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G l u t a m i n e  o x o g l u t a r a t e 
aminotransferase (GOGAT or glutamate 
synthase) catalyzes the synthesis of 
two glutamates through the transfer 
o f  a  g l u t a m i n e  a m i d e  r e s i d u e  t o 
2-oxoglutarate.1 GOGAT uses ferredoxin 
or NADH as electron donor.2, 3 One 
glutamate serves as substrate for the 
glutamine synthetase (GS), and the 
other glutamate is used for amino acid 
metabolism.4 The coupled reaction of 
the GS / GOGAT cycle is the major 
ammonium assimilation pathway in higher 
plants.4-7

Reverse genet ic  s tudies  showed 
t h a t  F d - G O G AT  p a r t i c i p a t e d  i n 
assimilation of ammonium derived 
f rom photorespi ra t ion . 8-10 Bes ides 
hotorespiration, ammonium is generated 
by the  prote in  ca tabol ism,  n i t ra te 
reduction and the phenyl propanoid 
metabolism.11 Furthermore, ammonium 
is primarily assimilated in roots, while 
it is imported from the environment.12-14 
N A D H - G O G AT w a s  i n v o l v e d  i n 
assimilation of ammonium derived from 

Higher plants have 2 GOGAT species, Fd-GOGAT and NADH-GOGAT. While Fd-GOGAT mainly assimilates 
ammonium in leaves, which is derived from photorespiration, the function of NADH-GOGAT, which is highly 
expressed in roots,1 needs to be elucidated. The aim of this study was to clarify the role of NADH-GOGAT in 
Arabidopsis roots. The supply of ammonium to the roots caused an accumulation of NADH-GOGAT, while Fd-
GOGAT 1 and Fd-GOGAT 2 showed no response. A promoter–GUS fusion analysis and immunohistochemistry 
showed that NADH-GOGAT was located in non-green tissues like vascular bundles, shoot apical meristem, pollen, 
stigma and roots. The localization of NADH-GOGAT and Fd-GOGAT was not overlapped. NADH-GOGAT T-DNA 
insertion lines showed a reduction of glutamate and biomass under normal CO2 conditions. These data emphasizes 
the importance of NADH-GOGAT in the ammonium assimilation of Arabidopsis roots. 
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the non-photorespiratory pathway.15, 16 
However, it is not clear whether root 

NADH-GOGAT mediated ammonium 
assimilation is inhibited in the function 
under ambient air conditions or the 
function is only given under high CO2 
conditions. The tissue and cell-type 
specific expression of NADH-GOGAT 
is not fully elucidated yet. Therefore, the 
article compared the growth of mutants 
and wild-type plants grown in medium 
with ammonium as a major nitrogen 
source under ambient air condition. 
In addition, the temporal and spatial 
distribution of NADH-GOGAT was 
considered. 

Quantitative real-time PCR showed 
that ammonium supply leads to a linear 
increase of root NADH-GOGAT. The 
ratio of all root GOGATs was compared 
at six hours after ammonium supply, 
while NADH-GOGAT and Fd-GOGAT2 
contributed 67 and 33 % respectively, the 
content of Fd-GOGAT1 reached less than 
1 % of all GOGATs. Nitrate supply did 
not change the GOGAT composition in 

Abbreviations:
GOGAT, glutamate synthase; GS, glutamine 
synthetase; GUS β-glucuronidase; NADH, 
nicotinamide adenine dinucleotide; PCR, 
polymerase chain reaction; SAM, shoot apical 
meristem; T-DNA, transfer DNA
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neither glutamate was depleted nor 
mutant lines were lethal under ammonium 
conditions, suggesting an alternative 
me tabo l i c  pa thway  tha t  p rov ides 
glutamate in the mutants. Fd-GOGAT2 
represents the second largest accumulation 
of GOGAT in roots; therefore it may 
provide glutamate in the mutants. Beside 
Fd-GOGAT2, glutamate dehydrogenase 
(GDH) could be another candidate for 
root ammonium assimilation.16, 21 GDH 
catalyzes the reversible amination of 
2-oxoglutarate (2OG) for the synthesis 
of Glu using ammonium as a substrate.22 
Recent reverse-genetic research revealed 
that the main physiological function of 
NADH-GDH is to provide 2OG for the 

tricarboxylic acid cycle.23 It would 
make  sense  to  compare  the  Glu 
concentrations of a quadruple knock 
out (nadh-gogat, gdh1-2-3) with that of 
single knock out mutant (nadh-gogat) 
under high ammonium conditions 
in order to study the conjunction of 
NADH-GOGAT with GDH.23

