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We report the effect of the insertion of an InP/ In0.53Ga47As Interface on the Rashba spin-orbit interaction in
In0.52Al0.48As/ In0.53Ga0.47As quantum wells. A small spin split-off energy in InP produces a very intriguing
band lineup in the valence bands in this system. With or without this InP layer above the In0.53Ga47As well, the
overall values of the spin-orbit coupling constanta turned out to be enhanced or diminished for samples with
the front- or back-doping position, respectively. These experimental results, using weak antilocalization analy-
sis, are compared with the results of thek ·p theory. The actual conditions of the interfaces and materials
should account for the quantitative difference in magnitude between the measurements and calculations.
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Spin-orbit sSOd interaction provides a central mechanism
for the realization of optical spin orientation and detection,
and, in general, is responsible for spin relaxation. This relax-
ation causes the spin of an electron to precess during the time
of flight. Utilizing this interaction, several applications have
been proposed, both in the ballistic region1,2 and diffusive
region,3,4 as spin field effect transistors or spin inferometers.
Inspired by these proposals, it is essential for us to investi-
gate the ways of manipulating electron spins using the SO
coupling.

The mechanisms for the SO interaction in semiconductors
can be categorized into the Dresselhaus5 and Rashba
terms.6,7 The former originates from the bulk inversion
asymmetrysBIA d, a characteristic of zincblende semicon-
ductors, and the latter comes from the structural inversion
asymmetrysSIAd. Their relative strength depends on the
choice of materials.8 In the system of concern here, i.e. an
In0.53Ga47As quantum wellsQWd, SIA is frequently consid-
ered as the main contribution to the SO interaction.9–12 For
the Rashba term in the SO interaction, a counter-intuitive
fact is that it is the valence-band structure that determines its
coupling constantsnot the conduction-band profiled in the
k ·p theoryfsee Eq.s3dg. In this respect, it is of fundamental
interest to study the SO coupling constant including the de-
tails of valence-band alignment, which highlights theinter-
face effect.

In transport measurements, it is common to determine the
SO coupling constant from the beating pattern in
Shubnikov–de HaassSdHd oscillations.9–11,13 However, the
absence of beating nodes does not exclude the existence of
the SO interaction.12 It was suggested that the trace of SO
interaction in high-mobility GaAs samples can be revealed
by applying microwave excitation with varying
frequencies.14 Alternatively, the SO coupling constant can be
extracted from the analysis of weak antilocalization
sWAL d.12,15–19 This method works especially well for
samples with low mobilities and strong SO interactions: for
the former, in many cases the fields at which SdH oscilla-
tions start to be visible are so high that the beating nodes

cannot be observed; for the latter, the required frequency in
photoexcitation is hard to achieve. In this paper, we study the
interface effect of the SO coupling constant from the WAL
measurements.

Materials like InxAl1−xAs, InxGa1−xAs, and InP have been
studied extensively and considered to be useful in many de-
vice applications. Since InP has a relatively small spin split-
off energysDSOd in this material family, InP can be a good
candidate for studying the interface effect from the point of
view of valence bands.20 For a lattice-matched system, the
valence bandsG8vd of InP is lower than the split-off band
sG7vd of In0.53Ga0.47As in energy, as shown in Fig. 1. There-
fore, inserting an InP layer between In0.52Al0.48As and
In0.53Ga0.47As provides a unique band alignment forG7v and
G8v bands at the interface. In combination with the interface
effect, the doping position with respect to the QW can
modify the band bending in the QW and thereby the gate-
voltage dependence of the SO interaction. There have been
some works on the SO interaction using InP in a sample
design.18–20 The present work differs from them in that our
focus is on how the SO interaction is modified by the com-
bination of the interface effect and the doping position.

Four samples of In0.52Al0.48As/sInP/dIn0.53Ga0.47As QWs
were grown on the InP substrates by metalorganic chemical
vapor deposition. Two samples, one with and one without an
InP layer at the top In0.52Al0.48As/ In0.53Ga0.47As interface,
had a doping layer above the QWsNo. 1 and No. 3, respec-
tivelyd, while the other two, one with and one without an InP
layer, had a doping layer below the QWsNo. 2 and No. 4,
respectivelyd. The layer structures of these samples are listed
in Table I. The n-type doping concentrationsSid and the
thickness of In0.53Ga0.47As QW were designed such that the
samples had similar carrier densitiessNSd for the two-
dimensional electron gasess2DEGsd at zero gate voltage.
Samples were fabricated using the conventional photolitho-
graphic technique with 1000 Å Au as the front gate. Mea-
surements were carried out in a3He cryostats0.3 Kd with
magnetic fields applied perpendicular to the sample surface.

