 x 11 values of α3). Therefore, it would be interesting to investigate a way of selecting
automatically good estimates for the values of these hyperparameters. Such a method could potentially
find more precise values for these hyperparameters while simultaneously reducing the computational load.
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