Since glutamate plays a pivotal role 
in the plant amino acid metabolism,3, 

23 their composition was compared 
between wild-type and T-DNA insertion 
lines (Fig. 1). The aspartate (Asp) 
concentration of the NADH-GOGAT 
T-DNA insertion line was reduced 
compared to the wild-type.  This 
decrease may reflect the conversion of 

Figure 1. Schematic representation of the free amino acid composition in NADH-GOGAT 
mutant lines.Plants of the wild-type and 2 T-DNA insertion lines were grown on vertical 
MGRL agar plates20 containing 7 mM nitrate as nitrogen source for 14 d before they were 
transferred to MGRL medium without nitrogen for 3 d. Afterwards plants were transferred 
to the medium supplemented with either 10 mM KNO3 or NH4Cl. The plants were 
harvested at 6 or 24 h after nitrogen supply. The concentration of amino acids in wild-type 
plants was compared to the 2 T-DNA insertion lines, whereas the increase or decrease is 
represented by different color. One-way ANOVA followed by Dunnett tests were used to 
identify significant differences between wild-type and T-DNA insertion lines (P<0.05).

roots. It is likely that NADH-GOGAT is 
directly engaged in the root ammonium 
assimilation.

The contribution of shoot NADH-
GOGAT to the plant growth is limited, 
because of 2 reasons. First, Fd-GOGAT1 
is the major GOGAT isoform in shoots.17 
Almost 90 % of all shoot GOGATs are 
Fd dependent under the tested nitrogen 
conditions. Second, only limited organ 
accumulated NADH-GOGAT in shoot. 
Protein gel blot analysis,  promoter 
analysis and immunohistochemistry 
showed that shoot NADH-GOGAT is 
localized in vascular bundles of immature 
organs.

Furthermore, the function of NADH-
GOGAT was approached with reverse 
genetics. The wild-type and 2 T-DNA 
insertion lines were grown under different 
n i t rogen condi t ions .  Al though the 
ammonium supply of less than 1 mM did 
not show a difference between wild-type 
and mutants lines, the supply of 5 mM 
ammonium reduced the mutant biomass. 
The result suggests that the ammonium 
assimilation is NADH-GOGAT dependent 
under high ammonium concentrations. 

Contradictory, wild-type and mutants 
lines did not show differences in the 
biomass under nitrate supplied conditions. 
The largest amount of incorporated 
nitrate is transported to the shoot, where 
it is reduced in the leaves to ammonium 
through nitrate reductase (NR) and nitrite 
reductase (NiR).18 Since NiR is mainly 
localized in mesophyll chloroplasts,19 
most of the ammonium is produced there. 
The foliar GS / GOGAT cycle consists of 
GS2 and Fd-GOGAT1, thus Fd-GOGAT1 
should assimilate ammonium derived 
from the nitrate reduction. 

T h e  s h o o t  a n d  r o o t  g l u t a m a t e 
concentrations in NADH-GOGAT T-DNA 
insertion lines were lower in comparison 
to  the  wi ld- type a t  24 hours  af ter 
ammonium supply (Fig. 1), what suggests 
a dominant contribution of NADH-
GOGAT to the glutamate synthesis. 
Conversely, the mutant lines tended 
to accumulate glutamine, one of the 
substrates for GOGAT reactions. However, 
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aspartate to glutamate as a compensation 
for a low glutamate concentration. Asp 
aminotransferase catalyzes the conversion 
of Asp and 2OG to oxaloacetate and Glu.25 

NADH-GOGAT T-DNA insertion 
lines showed not only a reduction of 
glutamate but also changes of other amino 
acids. Mutants showed an increase of 
branched-chain amino acids, Phe and Lys 
in roots, but a decrease in shoots, at 6 h 
after ammonium supply. These dramatic 
differences were weakened at 24 h after 
ammonium supply, suggesting 2 points. 
First, those amino acid concentrations 
seem to be dependent on the pool size of 
Glu, because their biosynthesis cycles are 
not closer in pathway distance from GS/
GOGAT cycle. Second, NADH-GOGAT 
plays a key role in the regulation of Glu 
concentrations in response to ammonium 
in roots. 

Therefore, a loss of functional NADH-
GOGAT leads to a decreased biomass 
under high ammonium condition. This 
article showed that ammonium supply 
leads to an increase of NADH-GOGAT, 
which assimilates ammonium in the root.
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