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Abstract 

For free motions, vibration suppression of flexible ma- 
nipulators has been one of the hottest research topics. 
However, for constrained motions, a little effort has 
been devoted for  vibration suppression control. Us- 
ing the dependency of elastic deflections of links on 
contact force under static conditions, vibrations for 
constrained planar two-link flexible manipulators have 
been suppressed successfully by controlling the contact 
force. However, for constrained spatial multi-link flex- 
ible manipulators, the vibrations cannot be suppressed 
by only controlling the contact force. So, the aim of 
this paper is to clarify the vibration mechanism of a 
constrained, multi-DOF, flexible manipulator and to 
devise the suppression method. W e  apply a concise 
hybrid position/force control scheme to control a flex- 
ible manipulator modeled by lumped-parameter model- 
ing method. Finally, a comparison between simulation 
and experimental results is presented to show the per- 
formance of our method. 

1. Introduction 
The effect of flexibility on trajectory tracking perfor- 
mance and compensation of structural compliance has 
been the subject of a number of publications for ma- 
nipulator's non-contact task execution [l]. But the 
same for contact task execution is rarely found. Re- 
cently, some researchers have started the study of po- 
sition/force control of flexible manipulators, and some 
experiments have been conducted. These researches 
are mainly for constrained planar flexible manipula- 
tors with one or two elastic links, for their modeling 
and stability analysis [2]-[6]. However, so far only a 
few attempts have been made for positionfforce con- 
trol of multi-DOF, spatial constrained flexible manip- 
ulators [7]. 

For free motions of end-effector, vibration suppres- 

sion of flexible manipulators has been one of the 
hottest research topics, but for constrained motions, 
a little work has been done on vibration suppression 
control. We have already pointed out that application 
of vibration control scheme is not necessary due to de- 
pendency of elastic deflections of links on the contact 
force. So, vibrations for a constrained planar two-link 
flexible manipulator have been successfully suppressed 
by controlling the contact force 141. 

However, for constrained spatial multi-link flexible 
manipulators, the vibrations cannot be suppressed by 
only controlling the contact force. So, for such ma- 
nipulators, the vibration suppression control scheme 
is also necessary to be included in the control loop. 

In this paper, we aim at clarifying the vibration 
mechanism and proposing the vibration suppression 
control scheme for a constrained, multi-DOF, flexi- 
ble manipulator. We apply Hamilton's principle and 
the lumped-parameter modeling method [8] to estab- 
lish the dynamic equations and the relations of elas- 
tic deflections of links with contact force. A precise 
simulation model is also developed using the commer- 
cial dynamic analysis software package ADAMSTM . 
Finally, experiments and simulations are performed, 
and a comparison of the results is given to show the 
performance of our method. 

2. Dynamic Modeling of Constrained 

In this paper, we assume a flexible manipulator de- 
scribed by the generalized coordinates q 

Flexible Manipulators 

where, 8 E Rn is the vector of the joint angles and 
e E R" is the vector of the elastic deflections. We 
further assume that this flexible manipulator is set to 
an environmental constraint which is only rheonomous 
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and can be expressed in the following form 

where p : Snfm -+ 8' is a smooth constraint function, 
and t is time. Using a lumped-parameter model of the 
flexible manipulator, the equations of motion can be 
derived based on the Hamilton's principle, and can be 
written as 

0 = M12(q)fi + Mzz(Q)E + h ( q ,  4) 
+ ~ 2 2 e  + s ~ ( Q )  + j : e ( q ) X ,  ( 3 )  

where Mll E X n x n ,  M12 E En'", M z ~  E X m X n  
and Mzz E WX" are submatrices of the inertia ma- 
trix. hl and h2 are vectors of centrifugal and Coriolis 
forces, g 1  and g 2  are gravity vectors, K 2 2  E X m x m  is 
stiffness matrix, X E R1 is the Lagrange multiplier, j , ,  
and j V e  are constraint Jacobian matrices, and T E Sn 
is the joint torque vector. The equations of motion 
have two distinct parts, one is related to  the overall 
motion of the system (Eq. (2)), while the other is re- 
lated to the elastic motion only (Eq. (3)). 

Here, we use the Jacobian matrix for the above 
rheonomous constraint as 

(4) 

where j, = [ j e  j , ]  is the conventional Jacobian matrix 
of the manipulator, and p represents the Cartesian 
coordinates and the three Euler angles for end-effector. 
The Lagrange multiplier can be represented as 

where f n  is the component of the contact force normal 
to the constraint environment. 

