
Proceedings of  the 1996 IEEE 
International Conference on Robotics and Automation 

Minneapolis, Minnesota - April 1996 

Stability of Control System in Handling of a Flexible Object 
by Rigid Arm Robots 

T . Yu kava* M. Uchiyama*' D. N. Nenchev*' H. Inooka*2 
* 1 Dept. of Aeronautics and Space Engineering, Tohoku University 

*2 Graduate School of Information Sciences, Tohoku University 
Ararnaki-aza-Aoha, Aoba-ku, Sendai 980-77, .JAPAN 

Abstract 
In this paper, we  deal wi th  the  handl ing  of a flexible 

object by rigid a r m  robots. W e  consider three m a i n  
tasks: f irst ,  to  propose a mathemat ica l  model  f o r  
variety of flexible objects of our daily life; second, t o  
design a# controller t o  achieve cooperative handl ing  of 
the flexible object by  the  robots; and third, t o  analyze 
th,e stability and robustness of the  control sys tem.  In 
particular, in space, i t  seems  that  d e m a n d s  f o r  m a n i p -  
u.latin,g a la,rge-scale structure by a space robot will be 
increa,sing. Therefore, it is impor tant  t o  consti tute the  
cooperative con,trol problem of several robots handling 
a flexible object, and to  analyze the  proposed control 
sys tem.  

1 Introduction 
The control problem for handling a flexible object 

by several robots is more complex than that of han- 
dling a rigid object [l]. This is because there is no 
information about the internal potential in the flex- 
ible object. There is no one-to-one relation between 
the input forces from tlie robot and tlie reaction forces 
a t  any point on the object. The position sensors 
mounted on tlie robots cannot observe the deflection 
at  every point of the flexible object, except for tlie 
handling points. The force/torque sensors mounted 
on the robots cannot also estimate tlie force/torque 
being generated at any point of the flexible object, 
except for the handling points. As a result, vibration, 
spill over and destabilization occur. 

Nakagaki et a1 [ 2 ]  have realized tlie position con- 
trol of a flexible object handled by a rigid robot, using 
the static shape function of the object. Their pur- 
pose was to insert one end of the flexible object into 
a hole while holding the other end. In our previous 
work [3] .  we have constituted a new control system to 
achieve two performances simultaneously: z. e., follow- 
ing up one end of tlie flexible object and its vibration 
suppression by a robot. 

Recently, some researchers have started tlie study 
of control of a flexible object using a dual-arm robot. 
Zheng et a1 [4], [5 ] ,  [6] and Kosuge et a2 [7] have re- 
alized cooperative position control of the flexible ob- 
ject while utilizing the mathematical modeling on the 
static bending function of the flexible object. Svinin 
et al [SI, [9] have applied geometrical analysis to  per- 
form position control and vibration suppression of the 
flexible object. The flexible object has been modeled 
as a system of lumped masses and springs. 

On the contrary, we have designed a control sys- 
tem to realize active handling of a vibrating flexible 
object [lo]. The aim of our work was to realize posi- 
tion control of the flexible object while suppressing its 
vibration using a dual-arm robot. For this purpose, 
we have proposed a model for tlie system connecting 
the robots and the object, so as to  guarantee tlie whole 
system's stability. However, we did not consider the 
dynamical cliaracteristics of the flexible object. 

In this paper, we use a dynamical model of the 
flexible object. The dynamics of the flexible object 
cannot be neglected. If the parameters of the object 
are larger than that of the robots, it is important to 
consider the relationship between the dynamics of the 
robots and the object. We also expand the dimension 
of vibration from 1-D space, as in the paper [lo], to 
2-D space. This object can be transformed in 2-D 
space: and the dynamics of the body itself becomes 
of very complex mathematical structure. This model 
covers a number of flexible objects, from daily life: 
e.g.: bean curds: cakes, as well as spiral wires as shown 
in Figure 1. 