The Hamiltonian for the Rashba term is written as7
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Hso= assxky − sykxd = s · V1, s1d

where a is the Rashba spin-orbit coupling constant.s
=ssx,syd and V1=sV1

R sinc ,−V1
R coscd are 2D vectors in

the plane of QW, whereV1
R=ak and tanc=ky/kx. We used

the model developed by Iordanskiiet al.22 for the conductiv-
ity correction DssHd, where H is the magnetic field, in
which only the D’yakonov-Perel’ is responsible for the spin
relaxation. The only two adjustable parameters in fitting the
experimental data with this model aresid Hw, the magnetic
field related to the phase coherent relaxation timetw andsii d
HSO, the magnetic field related to the spin splitting energy.
When only the Rashba term is present:

Hw =
"

4Detw

andHso=
"

4De

2sV1
Rd2ttr

"2 . s2d

Here D is the diffusion constant andttr is the momentum
relaxation time. These parameters were obtained from the

results of Hall and SdH measurements. The extracteda val-
ues were then compared with the calculated ones using the
k ·p formalism:20

a =
"2Ep

6m0
KCU d

dzS 1

EF − EG7
szd

−
1

EF − EG8
szdDUCL ,

s3d

whereEP is the parameter related to the interaction between
the conduction band and valence bands,C is the wave func-
tion of 2DEG along the growth axisz, andEF is the Fermi
energy. EGi

szd is defined as the band-edge energy of the
Givsi =7,8d valence band atz.

Figure 2 shows the selected WAL results for the four
samples with similar carrier densities in the left and right
panels. The dip in magnetoresistance is the signature of the
SO interaction in 2DEG. The field at which the maximum
resistance occurs corresponds toHSO, andHSO is an indica-
tion of the strength of the SO interaction sinceHSO is pro-
portional toa2. As clearly shown in the left panel of Fig. 2,
the SO interaction in No. 3 was much weaker than thatin No.
1 for the front-doping condition. Since the difference in the
carrier density was less than 5%, it is possible that the
InP/ In0.53Ga0.47As interface that accounts for the enhance-
ment of thea value in the front-doping case. For the samples

TABLE I. Active layer structures of four samples, which is
listed from the sample surface to the buffer layersbefore the InP
substrated. The gatesnot listedd is on the top. Thickness is in Å
sRef. 21d.

No. 1 No. 2 No. 3 No. 4

In0.52Al0.48As 250 360 250 370

n-In0.52Al0.48Asa 60 - 60 -

In0.52Al0.48As 50 - 60 -

InP 25 25 - -

In0.53Ga0.47As 85 85 100 100

In0.52Al0.48As - 60 - 60

n-In0.52Al0.48Asb - 60 - 60

In0.52Al0.48As 2120 2000 2120 2000

aNd1=2.531018 cm−3;
bNd2=231018 cm−3.

FIG. 1. Band-structure profile of No. 1 obtained through the
self-consistent calculation of Poisson and Schrödinger equations at
the G point of the Brillouin zone.G6c, and G8v and G7v are the
conduction band and valence bands, respectively. The indicated en-
ergies are the spin split-off energies.Nd1 is the doping concentration
above the QW.

FIG. 2. Longitudinal resistancesRxxd versus magnetic field for
the four samples at 0.3 K. The experimental resultsscirclesd, as well
as calculated onesssolid curvesd, are compared with similar carrier
densities in the same doping positions. The gate-controlled carrier
densities are, for the front-doping samples, 4.331011 cm−2 sNo. 1d
vs 4.531011 cm−2 sNo. 3d, and, for the back-doping samples, 5.9
31011 cm−2 sNo. 2d vs 6.031011 cm−2 sNo. 4d. For samples with
the front- sback-d doping, the SO coupling constanta is larger in
No. 1 sNo. 4d, which hassdoes not haved The InP/ In0.53Ga0.47As.
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with the back-doping condition, No. 2 and No. 4, the situa-
tion is reversed: a weaker SO interaction was observed in
sample No. 2 which had an inserted InP. These observations
are consistent with what thek ·p formalismfEq. s3dg predicts
as discussed below.

The way the doping position and the interface affects the
SO interaction can be understood qualitatively from the cou-
pling constanta expressed in thek ·p formalism. Contribu-
tions to Eq.s3d can be split into two parts:sid the field part
sa fd, which is related to the electric field within the QW and
sii d the interface partsaid, which is related to some band
discontinuities in valence bands at hetero-interfaces.a f is the
expected value of the electric field in the active region with
the band parameters as prefactors,Cf =sEF−EG7

d−2−sEF

−EG8
d−2. Since the sign ofCf is fixed for all materials, the

sign ofa f is determined by the electric field, and therefore is
affected by the doping position20 and the gate voltage.10,23,24

On the other hand, the interface-part contribution, either
additive or subtractive to the field part, is more complicated
due to the prefactorssCixd of the electron probabilities at
interfaces:ai =−sCiuuCuu2−Cil uClu2d, whereuCxu2 is electron
probability at the interfacex=u supperd or l slowerd. In the
simplest case, i.e. identical interfaces, the sign ofai is deter-
mined by the difference of electron probabilities at inter-
faces, which is related to the electric field and eventually
gives the subtractive effect to the field part.11,20 To have the
additive contribution ina value, the interfaces should be
different.Cix, whose denominator is similar toCf’s, is related
to the offset energies of valence bands.11 These offset ener-
gies can influence the sign ofai. Due to the smallerDSO in
InP, the G8v band offset is larger than theG7v one at
InP/ In0.53Ga0.47As, which makesCiu.Cil and then leads to
the negativeai ssee Fig. 1d. Therefore,ai is additive toa f
when the InP layer is placed on the same side of doping
position, like No. 1 where the sign of electric field is nega-
tive too; but it is subtractive in the opposite waysNo. 2d.
Under the same doping position with similarNS, the former
enhances the overalla value fi.e., No. 1 showed a larger
opening inRxxsHd than did No. 3g, while the latter reduces
the overall valuefi.e., No. 2 showed a smaller opening in
RxxsHd than did No. 4g.

