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We have confirmed the quantization of the critical current in a superconducting quantum point contact
consisting of a split-gate superconductor-(two-dimensional electron gas)-superconductor junction. The
critical current and conductance show stepwise changes as a function of the gate voltage. We also
observed resonant structure resulting from quantum interference of quasiparticles at the step edge.

PACS numbers: 74.80.Fp, 72.20.Jv, 74.50.+r, 74.60.Jg

Along with recent progress in nanofabrication technol-

ogy, interest is increasing in the quantum transport of su-
perconducting structures coupled with mesoscopic-scale
normal metals or semiconductors [1]. In the dirty regime
of the normal metal, mesoscopic fluctuations of the maxi-
mum supercurrent (the critical current I,) and interaction
effects associated with Anderson localization on the criti-
cal current have been confirmed experimentally [2,3]. In
the clean regime of the normal metal, quantization of
the critical current was predicted theoretically in a su-
perconducting quantum point contact (SQPC) [4—6], by
analogy with a quantum point contact showing quantized
conductance [7,8]. Attempts to achieve a SQPC [9—11]
have not yet met with success. This Letter reports on
the quantization of the critical current in a SQPC con-
sisting of a split-gate superconductor (5)—normal metal

(N) —superconductor (S) junction using a two-dimensional
electron gas (2DEG) in the semiconductor heterostructure
as the normal metal.

To obtain a SQPC, we used a semiconductor
In o &2Al o 4&As/In 0 53Ga() 47As heterostructure grown by
molecular beam epitaxy on an Fe-doped semi-insulating
InP substrate. Figure 1(a) shows a schematic of the
fabricated SQPC. The details of the fabrication process
are reported elsewhere [12]. A two-dimensional electron
gas is well confined in the 4-nm-thick InAs channel and
has high mobility and carrier density [13]. Two super-
conducting Nb electrodes are coupled with the 2DEG;
both a supercurrent and a normal current flow through the
2DEG. The distance L between the two Nb electrodes is
0.2—0.6 p, m, and the width W of the electrodes is 10 p, m.
As shown in the figure, the junction has a split gate with
a very short gate length L~ of less than 0.1 p, m. This
gate configuration makes it possible to vary the carrier
density and mobility of the 2DEG underneath the gate
by changing the gate voltage. This results in changes in
both the critical current I, and the normal resistance R~
of the junction.

We determined the carrier density N~ to be 2.3 X
10'2 cm z, the mobility p to be 111000 cm /Vs, and
the effective mass m* of the 2DEG to be 0.045m, at
4.2 K by Shubnikov —de Haas measurement. Here, I, is

the free electron mass. From these values, we calculated
the coherence length s~ = hvF/27rksT (where vF is the
Fermi velocity) in the clean limit to be 0.28 p, m at 4.2 K
and the mean free path 8 to be 2.8 p, m. Therefore the
junction belongs to the clean limit regime (8 ) s~) with
ballistic transport (Z » L). Though s~ does not satisfy
the clean limit condition (8 ) s Jv) at a low temperature,
the system can be considered to be in the clean limit also
in the case of L ( s~ [14].

The critical current is measured as a function of the
gate voltage Vg at a low temperature of about 10 mK.

(b)

FIG. 1. (a) Cross-sectional view of the superconducting quan-
tum point contact (SQPC). A supercurrent (lowing through the
2DEG is changed by the gate voltage. (b) Top view of the
SQPC. An applied gate voltage generates a depletion layer
around the gate electrodes: this layer defines a constriction in
the 2DEG. The depletion boundary is shown by the dashed
curve. By increasing the negative gate voltage, the constric-
tion width L~ can be reduced from its original value of about
0.1 p, m to almost zero.
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When the absolute value of Vg is small (Vg ) —0.8 V),
I, shows oscillations due to Fabry-Perot interference of
quasiparticles [15]. When the absolute value of Vg is large
(Vg & —1 V), the 2DEG underneath the gate electrode is
pinched off. As the absolute value of the gate voltage in-
creases, the constriction width I is reduced gradually by
the depletion regions [Fig. 1(b)]. When L becomes com-
parable to the Fermi wavelength of the 2DEG, AF = 16
nm, one-dimensional (1D) subbands are generated in the
constriction and both the normal and the superconducting
current flow through them. The number of subbands is
given by 2L /AF and may be changed one by one by the
gate voltage. For a quantum point contact, this gate con-
trol provides the so-called quantized conductance in units
of 2e /h [7,8]. For a SQPC, it should also give rise to
quantization of the critical current [4—6].

