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Abstract 

In th is  paper, we  deal w i th  the handling of a vibrat- 
ing  flexible object by a rigid dual -arm robot. Each  a r m  
consists of two  links and a n  end-egector.  T h e  a i m  of 
th i s  work is t o  realize pos i t ion  control of the  flexible ob- 
jec t  while suppressing its vibration. In particular, the 
problem taken  u p  here as about the control s y s t em de- 
s ign  t o  realize the active handling of th,e flexible object. 
For this purpose,  we  propose a model f o r  both robot and 
the object in the connected posit ion so as  to  guarantee 
the whole handling system’s stability. W e  also express 
a n e w  mathemat ica l  modeling of the flexible object us -  
ing model reduction theory in the same  connected po-  
s i t ion .  T h e  model while the robot und the object are 
in contact, i s  derived by the posit ional requirements 
a t  the han)dling poin t .  Nex t ,  we  conszder the design 
of controller t o  sa t i s fy  the constraint condition at the 
static equilibrium poin t .  Designing of the combined 
s y s t e m  consisting of the robot and the object i s  useful 
for  the  analysis of whole handling system’s stability. 

1 Introduction 

The study of handling of the flexible object using a 
single-arm manipulator has been done (Arai et a1 [l] 
and Zheng et a1 [ 2 ] ) .  The purpose of their research 
is to  devise the position control strategy for insertion 
of the flexible bar into a hole. On the other hand, 
also the study of Coordinated control of the rigid ob- 
ject using the rigid dual-arm robot has been already 
done (Uchiyama et a1 [ 3 ] ) .  They have given theoretical 
derivation of workspace coordinates for the dual-arm 
robot handling the rigid object. Recently, the study 
of coordinated control of the flexible object using the 
rigid dual-arm robot has started. Svinin et a1 [4] have 
applied the geometrical analysis to perform the po- 
sition control and vibration suppression of the flexi- 
ble object, and in these researches, the flexible object 
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consists of lumped masses and springs. While in this 
paper. we consider the object to be a flexible beam. 

The problem addressed in this paper is shown in 
Figure 1. We consider both the robot and the object 
together as the entire system, and make a mathemat- 
ical model for the combined system. This model de- 
rives from the positional and velocity considerations 
in the holding position. For the combined system’s 
stability, we need to understand both the robot sys- 
tem’s stability, and the mutual relationship between 
the robot system’s stability and the full assembly sys- 
tem’s stability. If the object’s parameters are larger 
than the robot‘s one, it is important to  consider the 
cooperative control for the combined system and make 
it possible that a micro robot can manipulate a macro 
object. For the control system design, we assume tha t  
the control input derived by the control law for the 
combined model can guarantee the stability of the 
dual-arm robot and the flexible object. So it is clear 
that  the stabilization problem for the combined sys- 
tem is not the same as the stabilization of either the 
object or the dual-arm robot. We also regard the con- 
troller design from the point of view of the handling 
characteristics at the static equilibrium point, as a co- 
operative handling system design. 

A brief summary of our results and the organiza- 
tion of the paper is as follows: In Section 2, we note 
the formulation of our study. In Section 3, we present 
the robot’s equation of motion and the modeling of 
the object. Section 4 gives the modeling of the han- 
dling system. Section 5 gives the control scheme for 
the combined model presented in Section 4. Section 6 
gives the simulation results of the proposed handling 
system design. Finally, in Section 7 ,  the conclusions 
of this work are given. 

2 Problem formulation 

The dual-arm robot and the object move in the 
same plane. Suppose that robot can observe the vi- 
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4 
Figure 1:  Situation of the dual-arm robot and the flexible object in 
contact with each other. 

brating object and the object can be expressed by its 
dynamic characteristics. Parameters of the dual-arm 
robot and the object are shown in Figure 1. 