The design of cooperative control for the robots and 
the dynamic flexible object makes it possible for a mi- 
cro robot to manipulate a macro object while satisfy- 
ing tlie stability of the control system. Finally, we also 
propose a discrimination criterion about the stability 
and analyze tlie robustness of the control system. 
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3.2 Modeling of the object 

Figure 1: Situation of handling a wire by two robots 

2 Problem formulation 

To simplify the problem, we consider motion in 2- 
D space. We suppose that the characteristics of both 
the robots and the object are already known. Suppose 
also that a set of robots have grasped the object, while 
another set of robots are supporting it just through 
point contacts without generating any force/torque. 
In this research, except for the multiple-arm robot 
used in subsection 4.2, we deal with a dual-arm robot 
equipped with end-effectors. To be more specific, we 
consider the problem that the dual-arm robot moves 
to the reference position/posture having grasped the 
object, and suppressing in the same time its vibration. 
Such a situation may occur when two robots handle a 
flexible structure in space (Figure 2). 

3 Kinematics and dynamics 

3.1 Equation of motion of the rigid robot 

Using Lagrange's formulation, the equations of mo- 
tion represented as first order differential equations 
in state-space, with the state-space vector OL,R = 

[e;,, &;,RIT, are written as follows: 

b L , R  = A L , R ~ L , R  + B L , R T L , R  + w z , R  (1) 

wliere e L , R  E R~~~ are the joint angle vectors, TL,R E 
g23xx are the torque input vectors, and WL,R E R3'l 
are the non-linear terms. The symbols L and R stand 
for the "Left" arm and the "Right" arm, respectively. 
The gravity term has been neglected since we consider 
application in space. 

Figure 2: Two space robots handling a flexible structure 

We consider the flexible object to be a beam which 
is grasped by the robots, such that its ends are free. 
While the robots handle the object, they have to sup- 
press its vibration, and furthermore to control its de- 
formation. 

The model of the object has constraint density and 
mass distribution. We have studied the handling of 
a flexible object which is vibrating in 1-D space only, 
as mentioned in Section 1 [lo]. In this paper, we deal 
with a beam whose characteristics of motion are in 2- 
D space. That is, the dynamic beam moves flabby in 
vertical and horizontal directions. The situation of a 
flying flexible object while vibrating is shown in Fig- 
ure 3. The object can be expressed by a mathematical 
model, even if its external appearance forms a spiral 
or a closed curve. 

3.2.1 Distributed and finite dimensional 
model of the object 

Let's derive the equation of motion of the object 
using a method proposed by Simo [ll], which reveals 
the construction and expansion in 2-D space. Figure 4 
shows the bending displacement of a small element 
geometrically. 

Define a universe coordinate system C(el ,  e2), and 
a small element coordinate system E'(ei, e:) .  For the 
small element a t  z = zo parallel to direction el, define 
the tiny expansion length parallel to direction el to be 
5, the tiny expansion length parallel to direction e2 to 
be c, and the tiny angle between the elements to be 
0, respectively. Setting the elements 2, and 0 as 
the state-space variable of the system, the equation of 
motion is given by: 

where the state-space variables are do = {zo + 
5(zo, t ) } q  + Y(zo, t)e2 and 0 = ~ ( z o ,  t ) .  A, = A,(xo) 
and I, = 1,(zo) are the inertial force coefficients, h is 

Fi8ure 3: Flying flexible ohject in 2-r) space. 
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4 Combined model 

4.1 Combined model of the robot and the 
flexible object 

For the combined model consisting of the dual- 
x, . ; e1 arm robot and the object, the constraint condition 

is expressed by using the unknown multiplier method. 
The combined model can be expressed by conibining 
eq- (1) with eq. (6 usillg the s ta te-s~ace variable 
5, = 
known multi~lier vector 

Figure 4: Element of the flexible object. 

the wicltli, 1" is t1ie.damping force coefficient in pro- 
portion to 40, and 8. n = n,(zo, t ) e l  + ny(zo, t)ez is 
a vector consisting of the external force n, in a com- 
ponent of direction e l ,  and the external force nny in a 
component of direction e2. m. = m(x0, t )  is the ex- 

[@E xTb,. @,IT b E Rosxl.  Including the un- 

E socxl, we get: 

x, = Amx,  + Bmum + W ,  + FTX (7) 

and F, = ~, = 1 T; T;  I T  E R o u x ~  

af,(z,> / dz, E gioeXos. f,(z,) is the vector 
consisting of the constraint condition which will be 
noted in the next paragraph. Suppose that the con- 
dition rank F ,  = 0, has been satisfied. Since B ,  in- 
cludes the Jacobian matrix J a ~ , ~  ( B L , R ) ,  we suppose 
the robots move in the region in which the Jacobian 

ternal moment input, and Bo = Bo(&(B) ,Z ,5 ,8 ) ,  
Je = J e ( 8 ) ,  bo = J o ( Z , 2 .  €& is tlie transformation 
matrix from the coordinate C to the coordinate E'. 

