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Abstract 

I n  this paper, we discuss the force control of flex- 
ible manipulators. Since the force control of flexible 
manipulators with planar one or two links using the 
distributed-parameter modeling has been the subject of 
a considerable number of publications until now, so 
real t ime computations of the force control schemes are 
possible. But, application of those control schemes to 
multi-link spatial flexible manipulators is fairly compli- 
cated. I n  this paper, we apply a concise hybrid posi- 
tion/force control scheme to a flexible manipulator us- 
ing a lumped-parameter modeling. The Hamilton’s prin- 
ciple is applied to deriving the equations of motion and 
then, a state-space model is obtained b y  the Lagrange’s 
method. Finally, a comparison between simulation and 
experimental results is presented to show the perfor- 
mance of our method. 

1 Introduction 

Because of the rapid development in industrial au- 
tomation, high-speed and lightweight robots consuming 
less energy, are required. Moreover, in space applica- 
tions, these properties are specially demanded. So, be- 
cause of these requirements, in the past decade, a con- 
siderable number of researches have been devoted to  the 
flexible manipulators, especially their modeling, vibra- 
tion control, inverse kinematics and inverse dynamics. 
When a flexible manipulator is set to an environmen- 
tal constraint, not only these algorithms but also force 
control algorithm is necessary to  be implemented to  
complete the task. But so far, the publications about 
force control algorithms are not enough in number. 

The research on force control of rigid manipulators 
began as early as 1960’s but, the algorithm was system- 
ized over 1970’s to 1980’s. The approaches developed 
are mainly divided into hybrid position/force control 
schemes and impedance control schemes [l], [Z]. So, 
until now, force control of rigid manipulators has been 
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one of the hottest research topics, however, the same 
for flexible manipulators just began in 1985 by Fukuda 
[3]. Chiou and Shahinpoor have pointed out that the 
link flexibility is the main cause of dynamic instability. 
They have extended their research from planar one-link 
flexible manipulator to two-link manipulator, analyzing 
their stability by applying hybrid position/force contrlol 
schemes [4]. Matsuno and Yamamoto have addressed 
a quasi-static hybrid position/force control scheme anid 
dynamic hybrid position/force control scheme for a pla- 
nar two-DOF manipulator with flexible second link [ E ; ] .  
Kojima and Kawanabe have constructed the PIS coin- 
trol scheme which makes good use of the flexibility ‘of 
robots, as without using any force sensor, the feedback 
of strain gauges has been used to control the contact 
force [6]. For force control of flexible manipulators, the 
inverse kinematic task is an essence, and has been prso- 
posed by Svinin and Uchiyama [7]. 

The above-mentioned researches have been mainly 
realized for only planar one-link or two-link flexible ma- 
nipulators using distributed-parameter modeling. How- 
ever, due to the complexity of distributed-parameter 
modeling, no attempts have been made for multi- 
link, multi-DOF spatial flexible manipulators. In some 
multi-link spatial flexible manipulators, equations of 
motion depend upon arm’s configuration, and thus, 
real time computations are necessary, which are quite 
difficult and time consuming if distributed-parameter 
model is used, hence lumped-parameter model is effec- 
tive for such purpose because of their simplicity [8]. 

Our aim is to develop the model for a constrained 
multi-link, multi-DOF spatial flexible manipulato:cs, 
applying hybrid position/force control scheme to this 
model, and suppressing the vibrations in constrained 
conditions. 

The equations of motion are obtained by applying 
the Hamilton’s principle and the state-space model by 
the Lagrange’s method. This model is analyzed on 
MATLAB. In the second step, a precise simulation 
model is developed using ADAMSTM, which is a gen- 
eral purpose 3-dimensional analysis software. In orcler 
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to simplify the discussions, we take the case of a 2-link 
manipulator moving in a vertical plane only. 

Finally, experiments and simulations are performed, 
comparison of simulation results with experimental re- 
sults is given to show the performance of our method. 