3 Kinematics and dynamics 

3.1 Robot's equation of motion 

Using Lagrange's formulation, the dual-arm robot's 
equations of motion are written as follows: 

JL(@,)&, + C L ( O L ,  e , )  + D 9 L  + P L ( O L )  = T L  
(1) 

~ ~ ( o ~ ) e ~  + cR(eR, e,) + D ~ &  + PR(eR) = T~ 

(2) 
where o L , R  E R~~~ are the joint angle vectors. 
J L , R  E R3x3 are the inertial force coefficient ma- 
trices. C L  R E s~~~ are centrifugal force terms. 
DL,R E dX3 are the damping frictional force co- 
efficients. PL,R  E ?R3'l are the gravity terms, and 
T ~ , ~  E R3x1 are the torque input vectors. The sym- 
bols L and R represent the left arm and the right arm. 

3.2 Modeling of the object 

We choose the object to be a flexible beam. While 
handling the object by using the dual-arm manipula- 
tor, we assume that both ends of the beam are free, 
and control the both arms to suppress its vibration. 

3.2.1 The state-space description of the 
fundamental equation 

where wj(xj, t )  is the bending displacement a t  .?: = xj, 
sb is the cross-sectional-area of the beam, Eb it's ver- 
tical elastic coefficient, P b  is density, E; the damping 
coefficient, I,b the area moment of inertia; &(xu<, t )  is 
the force input at 2 = xuc, TbC(xUC,t) is the moment 
input at x = xu<, q i ( t )  is an unknown function, +i(x)  
is a mode function, 6 is the delta function, xj is the 
measured position (handling position), Lb is the beam 
length, and I! is time. i stands for order of mode, and 
j stands for the number of sensor. 

The mode function and the boundary conditions of 
the free ends of beam are given by: 

cosh (:%) + cos (2) 
@(z) = -- 

cosh(k;) -  COS(^^) 

sinh (F) + sin (E) 
sinh(k;) - sin(1ci) 

- 

Cbj i=  [ 4i (Xj) 0 ] E %1x2 . 

3.2.2 The state-space transformation of 
the flexible object to get the bound- 
ary conditions 

In this section, we describe the state-space traiisfor- 
niation of thie object. Beam's equations (7)  are manip- 
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d a t e d  with model reduction theory to  derive the con- 
straint condition in the handling point. The control 
theory for the linear finite dimensional system can- 
not be applied to  the distributed-parameter system. 
If the original system is approximated by some lower 
order modes neglecting the higher order modes, the 
control system may generate a spill over and unstabi- 
lize. So we reduce the original system using the model 
reduction theory [5 ]  considering the stabilization for 
the elastic vibration of the system, which can also be 
considered as the stability of the reduced system in- 
spite of its modeling errors. In the holding position, 
to  combine the relationship of the robot's and the ob- 
ject's state-space, we need to change the state-space 
of the object from unknown function to  the bending 
displacement. To rearrange the state-space equations 
with respect to same physical property in the vec- 
tor form is useful for the analysis of the system, as 
the dynamic differential equations have also the static 
boundary conditions mixed. So we describe them as 
an assembly differential equation. The method is as 
follows: 

Let the state variable vector yt  be the state re- 
sponse of the system to  the input U! as: 

In the beam's state-space equations given as (7) ,  r (= 
2 j ) ,  imensional vector R b y r  is given as the h e a r  
combination of the state response generated by the 
impulse input ut. Let ybr be the new state variable 
for the reduced system. We apply the vector R b y ;  to 
the following reduced model: 

The error between the original model and the reduced 
model is given as follows: 

In the above equation (lo),  the system matrices of the 
reduced model are given as follows: 

which minimize the mean value of the state response 
by T linearly independent impulse inputs. wbc is the 
controllability Gramian matrix of eq. (7). Choose R b  

as follows: 

E i j p X 2 2  . ! I  (11) 