Set the state-space variable as zb(Z0,  t )  = [q + 
Z(Q, t )  y ( ~ ,  t )  B(z0, t)lT, and the control input as 
u t , ( ~ ~ , t ) = [ n ~  mIT. From eqs. ( 2 ) ,  (3): the equation 
of motion of the flexible object is given as follows: 

A @ b ( Z o ,  t )  -k Bbkb(50, t )  -k W b ( z b ( x 0 ,  t ) )  = Ub(z0, t )  
(4) 

which is a distributed parameter system. 
Setting again the state-space as the position and 

posture z b f ( t )  = [q y1 01 - e -  xn Z/n e,]* (n  < w), 
from the distributed parameter system eq. (4) we ob- 
tain an approximated finite dimensional system using 
the mode shape function, given by: 

Abfxbf +Bbfkbf +Wbf(zbf) = u b f ( u b )  . (5) 

3.2.2 Motion of the object at the handling 
point 

When the robot is handling the flexible object, vi- 
bration of tlie flexible object is being generated at in- 
tcrmediate points, as well as at the handling points. 
One purpose in our research is to correspond the end- 
points of the robot to any point on the flexible ob- 
ject, and to calculate the respective control input. 
For tlie positional constraint requirement, it is diffi- 
cult to  find the relationship at the intermediate point 
of the object. From this point of view, the state-space 
equation of the flexible object (eq. ( 5 ) )  is reduced to 
neglect the characteristics a t  all points of the flexi- 
ble object, except for the handling points. By trans- 
forming the state-space variable x b f  in eq. ( 5 )  into 

the equation of motion of the flexible object a t  the 
handling point is given by: 

Z&. = [ Z L  S L  a - .  4, j Z R  ka ." OR I T ,  

&ob,- = A o b r x o b r  + B o b r u b f ( u b ) - k  W o b r ( 2 o b i . )  . (6) 

matrix is regular. 

4.2 Constraint and controllability condi- 
tion 

In this paragraph only, we expand the dual-arm 
robot case to the general case of mar arm nli link 
robot in 2-D space. The constraint condition relating 
the position of the tip of the robot to  the handling 
point on the object can be expressed by the geomet- 
rical relationship depending on the position-posture 
variable y of the end-effectors and the state-variable 
xobl .  of the object. That is to  say, the positional con- 
straint condition can be expressed by three kinds of 
relationship in the state-space x,, 2. e., two positional 
relations in each direction el and ez, and the angular 
relation in the slope of the end-effector and the bend- 
ing angle among two small elements of the object. (See 
Figure 4.) 

Defining the number of the constraint coliclitions to 
be o,, the constraint force vector is given by: 

f,(%) =col( f c l ,  f c 2 ,  " ' 3  f c o ,  ) = 0 E WCX1 . 
( 8 )  

0, < 0, (9) 
The inequality: 

is the necessary condition for the combined state-space 
variable 2, to be colitrollable by the controlinput U,. 

This includes the restriction on the number of condi- 
tions to  satisfy all the constraint conditions consisting 
of the element of the state-space z,,,. 
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To establish controllability of tlie flexible object by 
tlie robot, let's first, consider the relationship between 
existence of end-effector, and limitation from the in- 
equality condition. (Figure 5 . )  

If the m.arl arm robot has no end-effector, and tlie 
~ n a Y 2  (= m.ar - marl) arm has end-effectors, among all 
m,, arm nli link robots, the numbers in tlie constraint 
condition (9) are given by: 

0, = 3m.,; - m,arl , (10) 
0, = m,ur(nli + 1) - marl 9 (11) 

respectively. From (9), (10) and (ll), tlie following 
condition is obtained: 

Froin eq. (12) we can see that tlie number (mar, marl, 
mar2) of the arms has been neglected and the limita- 
tion of tlie controllability conditioii does not depend 
on the existence of tlie end-effector. 