In order to simplify Eq. (2) and Eq. ( 3 ) ,  we make 
the following assumptions: 

0 The centrifugal and Coriolis terms are small 
enough to be ignored. 

0 The influence of elastic deflections e is small 
enough to approximate Mij(q)  and g i j ( q )  as 
Mij(8)  and gi,(e) (i = 1 , 2 ; j  = 1,2) respec- 
tively. 

Then, Eqs. (2) and ( 3 )  can be rewritten in the follow- 
ing compact form 

LT = M ( e ) i j  + K q  + g(e)  +j:(q)x, (6 )  

where 

om,, O n x m  K 2 2  I L =  [ I n  1 '  K =  [ O n X n  
O m x n  

3. Vibration Mechanism 
For a particular constrained motion of a spatial flex- 
ible manipulator, the joints which have their axis of 
rotation normal to  the constraint environment, can 
get their constraint Jacobian of j,op ( p  = 1,2 . - .n )  
close to zero for constrained workspace, that is, the 
influence of contact force ( j ,epX)  for those joints al- 
most disappears. Thus, vibrations due to motions of 
those particular joints take no influence of contact 
force, that is, j,,,X of Eq. (3) is also close to  zero 
( q  = 1,2 . - -m) .  Since X is not zero, the only thing 
which can be approximated to zero is the Jacobian for 
deflection constraint j,,,. 

Therefore, Eq. ( 6 )  can be decomposed into two sep- 
arate equations as follows 

0 

0 

In 

Eq. (7) gives the dynamics of subsystem which 
observes an influence of constraint (contact 
force, in other words) on its movements and de- 
flections. This is named as "Constrained motion 
subsystem " [subscript e].  
Eq. (8) gives the dynamics of subsystem which 
observes no influence of contact force on its 
movements and deflections. This is named as 
"Free motion subsystem "[subscript f]. 
the stationary condition (i.e., 8 = 8 = 0 and 

e = e = 0 ) ,  Equations (7) and (8) can be rewritten 
as 

where eof is the static deflection due to both gravity 
and contact force, while eoc is static deflection due to 
gravity only. Therefore we can conclude that 
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For constrained motion subsystem, vibration 
control scheme is not necessary due to depen- 
dency of elastic deflections of links on the con- 
tact force. 

0 For free motion subsystem, vibration control 
scheme is necessary as it has got its movements 
and deflections same as those for a free motion 
of end-effector. 

4. Hybrid Position/Force Control 

For a manipulator equipped with velocity feedback 
servo motors, the relationship between the velocity 
commands and the produced torques can be written 
as 

Scheme 

7 = GrKsp(Vrej - Kswbm) 

= A(8,,, - e) ,  (11) 

where 
G, : gear reduction ratios, 

K s ,  : voltage feedback gains, 
K,,  : voltage/velocity coefficients, 

8, = G,8 : angular velocities of motors, 
V,,f  : voltage velocity commands, 
O,,, : velocity commands, and 

A = Gr2 K s p  K , ,  : velocity feedback gains. 

The voltage velocity commands V,,f are computed 
by 

V r e f  = GrKswbcom, (12) 
and are used in the experiments. 
4.1. Vibration suppression 
Now, we propose a method to find the term be that 
suppresses the vibrations of the robot 191 [lo]. The 
effect of a stiff velocity servo loop on the equations . .  of 
motion (Eq. (2)) is to  transform the relation 0 = e,,,. 
Then, in Eq. (3), the acceleration can be considered as 
an input e ,  to the dynamics of deflections. Therefore, 
elastic motion of Eq. (8) can be written as 

M2zf(e)Aef + KzzfAef = -M2if(8)ee, (13) 

where 

Aef = e f  - eof = e f  - Kz$g2f. 

Suppose that we want to transform Eq. (13) into an 
ideal stable system 

Aef + K,Aef  + K,Aef  = 0, (14) 

where 

K ,  is a diagonal velocity gain matrix, 
K ,  is a diagonal position gain matrix. 

- Mzlf(8)6, = M22f (8 ) [ -KvAe: f  - K,Aef ]  

This can be accomplished if 

+ K22fAef. (15) 

To calculate a,, Mzl(0)  needs to  be inverted. Nev- 
ertheless this is only possible if the number of joint 
rotations is equal to the number of elastic deflections 
(n  = m). 