9 1 ( z 1 ) 1 2 X 2  * ' ' q52(21)12x2 

4 1 ( Z J ) 1 2 X 2  . * $ h 2 ( z 3 ) 1 2 X 2  

R b = [  t 

The state variables (unknown function q 2 ( t ) )  of the 
system (7) change to the state variables (sensor dis- 
placement G3(z3, t ) )  of the reduced model. This is 
desirable in the control system design, because the 
displacement detected by the sensors can be applied 
directly to the state feedback control. In other words, 
a new state-space is given by: 

T 
Y b r  = [G1(21,t) w*l(zl,t) . . .  Gj(ZJ,t) & 3 ( z 3 , t ) ]  

E W X 1  . (12) 

To get the precise reduced model, it is important to  se- 
lect appropriate values for the elements of R b ( 4 % ( z 3 ) )  

(handling position x3). 

3.2.3 An expression including the charac- 
teristics of the axial direction of the 
object 

We regard the flexible object as rigid in the hori- 
zontal (z) direction. The rigid body is usually acted 
directly by force and torque generated by the robot. 
Since the constraint conditions in each direction are 
independent of the other directions, there is no cor- 
relation between them, so we can combine both the 
equation of bending displacement and the one of rigid 
characteristics without considering the correlation in 
the both directions. 

The mass of the object is given by Mb = S&b. The 
formulation of balance of force f z i , ~  at the handling 
point in x direction is given by Mbxbo = - f z L  + f z ~ ,  
where xbo stands for the center of gravity. Transform- 
ing this equation into the first order differential equa- 
tion, we get 

where 

Next combining these with eq. (9) and eq. (13)' we get 
the equation which involves the characteristics in both 
z and ;v directions. As a result, a set of input functions 
from the joint is injected to  the corresponding output 
functions of the object. 
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Defining the input force and torque to  the object as 
f o L , R  = [ f 2 ~ , ~  f b 1 , 2  q 1 , 2  1'. The relationship be- 
tween the generalized forces and torques at the end ef- 
fectors and those at each of the joints is transferred by 
T L , R  = J a L , R  ( O L , R )  f o L , R ,  where J a ~ , ~  ( O L , R )  are 
the Jacobian matrices which stand for the relationship 
between O L , R  and Y L , R ,  and where y L , R  stand for the 
position-posture variables of the end-effector. We also 
assume the region of controllability as J a ~ , ~  ( 0 L , E ) ,  
are regular matrices. Consequently, the equation of 
the object is given by: 

T 

z o b  = A o b Z o b  + BobUob (14) 

where 
T ~ ( 2 + r ) x 1  

z o b =  [ Z F d  ?/E ] E T  
uob = [ Ar; A r s  ] E 41(3+3)x1 
Aob = block diag [ A b d ,  Abr ] E !R2(2+')x(2+') 

Bob = 

I 01 x3 01 X 3  

[ - M C ~ ;  o 0 IJ;; (e,) [ M C ~  j o 0 1 ~ ; :  (e,) 
-------i---------------------------~------------------ 

[ O r x l  B b T ~ ] J ; :  ( 0 ~ ) :  [ O r x l  B b r ~ ] J ; z  ( O R )  
[ B o b L  ; ; BobR ] E ' ~ J $ ~ + ' ) ~ ( ~ + ~ )  

[ 
and for the sake of convenience, T L , R  is changed to  

A ~ L , R .  

4 Handling model 

4.1 Combined model's equation 

In this section, we consider the constitution of the 
full assembly system including the dual-arm robot and 
the object while satisfying the positional boundary 
conditions at  the handling point. Transforming eq. (1) 
and eq. (2) into first order differential equations, and 
combining these with eq. (14), we get 

A ,  = block diag [ A L ,  Aob, An] E iRoaXos 

r B~ i 0 6 x 3  1 

WL,R = 

- 
U, is the joint torque vector a t  the eqnilibrium point 

when the bending displacement is zero, where as the 
elements of vector U ,  are given by: 

T L , R  = TL,R + ATL,R (16) 
where 
- 
T L , R  = .PL,R ( e L , R )  

+ 'JaL, ]?  ( ~ L , R )  [ 0 Y L , R ~ V ~  0 1' 
(0 < P L , R  < 1: P L  + Pn = 1) . 