2 Modeling o€ Constrained Flexible 
Manipulator 

2.1 Constraint equation 

The kinematic constraints stand for both noninte- 
grable nonholonomic and integrable holonomic con- 
straints. The holonomic constraints are further di- 
vided into time-independent sceleronomous, and time- 
dependent rheonomous constraints [SI]. In this paper, 
only rheonomous constraints are considered which can 
be written in the following form 

cp(q,t)  = 0 ,  (1) 
where cp E !R1 are the linearly independent constraint 
equations, t is time, and q are the generalized coordi- 
nates. 

2.2 Equations of motion 

By using lumped-parameter model of the flexible ma- 
nipulator, equations of motion can be derived by using 
Hamilton’s principle, and can be written as 

] [ : I  Mll(4 M12(q) 

M21 ( q )  M22(q) 

hl (Q, 4) 
[ ; I  = [ 

or in a compact form 

LT = M(q)ii + h(q, 4) + K q  + g ( 4 )  + .+, ( 3 )  
where 

q{ ] : generalized coordinates, 

8 E Xn are the joint rotations, 
e E !Rm are the the elastic deflections, 

7 ,  
M ( q )  : inertia matrix, 
h(q, q )  
K : stiffness matrix, 
g ( q )  : gravity vector, 

: joint torques vector (W), 

: vector of centrifugal and Coriolis forces, 

Jal6n and Bay0 have used the same constraint Jaco- 
bian matrix for both rheonomously and scleronomously 
constrained systems [9]. Therefore, here we can use Ja- 
cobian matrix for rheonomous constraints as 

= [ J p e  J p e  1 ,  (4) 
where J ,  = [JQ J e ]  is standard Jacobian matrix of 
the manipulator, and p represents the Cartesian coor- 
dinates and the three Euler angles for the end-effector. 
Lagrange multiplier can be presented as 

(5) 

where fn is the component of contact force normal to 
the constraints. 

In order to simplify Eqs. (2) and (3), we make the 
following assumptions: 

0 Only the slow motion is considered, and thus the 
centrifugal and Corioli’s forces can be neglected, 

h(q,4) = 0 ,  

0 The influence of elastic deflections e is supposed 
be small, and thus, 

M ( 0 ,  e )  7z M(W,  d e ,  e )  = d e ) .  

.. . 
In the stationary condition (i.e., 0 = 8 = 0 and e 
e = 0 ) :  Eq. (2) becomes 

where T O  are the static torques to  keep the arm in a 
configuration to balance the gravity and contact force, 
eo are the static deflections due to gravity and con- 
tact forces, and 60,  Xo are respectively the angles and 
the Lagrange multipliers for the static condition. In 
addition, A e  , Ar , A0 and AA can be respectively 
expressed as follows: 

AT = T - TO = 7 - (gl(O,) + J;@XO),  
Ae = e - eo = e + K ; . ( g 2 ( 6 0 )  + J F , A o ) ,  

: Jacobian matrix for constraints ( % R I X ( 7 L f m ) ) ,  

: vector of Lagrange multiplier (Rl), and 
J ,  

L : transformation matrix, AQ = e - e o ,  
x 

(7) 
T L =  [ c x n  E x ,  I . AX = A - & .  
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Figure 1: Experimental robot with 2 links and 7 joints. 

Incorporating Eq. (7) along with above assumptions 
into Eq. (2) ,  the compact form is achieved as 

L A r  = M(6)Aq + KAq + JFAA, ( 8 )  

where Aq = [ ABT neT 1' . The constraint en- 
vironment is modeled as a spring with a large spring 
constant, therefore Lagrange multiplier AA is given by 

AA = K,,,NAp 

= K,,,N(JeA@ + JeAe) ,  (9) 

where Ken,  are the environmental stiffnesses, Ap are 
the deflections of the constraints, n = are the 

unit vector normal to the constraints, and N = nTn. 

equations of motion can be written as 

IVPl 

Substituting Eq. (9) into Eq. (8), the approximated 

0 

or in a more compact form 

LAr = M(0)Aq  + K"Aq. (11) 

3 Simulations and Experiment 

To clarify the discussion, the motions of an exper- 
imental flexible manipulator ADAM (Aerospace Dual 