But as, generally, n < m, so an approximate solu- 
tion can be obtained using the Moore-Penrose pseu- 
doinverse to minimize the error in Eq. (15) 

a e  = ~ ~ ~ , ( e > ( ~ , , , ( e ) [ ~ , ~ e f  + ~ p ~ e f l  
- K22fAqae,). (16) 

If we consider only the inertial decoupling of Eq. (13), 
Eq. (16) can be transformed into the simplified law as 

a, = M;1f(O)M22f(O)[KwAe'f + K p A e f ] .  (17) 
Integrating it for a given 8 we can have 

t 

h e  = KepAef + K e z  Aef,  (18) 

where 

Kep(8) = ~zf i f ( e )M22 , (8 )Kw,  

Kei(8) = M,+,f(8)M22f(e)Kp. (19) 
4.2. Velocity command 
The approximate joint velocities for constrained mo- 
tion subsystem e,,, can be computed as 

@,,, = et + 6 ,  , 

bcom = e t  + b e ,  

(20) 

(21) 

and for free motion subsystem as 

where 8, is the joint velocity vector for positioning and 
bf  is an additional component for force control. The 
velocities et,  bf  and e, are respectively computed as 

8, = K,,Ae + K,i I' Ae, 

where I is the unit matrix, and n = - vv, is the 

unit vector normal to the constraints. nT, ( I  - nTn) 
define matrices which respectively select the directions 
for application of force and end-effectors motion. 

P P I  
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\Motor 1 
Joint 4#+ 

Force sensod 1 

Figure 1. Experimental robot with 2 links and 7 joints. 

5. Application of the Proposed Scheme 
To clarify the discussion, the constrained mo- 

tions of an experimental flexible manipulator ADAM 
(Aerospace Dual Arm Manipulator) are considered. 
ADAM has two arms, each of which consists of 2 elas- 
tic links and 7 rotory joints [ll]. In this paper, how- 
ever, only the left arm (Fig. l) is considered. The 
discussion is restricted to  motions of joints 1, 2, 4 
and 6 only while joint 6 always preserves an angle 
of ~ / 2  [rad], for end-effector with respect to the con- 
straint environment. The constraint is a vertical plane 
located at 0.375 [m] in the y direction from the robot's 
reference coordinates. So, the end-effector is con- 
strained in only the y direction, whereas it is free to  
move in the z - z plane. 

Experiments and simulations are performed. The 
results achieved by a precise model designed by 
the commercial dynamic analysis software package 
ADAMSTM, are compared with the experimental re- 
sults. 

5.1. Experimental setup 

Our experimental manipulator ADAM is driven by 
DC servo motors with velocity feedback control. The 
tip deflections of each link of this manipulator are com- 
puted from link's strains measured by strain gauges lo- 
cated at  the root of each link while a wrist force/torque 
sensor is used to measure the contact force at end- 
effector. The parameters of each link are presented in 
Table 1. 

Table 1. ADAM link parameters. 
Link 3 Link 5 

Length 0.5 m 0.5 m 
Elastic part 0.359 m 0.394 m 
Diameter 0.013 m 0.01 m 
Material SUP-6 SUP-6 

E1 288.1 Nm2 100.8 Nm2 
GJ  224.32 Nm2 78.54 Nm2 

Mass 0.7 kn 0.5 kn 

Figure 2. Lumped-parameter model of the experimen- 
tal manipulator ADAM. 

5.2. Modeling of ADAM 
The arm under consideration is modeled by lumped- 

masses and massless springs as shown in Fig. 2 [8]. 
The lumped masses (stations) are considered concen- 
trated at the tips of the respective links while the links 
themselves are considered as massless springs ( f ie lds)  
with elastic and torsional properties as E313, E515 
and G3 5 3  , G5 55, respectively. The joint angle vector 
8 and the link deflection vector e are: 

8 = [e, e2 (23) 

e = [Sy3 St3 Sy5 bz5IT. (24) 

where dY3, Sy5, Sz3 and bZ5 are elastic deflections along 
the y and z axes of links 3 and 5, respectively. 
5.3. A precise s imulat ion model 

A precise model of the ADAM robot is constructed 
by ADAMSTM. In this simulator, a finite-element 
method based on Timosenko beam theory is used as 
a modeling method for flexible structures. We con- 
sider our experimental manipulator as having 5 beam 
elements. A simple model of Coulomb friction is in- 
cluded in order to obtain a realistic simulation model 
reflecting the experimental conditions. When the end- 
effector velocities become -0.001 [m/s] and 0.001 [m/s], 
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Figure 3. ADAMSTM simulation model. 

friction forces become - p f n  [NI and p f n  [NI, respec- 
tively, where p is the friction constant. This friction 
model is recommended to be used for ADAMSTM. 