~ L , R  is the force distribution coefficient to  sustain the 
mass of the object by each manipulator. If the ob- 
ject is uniform in density and its cross-sectional-area 
is constant then the center of gravity is in the cen- 
ter of the object resulting ~ L , R  t o  be chosen as 1/2.  
os and ou respectively stand for the dimensions of 
the state-space and the input vect,or for the combined 
model. Defining the positional c0nstraint.s to  combine 
the equations of the dual-manipulators with t>hat of 
the object: 

f , ( x m )  COIL ( f c l ,  fc2 ,  . ' . ,  f c o ,  ) = o E ~~c~~ . 
(17) 

0, < 0, (18) 

Next, an ineq,uality equation: 

is a necessary condition for the existence of the unob- 
servable space capable of setting all the poles of the 
combined moldel. The state-space equation of the com- 
bined system with the boundary conditions is given 
by: 

km = Anz(%)% + B m ( 2 m ) U m  + W n a ( Z m )  

+ c ( Z m  )X(19) 

where F c ( x m )  = af,(~,)/az, E X o c x o e ,  and X is 
the unknown multiplier vector. Suppose eq. (19) exists 
when the following condition is satisfied: 

r a n k ( F ,  ( zm) )  = 0, . (20) 
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4.2 Design of the controller satisfying the 
boundary conditions 

For a reference posture of the dual-arm robot, de- 
fine the equilibrium point as x, = x h  that satisfies 
the boundary condition f , ( x m )  = 0. All the sys- 
tem matrices of eq. (19) are time-variant. Define the 
notation of the system matrices and vectors at the 
reference equilibrium point as 'V. Assume that the 
following conditions can be held at the reference equi- 
librium point: 

o ~ , ~  * *  = o ~ , ~  .. * = 03x1 , yir O V X l ,  X i d  = 02x1 

When the constraint conditions have been held, 
FEXm = Oosxl  can be satisfied. Consequently, the 
reference multiplier vector A* is given by: 

A* = -F;+ ( B ; ~ ;  + wg) [ A; A; . . .  A : ~  1' . 
(21) 

Let Ft+ be the Moore-Penrose inverse of F,", and ex- 
ists if and only if eq. (20) holds. Paying the atten- 
tion tha t  the first term of eq. (19) equals a zero vec- 
tor, the reference constraint force A* is derived. Next, 
the state-space expression separating the part of static 
equilibrium point and that of the error is given by: 

X; + AXm = (A; + A A ,  ( A X , ) )  ( x ;  + AX,)  
+ (Bh  + A B ,  (Ax,))  ( U ;  + Au,) - + W h  (.X +Ax, ,  um) 
+ FxT (A*  + AA) + FTAx, ( 2 2 )  

where 
F ;  = 

Setting A; + AA,(Ax,)  Z Ah and BL + 
AB,, (Ax,)  E B:n , the error equation in the vicin- 
ity of the equilibrium point is given by: 

 AX^, = A Z A X ,  + B ; A ~ ,  + F ; ~ A A  (23) 

where_ 
A ,  = block diag [ A;, Aob, AX ] + F l  , 

and where 

1 
AY,R = 
r 

Assume that (A;,  BL) is controllable and 
rank ( B h )  = 0,. When the constraint conditions 

hold, FFAx, = FZAX, = O O s x l  can be satisfied. 
So the constraint force in the vicinity of the reference 
equilibrium point is given by: 

AX = -F,"+(AzAx,  + B:,Aum) . (24) 

Substituting eq. (24) into eq. (23), the error equation 
of the combined model can be computed by: 

AX, = FTAzAx, + F:B:,Au, (25) 

where F r  = I o a x o s  -F:TF:+ 2 0, which is a positive 
seinidefinite matrix. If, for example, both robot and 
the object are already stabilized with gravity compen- 
sators etc. ,  we can say that the stability of the com- 
bined system is guaranteed. 