In tlie particular case of a dual-arm robot with an 
end-effector, tlie above condition (eq. (12)) cannot be 
satisfied. For this reason, we reduce the two constraint 
conditions imposed from each of the joint angle rela- 
tionships a t  both handling points, to one, i .e. ,  the 
dual-arm robot will not he able to handle either bend- 
ing angle a t  the handling point. 

4.3 Combined model at the equilibrium 
point 

For tlie reference posture of tlie dual-arm robot 
and tlie flexible object, define tlie equilibrium point as 
x ,  := z;. Define tlie notation of the system matrices 
and vectors a t  tlie reference equilibrium point as (0 ) * .  

Assume that f ? L , R  = f ? L , R  = 03x1 and xEbr = 0 6 m a r x 1  
hold at  tlie reference equilibrium point. When the 
constraint condition holds, FZX, = 0°8x1 must be 
sat,isfied. Consequently, from eq. (7), the reference 
multiplier vector A* is obtained. The error motion in 
the vicinity of tlie equilibrium point can also be rep- 
resented by: 

* *  .. * 

AXm = AZAx, + B ~ A u ,  + F,**AA. (13) 

Notice that matrix AC;: is constituted by the static 
matrix Ath and tlie part of tlie linearized matrix 
W k .  Assume that (A;, B:) is controllable, and 
rank B: = 0, is satisfied. 

When tlie constraint condition at tlie handling 
points holds, the necessary condition for handling abil- 
ity is that the equations F:Ax, = OoSx1, F,*Axm 
- - 0% X l  must be satisfied. Then the coiistraiiit force 
AX in the vicinity of the reference equilibrium point 
can also be calculated. 

Under the colidition that tlie robots are hatidling 
tlie flexible object perfectly, the equation of tlie com- 
bined model can be expressed by: 

Ak, = F ~ A ~ A x , + F ~ B ~ A u ,  (14) 

where FT = Ionxoa - FfTFt+ 2 OoSxoa ,  which is 
a positive seinidefinite matrix. For details regarding 
eq. (14), see [lo]. 

4.4 Stability at the equilibrium point 

When tlie robot has been controlled by tlie only 
static equilibrium control input, and has not been coii- 
trolled by any other control input for stabilization, 
what happens with the stability condition of tlie dual- 
arm robot? 

To answer this question, we try to examine the sta- 
bility of the robot when no control input Au,, at the 
equilibrium point is applied to tlie combined model 
eq. (14). 

Since tlie eigenvalues of matrix FT are 0 or 1, the 
condition FTAZ 5 0 is satisfied if and only if A: is 
a negative semidefinite matrix, Le. ,  A; 5 0. 

1. In case when the internal force at  tlie equilibrium 
point does not exist, i.e., 
Because A: is a block diagonal matrix consisting 
of tlie system matrices of tlie robots and the ob- 
ject, the stability of tlie robots themselfs or the 
object itself is not collapsed at the equilibrium 
point if and only if the robots can handle the ob- 
ject perfectly. 

= OoCx1.  

2. In case when tlie internal forces are being gener- 
ated at  the equilibrium point, i.e., 
Since AC;, includes tlie vector the stability of 
the system eq. (14) depends upon the value of the 
static constraint force 

For the upper two cases, the condition for stability 
of the system eq. (14) is satisfied if and only if the 
following holds: 

# O o c x l .  

Sm = -Re{Xnrax (A:')} 2 0 . (15) Figure 5: Situation of handling a flexible object by multiple-arm 
robots. 

2335 

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on December 24, 2009 at 00:52 from IEEE Xplore.  Restrictions apply. 



5 Handling of the flexible object 

5.1 Control system 

The necessary condition to realize the handIing is 
to satisfy the constraint condition a t  the equilibrium 
point. The state-space of the combined model con- 
sists of a sub-space related to the constraint force, 
and another sub-space which is not involved in any 
constraints. From this point of view, we consider the 
decomposition of the state-space model in eq. (14) to 
constitute a control system for the state-space which 
is not involved in any constraint force. 

Transform the state-space of the combined model 
eq. (14) as A f ,  = T:Ax,,  by a similarity transfor- 
mation matrix T, .  Ai&,, constitutes the unobservable 
sub-space S,, and its complement Spa. If (A;,  Bk) 
is controllable, then the dimension of the controllable 
sub-space becomes Sl'c E gZ'os-oc)xl. 

