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Abstract 
An approach to  modeling flexible manipulators con- 

sisting of rotary jo in t s  and flexible links is proposed 
in this paper. In the  proposed approach, flexible m a -  
nipulators are modeled by lumped-masses and massless 
springs o n  the basis of Hoker’s model, which i s  known  
as  a n  approximate model for vibration analysis of f lex-  
ible systems. D u e  t o  its simplicity, the constructed 
model is advantageous to  the  s tudy  of kinematics,  dy- 
namics  and control strategy of complicated sys tems  
such  as  three dimensional multi-link mul t i -DOF flexi- 
ble manipulators.  Based o n  the  model, dynamic  equa- 
t ions  of mot ion  are derived using Lagrange’s equation. 
Kinemat ics  and the relationship between the  dynam-  
ics  of rigid manipulators and flexible manipulators are 
also discussed. T h e  effectiveness of the model is evalu- 
ated by comparing the  results of simulation wi th  those 
of the experiment.  

1 Introduction 
Conventional design of industrial manipulators has 

been bulky enough to  prevent manipulators from elas- 
tic deformation and vibration. Therefore, current 
industrial manipulators are unable to  perform quick 
movements, and consume superfluous energy merely 
staying in the same position. For these reasons, light- 
weight manipulators are expected to  be a new tech- 
nology in industrial applications. 

Reduction of weight necessarily induces arm flexi- 
bility, and thus control of elastic deformation and vi- 
bration is needed. Therefore, a considerable number 
of studies have been devoted to  flexible manipulators 
over the past few decades. 

In the study of flexible manipulators, modeling has 
been one of the hot research topics. In the beginning, 
some of the approximate methods for vibration anal- 
ysis of flexible systems [l] have been applied to  mod- 
eling of flexible manipulators. For instance, Cannon 
and Schmitz applied the assumed mode method to the 
modeling of a one-link flexible manipulator [2], while 
Book has proposed the recursive Lagrangian dynamics 
[3]. In [3], deflection of link is obtained using the as- 
sumed mode method, and kinematics is discussed us- 
ing 4 x 4 transformation matrices. The finite element 
method has also been applied to  a dynamic model of 
flexible manipulators [4, 51. 
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The model constructed using assumed mode 
method is difficult to  apply to  the complicated system 
as a three dimensional multi-link multi-DOF flexible 
manipulator, since determination of the displacement 
components andl the time-varying amplitude of each 
mode becomes complicated. Needless to  say, solving 
partial differentid equations is not useful in cases of 
complicated systems. As far as finite element method 
is concerned, it is difficult to  obtain the dynamic equa- 
tions symbolically, and thus, it is not easy to  discuss 
the control strategy, kinematics, and so on. 

In order to  study the complicated system, some 
simple models have been proposed over the last few 
years. However, most of the papers dealt with only 
two-link planar manipulators (e.g. [6] ) ,  or placed em- 
phasis upon the approximation of the elastic link 
shape [7, 81. 

In this paper, an approach of modeling is proposed 
for flexible manipulators consisting of rotary joints and 
flexible links. The aim of the paper is similar to  the 
approach of [6, 7, 81, however due to its simplicity, 
the proposed model is easier for discussing kinemat- 
ics, controllability, dynamics, control strategy with re- 
gard to  complicated systems such as three dimensional 
multi-link multi-DOF flexible manipulators. Simula- 
tion based on the proposed model is performed, and 
the effectiveness of the model is evaluated by compar- 
ing the results of simulation with those of experiments. 

2 Lumped-masses and spring model 
Holzer’s method is one of the approximate meth- 

ods for torsional vibration analysis of flexible shafts, 
and was extendled by Myklestad to  the bending vibra- 
tion analysis of flexible beams [l]. In Holzer’s (Myk- 
lestad’s) method, a flexible structure is modeled as 
a series of lumped-masses and massless springs. The 
lumped-masses are called stataons, while the massless 
springs are called fields. The remarkable difference 
between flexibk structures and flexible manipulators 
depends on whether they have actuated joints or not, 
and thus, a flexible manipulator can be regarded, in a 
sense, as a series of flexible structures connected by ac- 
tuated joints. Elearing in mind the difference between 
structures and manipulators, joants have been added 
to  the conventional Holzer’s method in applying it t o  
the modeling of flexible manipulators. 
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Figure 1: A conceptual sketch of Holzer's modeling of 
the flexible robot. 
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Figure 2: 
field I C .  