Table 1: ADAM link parameters. 
Link 3 Link 5 

Length 0.5 m 0.5 m 
Elastic part 0.359 m 0.394 m 

Diameter 0.013 m 0.01 m 
Material SUP-6 SUP-6 

E1 288.1 Nm2 100.8 Nm2 
Mass 0.7 kg 0.5 kg 

Arm Manipulator) are considered. ADAM has two 
arms and each arm consists of 2 elastic links and 7 ro- 
tary joints [lo]. In this paper, however, only the left 
arm of ADAM (Fig. 1) is considered. The discussion is 
restricted to only the vertical motion of joints 2, 4 and 
6 (65, 04, e,) while joint 6 always preserves an angle of 
n/2 [rad] with respect to  constraints. 

Based on the above model, two simulations are per- 
formed. The results, achieved by a precise model 
constructed by commercial dynamic analysis softwarle 
packages, are compared with experimental results. 

3.1 Experimental setup 

The experimental manipulator ADAM is driven by 
DC servo motors with hardware velocity control. Each 
of motors 1-3 has an optical encoder for sensing the joint 
angle and a tachometer for sensing the angular veloc- 
ity. None of the motors 4-7 has a tachometer, and thus, 
pulse signals generated by optical encoder are trans- 
lated into velocity signals through F/V (Frequency to 
Voltage) converter. 

The parameters of each link of ADAM are presented 
in Table 1. Strain gauges are used to measure the link 
vibrations while a force sensor is used to measure thle 
contact force a t  end-effector. 

3.2 A lumped-mass spring model 

The arm under consideration is modeled by lumped- 
masses and massless springs as shown in Fig. 2. Thie 
lumped masses are considered concentrated at  the tip 
of respective links while the links are considered as 
massless springs with elastic and torsional properties 
as E313, E515 and G3 J3, Gs Js ,  respectively. 

3.3 Control scheme 

We shall make use of a simple control scheme which 
represents our initial approach to the sophisticated con- 
trol problem. More details on the control, such as sta.- 
bility analysis, will be presented elsewhere. 
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Figure 2: Lumped-parameter model of the experimen- 
tal manipulator ADAM. 

As ADAM is equipped with the velocity feedback 
servo motors, so joint motion is commanded by joint 
velocity command, and therefore joint torque cannot be 
controlled directly. Eence, we assume the relationship 
between velocity command and the produced torque as 
follows 

= G,K,,(V,,f - KSvb,), 

= A(&,  - e), (12) 

where 
Gr : gear reduction ratios, 
K , ,  : voltage feedback gains, 
K,v : voltage/velocity coefficients, 
em = Gre  : angular velocities of motors, 
v,, f : voltage velocity commands, 
e, : velocity commands, and 
A = G,2K, ,K,v  : velocity feedback gains. 

Voltage velocity commands Vr,f  are computed by 

Vrcf = GrK,v 6,) (13) 
and are used in the experiments. 

As we can see, from Eq. ( 6 ) ,  that the elastic deflec- 
tion are dependent upon the contact forces when the 
manipulator moves slowly enough. So the vibration of 
manipulator can be suppressed by controlling the con- 
tact forces. The approximate joint velocities &, can be 
computed as follows 

s,=e,+e,,  (14) 

where et is the joint velocity vector for positioning while 
8 f  are the additional factor for force control. The ve- 
locities et and 8, are respectively computed as 

e t  = J i l ( I  - n T n ) K t p ( P d  - P I ,  

(15) 
1 T T  hf = A- ~ , n  K f p ( A d  - A),  

where I is unit matrix. nT, ( I  - nTn) define matrices 
which respectively select force and position directions. 
K t ,  is a proportional gain matrix for positioning while 
K f ,  is a proportional gain scalar for force control. 