In our formulation, since the dual-arm robot han- 
dles the flexible object a t  the initial time, the bound- 
ary condition is satisfied. In other words, because 
we do not deal with the initial catching of the flex- 
ible object here, we do not have to consider the sta- 
bility of the S,, sub-space. Since the realization of 
the cooperative control is possible by stabilizing the 
S,, sub-space, we constitute the design of a controller 
for the S,, sub-space only. The weighting matrices 
w, >_ o(o.-oc)x(o.-oc) and W ,  > Oouxuu depend 
upon the state-space in the controllable sub-space S,, 
and control input Au,, respectively. 

To stabilize the suh-space Spc, we apply the 
LQ theory minimizing a performance index for the 
quadratic form which is weighed to the state-space 
and the conkrol i n p t .  Suppose that the system ma- 
trices are (Amc, B,,) in s,, sub-space. Using a 
positilz defizite solution A,, of the Riccati equation 
REC(A,,, B m c ,  A,,), the optimal control input for 
the system eq. (14), in the vicinity of the equilibrium 
point, is given by: 

The handling strategy for the flexible object can be 
achieved using the coiitrol input Au, and the static 
control input uf a t  the equilibrium point. 

5.2 Stability at the intermediate point of 
the object 

In case of the order 0, of an operation force adds 
t,o the robot is restricted, from the condition (9) it is 

Figure 6: Stability at the intermediate point. 

difficult to include the positional relationship at the 
intermediate point of the flexible object into the con- 
straint condition as eq. (8). This is because tlie degree 
of freedom of the flexible object is usually larger than 
the number 0, of actuators mounted on the robot. 

In this paragraph, we examine the characteristics of 
the flexible object at all points except for the handling 
point (as shown in Figure 6 (b)), when the control 
input eq. (16) is applied to the model eq. (14) (as 
shown in Figure 6 (a)). 

We can also examine the response of motion at 
the intermediate point of the flexible object. De- 
fine a new state-space Ax,, of the combined 
model consisting of the elements at the intermedi- 
ate points in the flexible object. Denote the state- 
space relationship between Ax, and Ax,, as 
Ax, = TeAxmm using the transfer matrix T ,  = 

The expanded equation of the combined model a t  
the reference equilibrium point which includes the 
characteristics at any intermediate point of the object, 
is given as follows: 

I ,  (nee < ..I. [ p , X o ~  ; 0o,x(6n, -o , )  

AX,, = F'&,A",AX,,$F~,B~,AU,. (17) 

When the control input eq. (16) is applied to the sys- 
tem eq. (17), tlie closed loop system is given by: 

AX,, = FT,(AE, + B~,H,T:T, )Ax, ,  . 

Concretely, let's examine the stability in the closed 
loop of the combined model. Taking care that the 
positional relatioilship at the intermediate points of 
the object has not been restricted, FY, becomes as 

t 18) 

Noting that FT, is a symmetric and positive semidefi- 
nite matrix whose eigenvalues are 0 or 1, the necessary 
condition to satisfy the stability a t  the interniediate 
points of the flexible object is given by: 

5.3 Robustness of the control system 

In the previous paragraph 5.2. we have examined 
the stability of the flexible object a t  the intermediate 
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point except for tlie handling point. 
In the current paragraph, we examine the stability 

of the handling system (Figure 7 (a)) in case when the 
object model eq. (6) has uncertainty (Figure 7 (b)), or 
the handling points are shifted (Figure 7 (c)). 

Concretely, assuming that the parameter in the 
combined model eq. (14) a t  the reference equilibrium 
point, is changed as: 

A;'=A; ( J + A ~ ) ,  B ~ = B : ,  ( I+A B )  ,F;'=F; ( I + A ~ ) ,  
(21) 

the stability condition can be expressed by the follow- 
ing inequality, using the weighting matrix W,. W, 
is used to evaluate the performance index while cal- 
culating the control input eq. (16) for the combined 
model eq. (14), that is: 

ApW;' + W;' + W;'AF 2 0 (22) 

where 

A,, == A B + B z A F B H ( I + A B )  
-B;+(A~AC;I + A ~ A C ; I A ~  + A C ; I A , ) ( H , T , T ) + .  (23) 

For this calculation, we utilized the theory in [12] with 
some modification. If the weighting matrix W, in 
(22) is symmetric, the condition of (22) can be refor- 
mulated: 

Sa = Re{XI,,in(ApW~l + W;' + W;'AF)} 2 0 . 