Forces, moments and deflections at the 

Flexible manipulators consisting of actuated rotary 
joints and flexible links are considered here. Each flex- 
ible link is modeled by a series of stations and fields. 
Joint flexibility can also be modeled by fields whose 
length is zero. Each series of stations and fields is 
connected by joints .  Consequently, flexible manipu- 
lators are modeled as shown in Figure 1. Important 
parameters are the joint angle Bi  of the jo in t  i, the 
mass mj and the inertia tensor Ij  of the stat ion j ,  
and the spring constant KI ,  and the deflections SI, of 
the field IC. The joint angle vector 8 is defined as 

(1) 
T e =  [ el e2 ... en ] , 

and the inertia matrix Rj as 

where E3 is the 3 x 3 unit matrix. 
Figure 2 shows the forces and moments at both ends 

of the field k and its deflection due to  them. The field 
deflection vector S k  generally consists of six compo- 
nents: three translational and three rotational deflec- 
tions. The force f I ,  and the moment n k  at one end of 

Without deflectim- - - - ~ * 

Figure 3: Coordinate systems at the field I C .  

the field k is given by 

The force f', and the moment ni at the other end 
can be easily calculated from f k  and nk. The vec- 
tor e which represents all the components of the field 
deflections is given by 

e = [ s y  sf ... 8; I' 
= [ e 1  e2 *..  e" . ] ' .  (4) 

3 Kinematics 
3.1 Transfer matrices 

is settled at the end on the 
base side of the field I C ,  while Cq is settled at the other 
end, (see Figure 3). 

Transfer matrix relating the coordinate system 
with is represented as FI , .  Fk is named field trans- 
f e r  ma t r i x  here. In cases where the field deflection 
vector SI, consists of three translational and three ro- 
tational deflections as 

( 5 )  

Coordinate system 

8 k  = [ 6 x ,  6 ,  > 6 z ,  (Pz, 4~ 9 4~1' 9 

Fk is represented by 4 x 4 matrix as 
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6,k can be assumed to  be small, Fi can be represented 
in a more compact form 

Transfer matrix S j  relates the coordinate systems 
on both sides of stat ion j ,  and is named stat ion trans- 
fer matr i x  here. 

Consequently, transfer matrix Li relating the co- 
ordinate systems on both sides of link i is defined as 
follows: 

L; = F ; ~ S ; I  FizS;? . . . S;,f-1 F i f ,  (8) 
where the link i includes fields i l l .  . . , if and stations 
i l l  * , i(f - 1) . 

Transfer matrix Ai relates the coordinate systems 
on both sides of jo in t  i ,  and consequently, Ai is a 
function of Oi. Using Li, Ai, S j  and Fk, transforma- 
tion from stat ion j to  the base frame is expressed as 
follows: 

(9) 

where Nj and Qj represent the greatest numbers of the 
jo in t  and field which are on the base side of stat ion j. 
3.2 Velocity and acceleration of station j 

In the proposed modeling, the motion of a manip- 
ulator, either flexible or rigid, is represented by the 
motion of all stations. Kinematic equations derived 
here are, therefore, those needed to  obtain positions, 
velocities, and accelerations of each station. 

Let p j  and vj represent position and velocity vec- 
tors of the stat ion j ,  respectively. Each vector has 
three translational and three rotational components 
and they are represented by 

'T j  = LOA1 L1 . . .  AN^ F,, S,!, . * .  FQ, ,  
3 3  

p 3 = [  TT 3 

respectively, where r j  represents the position, aj ,  Pj  
and yj are the orientation angles, and vj, w j  are the 
translational and rotational velocities of stat ion j ,  re- 
s p ect ively. 