The I, of this type of junction structure is very
sensitive to a magnetic field. However, when the absolute
value of Vg was large, the I, of the junction became
insensitive to a magnetic field, since the supercurrent
Aows through a very small width of the order of AF.
After measuring I„we measured the total conductance of
the junction G, using a 10-nA excitation current in a 26-
G magnetic field, since the supercurrent was an obstacle
for measuring the conductance precisely. As discussed
before, a relatively strong magnetic field was needed to
suppress the supercurrent that Bows through the narrow
constriction. However, we confirmed that the applied
magnetic field did not reduce the probability of Andreev
reflection.

When the conductance of the constriction G, was cal-
culated, the contact resistance R~ at the Nb-2DEG in-
terface was taken into account in the relation 1/G, =
1/G —2Rc. Rc. was calculated to be about 20 0 from the
relation 2R~ = R~ —Rsh, where R~ is the junction re-
sistance at the voltage across the junction V ) 2ANb/e
(where ANb is the energy gap of Nb) and Rsh is the Sharvin
resistance of the 2DEG. R~ was measured as 61 0, and
Rsh = (h/2e ) (AF/2W) was calculated to be 20.7 A.

Figure 2 shows the measured critical current and the G,
thus obtained in a SQPC with L = 0.3 p, m as a function
of gate voltage at a temperature of about 10 mK. It is
clear that both the critical current and the conductance
undergo stepwise changes as a function of gate voltage
and that the behavior of the critical current is similar to
that of the conductance. These data prove —as predicted
by theory —that the critical current flowing through a
SQPC is quantized in magnitude by the number of 1D
subbands in the constriction. Beenakker and van Houten
[4] calculated the step height of the critical current AI,
for a SQPC that is shorter than the coherence length go =
hvF/~Do They showed . that AI, at T = 0 is given by
ego/h and is independent of the junction parameters,
where 50 is the energy gap of the bulk superconductor.
However, the junction studied here does not satisfy this
condition L « $0, since so is calculated to be 0.43 p, m
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I IG. 2. The critical current I, and the constriction conduc-
tance G, as a function of the gate voltage V~. All measured
critical-current steps from the first to the seventh step are shown
as well as the corresponding conductance steps from the fourth
to the tenth.

for the junction. Furusaki et al. calculated AI, . in the
opposite case [5] and gave a more detailed description
of the dc Josephson effect of the SQPC than did previous
studies [6]. The theory of Beenakker and van Houten is
included in this theory as a special case of a very short
point contact. According to this theory, in the case of
L ) $0, AI, is not universal but depends on junction
parameters such as L and the barrier strength Z at the
5-2DEG interface (i.e., the Andreev reliection probability
at the interface) [6]. To evaluate Z for the junction, we
measured the differential resistance-voltage (dV/dI V)-
characteristics and obtained Z = 0.85 by comparing with
the calculation, taking multiple Andreev reflections into
account [16].

AI, in Fig. 2 was about 5 nA. In Refs. [5,6] the
calculation for b, I, was done for the inversion layer of
p-type InAs, which has 0.024m„N& = 5 X 10" cm
and p, = 5000 cm /V s. Therefore the experimental value
seems to be much smaller than the theoretical value of AI,
calculated for this junction. The small value of observed
AI, is due mainly to the small value of the critical current
of the junction, I, = 1.8 p, A at 10 mK. The theoretical I,.
value of about 13 p, A is evaluated for the junction with the
same 2DEG and Z = 0.85 [14]. The reason for a small I,
of this junction is not clear. However, it is clear that the
small AI, is explained by the small I, This is supported.
by the results shown in Fig. 3, which show I,. and G,.
for another SQPC with L = 0.3 p, m and Z —0.65 as a
function of Vg. This SQPC had I, = 3.3 p, A and AI, of
about 10 nA at 10 mK; both values are almost twice the
values of the SQPC for Fig. 2. We note that AI, in Fig. 2
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FIG. 3. I, and G, of another SQPC as a function of V~.
Resonant structures are seen at the edge of the fifth and sixth
current steps.

FIG. 4. The constriction conductance G, measured at V = 0
and the conductance G~ measured at a high voltage are shown
as a function of Vg.

decreases from about 6 to 4 nA as the step order increases
from the first to the seventh. This agrees qualitatively with
the theoretical prediction [6].