Using the above inequalities (22), (24), we can exam- 
ine the stability of the handling model eq. (14) for 
the uncertainty of the physical characteristics, and for 
the change of the handling points. In case when the 
handling points are changed, note that both the char- 
acteristics of the object and F r  are changed, respec- 
tively. 

(24) 

1. In case of the characteristics of the flexible object 

A: -+ A:', Bk -+ E?:, Fy -+ F ; .  (25) 

being changed: 

2. In case of the handling points being changed: 

AC;I ---f A:', Et; + I?:, a," + 3':' . (26) 

Figure 7: Change of the model and the haridling point  

Re-writing the matrix form as above, calculating 
eq. (23), and substituting eq. (23) into (22) or (24), 
the handling system for the flexible object becomes 
stable, if the condition forms (22) or (24) are satis- 
fied. 

6 Simulation 

We present simulation results of the proposed lian- 
dling system for a flexible object using a rigid dual- 
arm robot. We set the posture of two robots as refer- 
ence considering the bending of the flexible object as 
zero. Thus we set the static control input U* as the 
value obtained froin the condition that the bending 
of the flexible object is zero. To understand the sta- 
bility and the robustness of our handling system, we 
examine the bending displacement of the object in y- 
axis, while holding the bending in z-axis to zero. This 
we do because the parameters of the stability and ro- 
bustness conditions increase and the analysis becomes 
more complex than that in l -D space. A simulation 
study has been carried out for the combined model 
eq. (14), for two different reference postures: (A) when 
both the bending displacement of the flexible object 
and each of the joint angles are equal to zero, and (B) 
both the bending displacement of the flexible object 
and the joint velocity of each robot equal to  zero. It is 
possible to control the flexible object using the control 
input Pa,  in the vicinity of the equilibrium point and 
the static control input U; a t  the equilibrium point. 
The dynamic behavior of the combined model eq. (14) 
is computed by the fourth order Runge-Kutta method. 

Figure 8 shows the stability of the combined 
model eq. (14) for the parameter change of the flexi- 
ble object when the robot has been controlled by the 
only static equilibrium control input. The value of 
S, in eq. (15) is plotted in Figure 8. In Figure 8, the 
area in which the value of S, is positive, is stable for 
the parameter change of the object a t  the equilibrium 
point. On the contrary, if the value of S,, is negative, 
the combined model eq. (14) is unstable. The part in 
which the value of S, is zero stands for case when the 
combined model eq. (14) has vibratory characteristics. 
The dashed line stands for the characteristics of the 
object when the control input eq. (16) is applied to 
the combined model eq. (14). 

Figures 9, 10 show the responses of the combined 
model eq. (14) when the characteristics of the object 
are changed. Figure 9 shows the bending displacement 
of the object when the object is stable (in tlie case of 
eq. (15) being satisfied. and /LA,, = 0.80 [Ns/in] in 
Figure 8). Figure 10 shows the bending displacement 
when the object is unstable (in the case of er4. (15) 
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being not satisfied, and / / A ,  = 0.10 [Xs/m] in Fig- 
ure 8). Figure 10 shows that the vibration has been 
also generated. 

Figure 11 shows the bending displacement of the 
object when the control input eq. (16) is applied to 
the combined model eq .  (14). At that time, Figure 12 
shows the responses of the joint angles of each robot 
(eq. (1)). Figure 13 shows the static control input 
U: at the equilibrium point (as shown by straight 
lines), and the control input Au,,, in the vicinity of 
the equilibrium point (as shown by curved lines). 

Figure 14 shows the responses of the bending dis- 
placement at the intermediate points Ay2, 3 = 
0.25L, 0.5015, 0.75L, where L stands for the link 
length. We can see that the stabilization is achieved 
with LQR robustness. 