The velocity vj is computed by the linear equation: 

(12) 

where Jej and Jej are the Jacobian matrices repre- 
sented by 

uj = J o j h  + J, j (? ,  

J e j  = [ :g ] 

J e j  = [ :2 ] 

where Nj and ildj are the greatest number of the joint 
and the field deflection variable on the base side of 
the stat ion j .  Equation (12) can be more concisely 
represented as 

vj = J j q ,  (15) 
where 

J j  = [ J B j  J e ,  ] 7 (16) 

4 Dynamks 
Equations of motion are derived using Lagrange's 

equations. First, the kinetic energy T and the poten- 
tial energy U of the robot are given by 

n P 

i = l  j = 1  

k = l  

P 

j = 1  

respectively, where 

K1 0 

.K = [ .*.  K q  ] ' (20) 

the vector g represents the acceleration of gravity, I,i 
is the moment of inertia of the i-th motor rotor, and p ,  
q are the numbers of stations and fields, respectively. 
The kinetic energy of the motor rotor is approximated 
by the one for the motor which does not change its 
position or Orientation. The Lagrangian is computed 
using T and U as follows: 

L = T - - U  

i=l  j = 1  

1 
2 

- - eTKe .  

The Lagrange's equations are given by 

( I  = 1, 2 ,  ..., m).  (23) 
d d L  d L  
dt d l ,  de, 

o =  - (-) --  

The first equation and the second equation are named 
as the equation of link motion and the equation of field 
motion, respectively. The first equation represents the 
rigid motion of the links and the second the elastic 
motion of the jields, that  is, the link vibration. 
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4.1 Equation of link motion 
Substituting Eq. (21) into (22) and bearing in mind 

Eq. (15), each term of Eq. (22) is respectively repre- 
sented as 

P 

= + ( ~ & R ~ J ~ )  6 f (g) j=P! 

where P;" is the smallest number of the station which 
is on the end-effector side of j o i n t  i .  If j e j i  and g6 are 
defined by 

respectively, then 

is obtained. Substituting Eqs. (24), (25) and (28) into 
Eq. (2% 

4.2 Equation of field motion 
Substituting Eq. (21) into (23) and bearing in mind 

Eq. (15), each term of Eq. (23) is respectively repre- 
sented as 

P 

K e  deT 
der 

-- (34) 

where P: is the smallest number of the station which 
is on the end-effector side of the field having the de- 
flection variable el. If j e j i  is defined by 

(35) 

then 
drT  
-m3g = i:rm3g6 
der 

is obtained. Substituting Eqs. (33), (34) and (36) into 
Eq. (23h 

P P 

deT 
der 

+ - K e  (37) 

is obtained. Finally, equation of field motion is ob- 
tained as follows: 

P 

j=1 
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5 Relation with rigid manipulators' dy- 
namics 

It has been shown that the motion of flexible ma- 
nipulators is expressed by the equation of link motion 
and the equation of field motion. The relation between 
these equations and the equations of motion of rigid 
manipulators is discussed in this section. 

Substituting e = e = e = 0 into eq. (30), 
/ P  

\ j=1 / 

(40) 

is obtained. Equation (40) represents the motion of 
rigid manipulators. It means that the motion of both 
rigid and flexible manipulators is represented by the 
same equation, i.e., equation of link motion (30). 

In the case of e = e = e = 0, considering Eq. (3), 
the equation of field motion becomes as follows: 

3=1 j=1 

+ [  j:j. (41) 

nq 

Rem Eq. (41), forces and moments generated a t  each 
field are obtained. 

As a result of the above discussion, a rigid manipu- 
lator can be considered as a sort of variation of flexible 
manipulators. 

6 A case study 
The modeling method proposed in this paper is ap- 

plied to an experimental flexible manipulator called 
ADAM (Figure 4), which has two elastic links and 
seven joints in both left and right arms. The validity 
of the modeling is evaluated by comparing results of 
simulation based on the model with experimental re- 
sults. For simplicity, moment of inertia generated at  
stations is not considered here. 

Simplified equations of motion without considering 
the moment of inertia at  stations are: 

Figure 4: Overview of the experimental manipulator 
ADAM. 

P 

- (J;;Tm39) 
j = 1  

U 

(43) 
3=1 

Simulator is programmed based on the Eqs. (42) and 

6.1 Modeling of flexible manipulator 

The model of the experimental flexible manipulator 
ADAM is constructed as shown in Figure 5.  Joints 
and stations circled by dotted line are placed at the 
same point. For convenience, fields 1, 2, 4 are settled 
between Joint 1 and Station 1, between Joint 2 and 
Joint 3, and between Joint 4 and Joint 5 ,  respectively, 
and they are settled to have no length and no deflec- 
tion. 