From Eqs. (7) and (12) we have 

AT = A((6, - 6) - A-'(gl(&) + J ~ B X o ) } .  (16) 

If the velocity servo loop is sufficiently stiff, that is, the 
gains A are high, the term A-'(gl(e,) + J:oX,) can 
be neglected. Eq. (16) can be represented as follows 

Then, substituting Eq. (17) into Eq. (11) and taking 
into account the fact that  A b  = LtAq, the equations of 
motion of constrained flexible manipulator are obtained 
as 

M A q  + LALTAq + K*Aq = LAAe, .  (18) 

Eq. (18) can be transformed into the state space form 
as 

Eq. (19) can be cast into state, space equation form as 
follows 

AX = AAx + BA&,. (20) 

In the simulations, the discrete-time state equation cor- 
responding to  Eq. (20) is used in the following form 

where IC indicates the k-th interval of the sampling pro- 
cess, @ and p are the discrete matrices of A and B 
for a zero-order holder (ZOH). 

3.4 A precise model 

A precise model of the ADAM robot is constructed 
by ADAMSTM. ADAMSTM is a commercial software 
package for dynamic analysis of mechanical systems 
produced by Mechanical Dynamics, Inc. In this simula- 
tor, a finite-element method based on Timosenko beam 
theory is used as a modeling method for flexible struc- 
tures. To obtain a precise model, the elastic beam is 
divided into five pieces. 
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3.5 Results and discussion 

We present the experimental and simulations results 
for the case when end-effector is not moving, and when 
it is moving while applying force. The constraint is a 
vertical plane located at  0.375 [m] in the y direction 
from the robot’s reference coordinates. So, the end- 
effector is constrained in only the y direction, whereas 
it is free to move in the 5 - z plane. In the second case, 
end-effector moves with a velocity of 0.17 [m/s] and the 
desired contact force of 5 [NI. 

The responses of task motion and contact force a t  
the tip, as achieved by simulations and experiments, are 
shown in Fig. 3 and Fig. 4, respectively. In Fig. 3, 
Kt,  = diag[l 11 [rad/(m s)] and K,, = 0.2 [rad/(N s)], 
and in Fig. 4, K t ,  = diag[4 41 [rad/m s] and K f ,  = 0.4 
[rad/(N s)]. The sampling time is set as 10 [ms], and 
for these simulations, K,, of Eq. (12) is decided to be 
approximated to the experimental results, and the en- 
vironmental stiffness is taken as 5000 [N/m]. In Fig. 3 
and Fig. 4, “ADAMS” stands for ADAMS simulation 
software while “MATLAB” stands for MATLAB simu- 
lation software. 

Fig. 3 and Fig. 4 show that the presented control 
scheme, which does not consider the vibration control, 
is effective for constrained flexible manipulators mod- 
eled by lumped-parameter modeling method. In case 
of free motion of end-effector, the vibration suppres- 
sion is necessary for position control, however, in case 
of constrained motion of end-effector, elastic deflection 
of link is constrained in the force control direction, so 
application of vibration control scheme is not necessary 
due to dependency between elastic deflection of link 
and the contact force. So, vibrations for constrained 
flexible manipulators are automatically suppressed by 
controlling the contact force. 

4 Conclusions 

A hybrid position/force control scheme for flexible 
manipulators has been presented. Experimental results 
show that the system responses are in good agreement 
with simulation results. Investigating these results, it 
can be concluded that our control scheme is effective. 

Until now, the force control scheme of rigid manipu- 
lators has been passively applied to flexible manipula- 
tors, however, the future work in this area may find the 
active application of elastic deflection and compliance 
of the links to force control of flexible manipulators. 
In that case, the important relation between force and 
elastic deflection for even slow motion of flexible ma- 
nipulators can also be applied to force control. 
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Figure 3: When end-effector of robot arm does not move. 

900 

.- ........ 

390 L 1 
860 -360 1 

0 1 2 3 4  
3 5 0 '  ' I " " ' I  

Time [SI 
(b )  

-d 
0 1 2 3 4  

Time [SI 

(a) 

Time [SI 
( C )  

Experimental result 

- f n  
MATLAB 
ADAMS 

.... . 370 MATLAB 

360 ADAMS ..... . 

0 1 2 3 4  
Time [SI 

( f )  

Time [SI 
( e )  

Simulation result 

Figure 4: When end-effector of robot arm moves 
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