In Fig. 2 the conductance steps do not appear at the
expected quantized values of n X 2e /h (n = 1, 2, 3, . . .),
and the step height is a bit larger than 2e /h. This results
from single and multiple Andreev reflections between the
two S-2DEG interfaces. It has been shown theoretically
that the conductance of the quantum point contact that
faces a S Ninterface -is quantized in units of 4e /h (i.e.,

the doubling of the conductance step) [17]. In this theory,
the Andreev reAection probability is assumed to be 1 at
the 5-N interface (i.e., Z = 0). But the observed behavior
of the conductance is not yet well understood, since there
is no theory for conductance in a SQPC consisting of two
S-N interfaces with nonzero Z value.

If the Andreev reflection probability becomes zero,
conductance steps will appear at the quantized values of
n X 2ez/h and the step order can easily be determined.
One method of determining the step order is to apply a
strong magnetic field —enough to suppress the effect of
Andreev reflection. We have confirmed that G,, showed
a monotonic decrease and conductance steps gradually
approached the expected value of n X 2e /h as the
applied magnetic field increased. Another method is
to compare G, with G~. This is defined as I/G~ =
R~ —2R~. G~ is the constriction conductance measured
at V ~ 2ANb/e; in this voltage region the conductance
(or resistance) is not affected by Andreev reliection.
On the other hand, G, is the constriction conductance
determined at U = 0. Figure 4 shows G, and G~ of
the SQPC for Fig. 2 as a function of Vg. The orders
of the conductance steps in Fig. 2 were determined by
comparing G, and G~ in Fig. 4. G~ did not show
clear steps since the exciting current (bias current) was

very high, at about 1 —5 p.A. It can be clearly seen
that G, is always larger than Gz, because of Andreev
reflection. This increase in the constriction conductance
from a large voltage to V = 0 can also be seen in
the dV/dI Vcharacte-ristics measured by changing Vg.
The d V /dI Vcharacte-ristics showed a clear change
from current-deficit to excess-current characteristics [18].
We attribute this change to the Andreev-reflected holes
being focused on the quantum point contact defined in
the 2DECJ by the split gate (retro property of Andreev
reIIection).

There are resonance structures at the edge of some steps,
e.g. , at the second and fourth current steps in Fig. 2 and at
the edge of the fifth and the sixth current steps in Fig. 3.
Furusaki et al. also predicted theoretically that the resonant
structure appears at the edge of the current step due to
quantum interference of quasiparticles that traverse the
2DEG many times due to normal rejections. This effect
is very interesting in that the interference of individual
electrons, originating from the phase of a single-electron
wave function, influences the Josephson effect, which has
its origin in the phase of the condensate, i.e., Cooper pairs.
There are two kinds of normal reflections that induce the
interference effects on the supercurrent: a reflection at the
exit of the constriction and one at the S-2DEG interface.
The first reflection is remarkable when the constriction
width changes suddenly. The quantum interference due to
the latter reflection can be seen when the S-2DEG interface
has nonzero Z value and I. is much shorter than f. The
refIection probability at the exit of the constriction for the
measured SQPC may be small, since the edge of the split
gate is rounded, as shown in Fig. 1(b). Therefore, we think
that the observed resonant structures are due to the normal
reAection at the S-2DEG interface, although the possibility
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of resonant structures due to the impurity scattering cannot
be ignored.

Finally we note that, surprisingly, the order of the criti-
cal current step is different from that of the corresponding
conductance step in Fig. 2. The difference between them
is three, and the same kind of difference is also observed
in Fig. 3. This suggests that several lower-order sub-
bands do not contribute to the critical current. The present
theory predicts an agreement between the order of the two
kinds of steps. Further theoretical work along with more
experimental data are required before the origin of this
phenomenon can be clarified.

In summary, the critical current as well as the con-
ductance in a split-gate semiconductor-coupled Joseph-
son junction showed stepwise changes as a function of
the gate voltage. This result is evidence that the criti-
cal value of dc Josephson current is quantized in mag-
nitude by the number of 1D subbands in the quantum
point contact. Also, we confirmed the resonance struc-
tures resulting from quantum interference of quasiparticles
to be at the edge of the critical current steps, as predicted.
Recently the ac Josephson effect of one-dimensional junc-
tions has been studied [19]. The behavior of ac Joseph-
son current in a SQPC is also very interesting and will be
studied in the junction described in this Letter.
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