The experimental manipulator ADAM has seven 
joints, however, only four of them (joints 1-4) affect 
the positioning of end-effector, and thus, joint angle 
and torque vector are defined as follows: 

(43)- 

ADAM 

T = [  71 7 2  T3 74 1' (44) 

8 = [  81 82 83 04 1'. (45) 

e = [ 6Y3 6 z 3  6u5 635 1 
Deflection variable vector is defined as 

(46) 
T 
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Paramet er Notation 
Length of fields 23 (m) 

65 (m) 
Bending stiffness E& (Nm’) 

Figure 5: 
ADAM. 

Model of the experimental manipulator 

Value 
0.50 
0.50 

291.6 

where Sy3, Sz3, SY5 and 6,s are the elastic deflections 
along the y and z axes of field 3 and 5, respectively. 
The field’s torsional deflections can also be considered 
as a part of e ,  however, since moments of inertia of 
stations are not considered here, they depend upon 
bending deflections [9]. Furthermore, deflections along 
the z axis S22 and Sr3 are assumed to be quite small, 
and thus, they are not considered here. 

Based on the constructed model shown in Figure 5, 
equations of motion (42) and (43) are computed. Some 
mechanical parameters of ADAM used in computation 
of the equations are presented in Table 1. 
6.2 Simulation and experiment 

Experimental manipulator ADAM has a hardware 
velocity servo card in the controller, and thus, the ve- 
locity servo is programmed in the simulator. The ap- 
plied torque r is assumed to be produced by velocity 
command Vref  and velocity servo as follows: 

Im2 (Nms2) 
Im3 (Nms’) 
Im4 (Nms2) 

where r is an applied torque vector, 6 ,  (rad/s) is the 
motor rotary velocity vector, V,,f  (V) is the refer- 
ence velocity command vector to  the robot controller, 
K,,  (Nm/V), K, ,  (Vs/rad) and G,. are diagonal ma- 
trices whose diagonal elements are the velocity servo 
gain, the voltage/velocity conversion coefficients of the 
sensors for velocity feedback in the servo and the re- 
duction gear ratios, respectively. 

The simulator uses the fourth order Runge-Kutta- 
Gill formulas to integrate the system of differential 
equations. Step size of integration is settled as 0.1 
(ms). Velocity servo Eq. (47) is assumed to be per- 
formed in each 1 (ms), while the sampling period of 
the control system is assumed to  be 10 (ms) which is 
the same period used in experiments. 

Step 
responses in simulation and experiment for reference 
position are plotted in Figures 6 and 7, respectively. 

Experiment and simulation are performed. 

0.99 x 
0.99 x lov4 
0.15 x low4 

of fields 102.1 

Position feedback gain is settled as 4.0 (s-l) both in 
the simulator and the experiment. 

In order for the model to  be evaluated, the first 
mode vibration frequencies are taken as characteristic 
data. As for the vibration which is related to 4 3  and 
~ 5 ~ 5 ,  the vibration frequencies in the simulation and 
experiment are obtained as 2.865 (Hz) and 2.849 (Hz), 
respectively. As for the vibration related to 6,3 and 

the vibration frequencies in the simulation and 
experiment are obtained as 2.866 (Hz) and 2.950 (Hz), 
respectively. Consequently, it is shown that although 
the constructed model is simple, the motion of the 
experimental manipulator is well simulated. 

7 Conclusion 
Holzer’s model, which is known as one of the ap- 

proximate models for torsional vibration problem of 
flexible structure, is applied to the modeling of flex- 
ible manipulator, and based on the model, equations 
of motion of flexible manipulator are derived. Motion 
of flexible manipulator is expressed by two equations 
of motion: one is the equation of link motion, while 
the other is the equation of field motion. Although 
these two equations can be derived using other mod- 
eling methods, the simple structure of the proposed 
model is effective t o  study kinematics, dynamics, and 
other problems of flexible manipulators. The relation 
between the rigid manipulator dynamics and the flex- 
ible manipulator dynamics is also discussed. 

The proposed method has already been applied to  
the vibration suppression control [lo] and study on 
the vibration controllability [ll], and confirmed to be 
effective to discuss such problems. It is expected that 
the model will be applied to study on other problems 
of flexible manipulators, for instance inverse kinemat- 
ics, inverse dynamics, singularity [12]. 
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