Figure 15 shows the bending displacement of the 
object when the regulated static control input U: is 
also applied to the combined model eq. (14) to  com- 
pensate the steady-positional-state error. in the period 
from 1.0 [SI to 1.5 [SI. At that time, Figure 16 shows 
the responses of the joint angle of each robot (eq. (1)). 

Next, we examine the robustness of the controller 
eq. (16). Figure 17 shows the stability of the combined 
model eq. (14) controlled by eq. (16) in the vicinity of 
the nominal characteristics (pA, = 0.15 [Ns/m]) of 
the flexible ohject. The value of in (24) is plot- 
ted in Figure 17. If the area in which the value of 
Sg is positive, then the closed loop of the combined 
model eq. (14) is stable, while when the value is nega- 
tive, then the combined model is unstable. From Fig- 
ure 17, we can see that the stable areais 0.14 [Ns/m] < 
/ !Ap  5 0.165 [Ns/m]. Figures 18, 19 are the responses 
of the bending displacement of the object at the han- 
dling point in the neighborhood of the stability limita- 
tion. Figure 18 shows the responses in the stable side 
(pA, = 0.145 [Ns/m]), Figure 19 shows the responses 
in the unstable side ([LA,, = 0.13 [Ns/m]). 

Figures 20 N 23 show the stability of the combined 
model eq. (14) when each of the handling points are 
changed. Figure 20 shows the stability of the com- 
bined model ey. (14) for the change of the handling 
point IR at right side, using the controller eq. (16) 
derived for the handling point z~ = 0.05~5 [in], ZR = 
0.95L [m]. Figure 21 shows an enlargement at the sta- 
bility limitation in Figure 20. M'e can see that the sta- 
bility area is 0.92L [in] 5 z 5 0.98L [m]. Figures 22. 
23 show the responses of the bending displacement 
at the handling point in the neighborhood of the sta- 
bility limitation. Figure 22 shows the responses of 
the bending displacement when the value Sg is in the 
stable area (x = 0.93L [m]), while Figure 23 shows 

the responses when the values of the combined model 
eq. (14) is in the unstable area (z = 0.91L [in]). 

Figures 24, 26 and 28 show the situations of the 
handling of the flexible object by the dual-arm robot, 
in which the damping force coefficient p of the object 
is changed. Both robots are being fixed in the posi- 
tions (0,O) and (5,O). Figures 25, 27 and 29 show the 
trajectory of some points on the object. Figures 24, 
2.5 show the vibration control of the object in narrow 
space. Figures 26, 27 show the situation of position 
control of halidling points when the robots move in 
narrow space. Figures 28, 29 show the deformation 
control in large space and in the case when the physical 
parameter p is changed. In Figure 28, since the inter- 
nal force in eq. (7) exceeds the value (max A, = 10.0) 
decided in advance, the hands of the dual-arm robot 
are separated from the object, in the middle of the 
handling. 

7 Conclusions 
We have proposed a handling system for a flexible 

object, that  is changing its form transforming in 2- 
D space, using rigid arm robots. For this strategy, we 
have constituted the combined model which consists of 
t h r  robots and the flexible object to  make the whole 
handling system stable. We have also designed the 
controller to  satisfy the stability of the handling sys- 
tem, and have analyzed the stability of the controller 
at the intermediate points of the flexible object. Fur- 
thermore, we have found the robust handling condi- 
tion. In the numerical simulation, we have recognized 
that our handling system can be applied for position 
control of the flexible object by the rigid robots. 

In our future work, we would like to  find the limi- 
tation of the handling tasks for the flexible object by 
the robot, mathematically. 

In future, we plan also to have experiments. 
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Figure 8: Stability bounds. 
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robot. 
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Figure 14: Responses a t  the 
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Figure 9: Bending displace- 
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Figure 11: Bending displace- 
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Figure 13: Control input in 
the vicinity of the equilibrium 
point. 
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Figure 18: Bending displace- 
ment. 
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Figure 24: Situation of the Figure 25: Trajectory of the 
handling. ( p  = 1.00). object. ( p  = 1 BO). 
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Figure 26: Situation of the Figure 27: Trajectory of the 
handling. ( p  = 1.00). object. ( p  = 1.00). 
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Figure 28: Situatiort of the Figure 29: Trajectory of the 
handling. ( / L  = 10.00). object. ( p  = 10.00). 
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