6. Experiments and Simulations 
The constraint equation can be written as 

For constraint workspace, j ,  of Eq. (4) for ADAM 
are given as follows and shown in Fig. 4. 

= [ j p p s l  jppe2 jp04  j p e i  jqpe2 &e3 j p e 4  1 .  
It can be noted that the horizontal motion of manip- 
ulator (61, b23, 1 5 ~ 5 )  is a free motion while the vertical 
motion (02, 03, Jr3, ~ 7 ~ ~ )  is constrained one. In Eqs. (7) 
and ( 8 ) ,  q c , T c , q f , T f  become 

In this section, we will study vibrations of the con- 
strained manipulator using simulation and experimen- 
tal results. The simulations and experiments are per- 
formed for the following cases; 

0 End-effector is moving in y direction without vi- 
bration suppression (Fig. 5),  

0 End-effector is moving in z direction without vi- 

0 End-effector is moving in z direction with vibra- 

For these simulations, Ksp of Eq. (11) is decided to 
be approximated to the one used in the experiments. 
The environmental stiffness and friction constants are 
taken as 10000 [N/m] and 0.2, respectively. The 
sampling time and the desired contact force are set 
as 10 [ms] and 10 [NI respectively. In the experi- 
ments and simulations, we set K t p  = 413[l/s], Kt, = 
0I3[l/s2], K f p  = 0.4[m], K f z  = O[m/s], K ,  = 013, 
K ,  = 0I3[l/s] for the first and the second cases, while 

K f ,  = O[m/s ] ,  K ,  = 3213, K ,  = 013[l/s] for the 
third case only. 

Fig. 5 shows the responses of experimental and sim- 
ulation results for the first case. In this case, the ve- 
locity command is given by Eq. (20) as it is the case 
of constrained motion subsystem. From Fig. 5 ,  we can 
see that the vibrations of end-effector are suppressed 
by controlling the contact force only. 

Next, let us study the free motion subsystem. Fig. 6 
shows the responses of experimental and simulation 
results for the second case. Using Eq. (20) for the 
velocity command of horizontal motion, it is clear that 
the vibrations cannot be suppressed by controlling the 
contact force only. It means that the vibrations in the 
direction of motion take no influence of contact force. 
So, such motions are like free motions of the system. 

Thus, the vibration suppression control loop is nec- 
essary to be included in the velocity command, ex- 
pressed in Eq. (21). Fig. 7 shows that the vibrations 
are successfully suppressed by including the vibration 
suppression control loop. In this case, velocity com- 
mands of joints 1 and 2 are given by Eq. (20) whereas 
the one for joint 4 is given by Eq. (21). So, the same ef- 
fect of vibration suppression can be achieved by using 
the velocity commands for all joints including vibra- 
tion suppression control loop. 

7. Conclusions 
The vibration mechanism and vibration suppression 
for constrained spatial flexible manipulators has been 
presented. A constrained spatial flexible manipulator 
system can be divided into constrained motion subsys- 
tem and free motion subsystem for a particular task 
execution, but there exists no free motion subsystem 
for a constrained planar manipulator. The concept of 
free and constrained motion subsystem seems to be 
interesting for an efficient task execution . 

The control scheme has been studied for a 2-link 7- 

bration suppression (Fig. 6), 

tion suppression (Fig. 7). 

Ktp = 413[1/~], Kt, = 0 1 3 [ 1 / ~ ~ ] ,  K f p  z= 0.4[m], 
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1 

1 

Figure 4. Constraint Jacobian. 

joint type manipulator. Experiments and  simulations 
have been conducted and their results show the effec- 
tiveness of the scheme. 
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Figure 5. End-effector is moving in 9 direction without vibration suppression. 
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Figure 6 .  End-effector is moving in z direction without vibration suppression. 
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Figure 7. End-effector is moving in z direction with vibration suppression. 
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