5 Control method for the handling sys- 
tem 

5.1 The coordinates transformation 

The necessary condition to  realize the handling is 
to satisfy the constraint condition in the equilibrium 
position. For this purpose, we consider the decomposi- 
tion of the state-space mode in eq. (25), transforming 
the state-space using T, ,  as Ax,  = T,AE,, then 
the transformed equation is given by: 

A& = T:F;A;T,AS, + T : F ; B ; A ~ ,  
h h 

E A,AZm + B,Au, (26) 

where AS, constitutes the unobservable space S,, 
and its complement Spa. S,, is the space capable of 
constraining the dual-arm robot and the object. In 
eq. (26), the partitioning space can be represented as: 

(27) 

where AB,, E Rocxl and ASmo_ E Rfi(o"-oc)xl . If 
(A", B;)  is controllable, then (Amc,  gnL,-) consti- 
tutes the controllable space Sp,. If the rank of the 
above condition is 0, then the conibined system has 
0, - 0, - 0, uncontrollable poles. If any pole in the 
combined system is unstable, the constraint condition 
cannot be held, in consequence its stabilization re- 
quires an additional controller. If the unstable pole 
exists in space S,, and the constraint condition has 
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not been satisfied in the beginning, the stability of 
space S,, has to overcome to stabilize all state-space 
in eqs. (25), (26), and (27). In the formulation of our 
study, since the dual-arm robot handles the object at 
the initial time, the boundary condition has already 
held, so we don't have to consider the stability of SPu. 
Realization of the cooperative control is possible by 
stabilizing S,, space. 

5.2 Stabilization at the equilibrium point 

The state-space equation corresponding to control- 
lability space s,, in eq. (27) can be written in the 
following form: 

h h 

A$,,,, = A,,ASmo + B,,Au, . (28) 

To stabilize the system presented in above equation, 
we apply the LQR theory to minimize the following 
pcrforinance inclex: 

3 = lm ( A Z ~ , , W ~ A ~ ~ ~  + A ~ ; W , A ~ ,  ) dt  
(29) 

where W 0 -  > O ( o e - o c ) X ( o s - O c )  and W , ,  > O O ~ x o ~  are 
the weighting matrices. Suppose that (W;", &,) 
is observable. Amc is a positive definite solution of 
Riccati equation: 

- T  h h - T  
A~~~A7,~c+A,cA~,~-Am,BmcW~' B,,Amc+Wz=O . 

(30) 
The optiinal control input for the error equation ( 2 5 ) .  
in tlie vicinity of the equilibrium point, is given by: 

It is possible to  control the flexible object using the 
control input Au, and the static control input U ;  at 
the ecluilibrium point. 

5.3 Stabilization at the intermediate 
point of the object 

Using the control input (31), we can also examine 
the bending displacement response at the intermedi- 
ate point of the object and can conclude whether the 
vibrations can be suppressed or not. Defining a new 
state-space Axm,  of the combined model considering 
the bending displacement at the intermediate point in 
the object. Giving the state-space relationship be- 
tween Ax,  and Ax,,, as Ax,, = T,Ax,,. The 

expanded error equation of the combined model a t  the 
reference equilibrium point becomes: 

AX,, = F ~ , A ~ , A x , , + F ~ , B k , A u , .  ( 3 2 )  

The closed loop system. when the control input (31) 
is applied to the system (32) is given as follows: 

A&,, = 1 ~ , " , ( A ~ , + B k , H T ~ T , ) A x m ,  . ( 3 3 )  