The above interpretation from thek ·p formalism can ex-
plain the results in Fig. 2 only qualitatively. Figure 3 shows
the dependences of the experimentala value ssymbolsd on
carrier densityNS for all samples, as compared with those
from the calculationsscurvesd. As expected, the sign of
da /dNs is positive snegatived when the doping position is
abovesbelowd the well, as seen in Nos. 1 and 3sNos. 2 and
4d. For the same doping conditionsi.e. the same sign of the
field-part contributiond, the overalla values were enhanced
sreducedd in No. 1 sNo. 2d relative to those in No. 3sNo. 4d,
where both field and interface contributions to the SO cou-
pling were additivessubtractived. However, despite the fact
that the slopesda /dNsd and the interface effect meet our
expectations qualitatively, the magnitudes ofa values for all
samples were significantly large.

To clarify the causes for this discrepancy, we need to ex-
amine both the calculation and the actual sample conditions
in more details. One crucial point in the calculation is the

knowledge of the precise potential profile. The band-
structure profile, e.g., Fig. 1, is normally obtained by solving
Schrödinger-Poisson equations self-consistently, which re-
quires the Fermi pinning energies as boundary conditions.
These pinning energies, however, were not known in our
samples: one located on the surface of our samples, and the
other near the substrate/buffer layer interface. We have care-
fully designed samples and measurements to extract this in-
formation. But having the correct potential profiles did not
significantly affect the calculationresults. Another adjustment
in the calculation would be to include the background impu-
rity concentration,20,25 which would shift the whole curve of
asNSd vertically. Had we included the background impurities
to compensate for the big gap between experiments and cal-
culations, the Fermi energy in some samples would have
become higher than that of the conduction band in the
carrier-supply layer. It is unlikely that we have such a situa-
tion for our samples.

Another possible cause, a more practical one, for the dis-
crepancy between the measurements and calculations could
be the qualities of the materials themselves, especially in the
inserted InP layer and the interfaces. Cross-sectional trans-
mission electron microscopesTEMd images of the layer
structures clearly revealed that an unknown compound was
formed in the In0.52Al0.48As/ InP interface. This compound
formation might have occurred in the InP/ In0.53Ga0.47As in-
terface as well, though it was not as obvious as that at the
In0.52Al0.48As/ InP interface because of the similar colorings
between them. It is well known that InAsP islands reside in
the In0.53Ga0.47As/ InP interface,26 and the InP layer in our
samples was intentionally placed above the QW to avoid this
problem. However, we are not sure whether our
InP/ In0.53Ga0.47As interfaces exhibited the AsuP exchange
effect27 and tensile strain28 or not, as observed in otherkinds
of growth methods. A further analysis by TEM with an en-

FIG. 3. Experimental resultsssymbolsd and calculationsslines,
labeled separatelyd of a vs Ns for the four samples. For the front-
sback-d doping samples,asNsd shows the positivesnegatived slope
and the SO interaction is enhancedsreducedd due to the existence of
the InP/ In0.53Ga0.47As interface. Front-doping samples are No. 1
sInPd and No. 3, and back-doping ones are No. 2sInPd and No. 4.
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ergy dispersive x-ray spectrometer indicated that the inserted
“InP” layer partially contained Ga and As. Besides, the
In0.53Ga0.47As well showed some inhomogeneousness in
thickness. This could have had a significant effect on the
calculation results, where only pure materials and clean in-
terfaces were assumed. The strain effect in a QW structure
may cause an anomalous spin-orbit effect.29 However, the
argument about InP/ In0.53Ga0.47As does not apply in No. 4
that lacks an InP layer. The deviations ofa values in No. 4
were larger than those in Nos. 1–3. To find out the mecha-
nisms of this abnormal result is one of our future research
topics.

To summarize, we have studied the interface effect on the
Rashba SO interaction in In0.52Al0.48As/ In0.53Ga0.47As QWs

by a weak antilocalization analysis. Introducing an InP layer
above the QW can strengthen or weaken the SO interac-
tionby incorporating the effect of the front- or back-doping
position, respectively. According to the doping position,
da /dNS can be either positivesfront-dopedd or negative
sback-dopedd. These phenomena can be understood from the
k ·p formalism of the SO coupling constanta. Furthermore,
providing attainable growth conditions, one can tailor the
layer structure for a maximal or minimal interface effect on
the a value. Besides the observations as predicted, there is
some discrepancy in the magnitudes between the experimen-
tal and calculateda values. This discrepancy can be attrib-
uted to the actual conditions of the interfaces and materials
in our samples.
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