Note that FY, is a symmetric and positive semidefi- 
nite matrix, and its eigenvalues are 0 or 1. The neces- 
sary condition to satisfy the stability at the interme- 
diate point cif the object is given by: 

Re{X,(Az, + Bk,HT:T,)} I 0 ( V i ) . (34) 

6 SimuLation example 

To illustrate the performance of the proposed han- 
dling system desiign, we present a simulation result. 
The parameters of the dual-arm robot and tlw ob- 
ject used in the simulation are presented in Table 1 
and Table 2 respectively. k represents the number of 
link. The initial values of bending displacement and 
the initial posture of the dual-arm robot are shown in 
Table 3 .  The position of the handling point is shown in 
Table 4. We set the initial posture of the dual-arm 
robot as reference considering the bending displace- 
ment as zero. Thus, we set the static torque input 
U &  equal to  E,. A simulation study has been carried 
out for the combined model (15) with the controller 
(31) derived by the error system (25), and the static 
input U ; .  For the following simulation, reference in- 
put is a unit step function. The dynamic behavior of 

Table 11: Link parameters of tlie dual-arm robot. 

'Table 2:  Parameters of the object. 

F r b  E 1 Nm'] E - I  ["I2.] I p j S j [ k p / m ]  I L j [ m ]  I M j [ k g ]  

r I  * I * I  4 1  1 0  

Table 3:  Initial conditions of the robot and t,he object 

Table 4: Handling points 
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the combined system is computed by the fourth order 
Runge-Kutta method. 

Figure 2 shows the responses of the bending dis- 
placement of the object at the handling point when 
the robot handles the object. At that time, Figure 3 
shows the responses of the joint angle of each robot, 
and Figure 4 shows the control input in the vicinity 
of the equilibrium point. Figure 5 shows the response 
of the bending displacement when the characteristics 
of the object are changed to  PbSb = 0.002/7r from 
PbSb = 0 . 0 2 1 ~ .  w e  can see that the controllability of 
the object depends upon its density. Figure 6 shows 
the responses of the bending displacement when each 
of the handling points change to  0.30Lb and 0.70Lb 
from o.ojLb and 0.95&, respectively. As sensor is 
mounted on each end-effector, changing of the han- 
dling point depends upon the dynamics of the ob- 
ject. Next, we examine the robustness of the con- 
troller. Figure 7 shows the responses of the bend- 
ing displacement. Let the controller designed with 
PbSb = 0.02/1r, be applied to the combined system 
with PbSb = o.o1/Ir. We can see that the conver- 
gence velocity of the response curves is slower than 
tha t  when the control input is applied to the nominal 
combined system, but stabilization is accomplished. 
Figure 8 shows the responses of the bending displace- 
ment at each handling point XI, 2 = O.ojLb, 0.95Lb 
using the controller derived for the handling points 
5 1 ,  2 = O.O7Lb, 0.93Lb. We can see that stabilization 
is achieved even though worse than that acheived with 
nominal control input. Figure 9 shows the responses 
of the bending displacement G3, 4 ,  5 a t  the intermedi- 
ate handling points 23, 4, 5 = 0.25Lb, 0.50Lb, 0.75Lb. 
We can see that stabilization is achieved with LQR 
robust ness. 

7 Conclusions 
We have proposed a handling method of a flexible 

object using a rigid dual-arm robot. We regard both 
the arms and the object together as the entire sys- 
tem and use the positional constraints as the bound- 
ary conditions. We have also designed the position 
control system to  make the entire system stable, and 
thus have realized the handling of the object using the 
dual-arm robot. The proposed handling method can 
also be accomplished for vibration suppression at the 
intermediate points on the object. 
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Figure 4 :  Control input in 
the vicinity of the equilibrium 
point. 
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Figure 6: Responses of the ob- 
ject when the handling points 
are changed. 
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Figure 8 :  Responses of the ob- 
ject when the handling points 
are changed, using nominal 
controller. 
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