
Long-Term CPU Load Prediction System for
Scheduling of Distributed Processes and Its
Implementation

著者 菅谷 至寛
journal or
publication title

International Conference on Advanced
Information Networking and Applications, 2008.
AINA 2008. 22nd

volume 2008
page range 971-977
year 2008
URL http://hdl.handle.net/10097/46688

doi: 10.1109/AINA.2008.135

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235798362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Long-Term CPU Load Prediction System for Scheduling of Distributed Processes
and Its Implementation

Yoshihiro Sugaya† Hiroshi Tatsumi†‡ Mitiharu Kobayashi† Hirotomo Aso†

† Graduate School of Engineering,
Tohoku University,

Japan

‡ NTT DATA CORPORATION,
Japan

Abstract

There exist distributed processing environments com-
posed of many heterogeneous computers. It is required to
schedule distributed parallel processes in an appropriate
manner. For the scheduling, prediction of execution load of
a process is effective to exploit resources of environments.
We propose long-term load prediction methods with refer-
ences of properties of processes and of runtime predictions.
Since an appropriate prediction method is different accord-
ing to the situation, we propose a prediction module selec-
tion to select an appropriate prediction method according to
a state of changing CPU load using a neural network. We
also discuss about the implementation of a long-term CPU
load prediction system, which provides information includ-
ing prediction of load for schedulers, system administrators
and users.

1. Introduction

In heterogeneous computer network environment, a load
balancing system, which allocates and schedules processes
appropriately and automatically, is required to exploit com-
puting resources efficiently[2]. However, in real world ap-
propriate scheduling and task allocation are sometimes dif-
ficult, since runtime of a process often changes irregularly
because of changing of CPU load particularly in multiple
users environment. If changing of CPU load can be pre-
dicted, it will assist process scheduling and task allocation
for utilizing computing resources efficiently.

Wolski et al. developed Network Weather Service
(NWS) [5], which predicts CPU load by using simple and
traditional methods. Yang et al. tried to improve the pre-
diction method of NWS, and they proposed a method to
exploit a tendency of load changing just before the predic-
tion [7, 6]. Dinda et al. proposed a method of a runtime
prediction of application programs by using short-term pre-

diction of CPU load based on autoregressive prediction [1].
Whereas these are short-term prediction methods, Resource
Information Server (RIS)[3] employed not only a simple
short-term load prediction but also a long-term load pre-
diction by a so-called similarity method. Smith et al.[4]
proposed a method to predict runtime of application pro-
grams, and they confirmed the effectiveness to exploit the
predictions for scheduling and load balancing.

Although many researchers have tried to predict CPU
load, conventional CPU load prediction methods[5, 7, 1, 3]
are difficult to predict unsteady changing of CPU load when
it sharply changes. A sharp change is often occurred by
launching or ending of a task. In this paper, we propose
novel CPU load prediction methods, which are named pro-
cess search method and runtime-prediction-based method,
aiming at more accurate prediction of unsteady changing of
CPU load. We also propose a prediction module selection
for an appropriate prediction method according to a state
of changing CPU load using a neural network. The selec-
tion is expected to improve prediction accuracy under cir-
cumstances both of steady and unsteady states because each
prediction method can predict more accurately in each dif-
ferent condition. To build a real-time load prediction system
by using the proposed prediction methods, we discuss about
data structures and about influence of the gap between sam-
pling timing and prediction timing.

The remaining parts of this paper are organized as fol-
lows. In section 2, we describe two long-term CPU load
prediction methods. In section 3, we describe the prediction
module selection using a neural network and then experi-
mental results are shown in Section 4. We discuss problems
about the implementation of the load prediction system in
section 5. Finally we summarize our work in section 6.

2. CPU load prediction

In this paper, as an benchmark of CPU load, we use load
average, which is offered by operating system and which

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.135

971

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.135

971

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on April 15,2010 at 02:58:13 UTC from IEEE Xplore. Restrictions apply.

are used by many researchers. The load average takes less
cost to be acquired and it is a reasonable index of CPU load,
although it is not completely proportional to runtime of a
process.

Let V (t) and P (t) be an observed load average value
and a predicted value at time t, respectively. The predic-
tion start time, which is usually the present time, is de-
noted by T , and a span of prediction is denoted by p. In
brief, we try to predict a sequence of future load values
P (T + 1), · · · , P (T + p) using a sequence of past load val-
ues V (0), · · · , V (T). We also define a task as a process
whose CPU percentage exceeded 5% at least once during
the process running. We confirmed that processes whose
CPU percentage do not exceed 5% can scarcely affect load
average.

2.1. Process search method

Similarity method[3], which is one of a conventional
method, is based on a presumption that subsequent se-
quences of similar sequences are still similar.

The method searches a past sequence of load values for
the most similar pattern to the latest pattern, and then it out-
puts the sequence subsequent to the found pattern as a pre-
diction result. This method exploits only a time series for
prediction and does not employ other knowledge, for ex-
ample task properties. Although it is a general prediction
method and is applicable to predicting any time series, it
would be difficult to improve prediction accuracy since it
uses only a past sequence and does not use other property
of processes. If we can exploit not only time series but also
other properties, it would be a good solution to improve pre-
diction accuracy.

We propose a new prediction method called process
search method which refers properties of running tasks to-
gether with a past sequence of load averages for seeking
similar sequences.

2.1.1 Making of a sequence of difference

While similarity method uses a sequence of observed load
averages as it is, process search method uses a sequence of
difference of load averages. The difference of load average
is defined as V ′(t) = V (t) − V (t − 1). Let us define a
window of a difference sequence as Wt = (V ′(t − D +
1), V ′(t − D + 2), · · · , V ′(t)), and define the i-th element
of Wt as Wt(i), where D is a parameter which denotes the
width of the window.

2.1.2 Search of process properties

Since similarity method searches all of the past sequence
for the most similar window indifferent to the properties of

processes, it may make the prediction accuracy worse. Al-
though a different task might generate a different load se-
quence, the first half of which may accidentally resemble
the current window and similarity method may choose such
an accidentally similar sequence sometimes.

It is expected that the sequence of loads after the present
time T is more similar to a past sequence of the same tasks
as current running tasks. Unlike similarity method, pro-
cess search method searches specific past sequences which
are specified by task properties. The specific searching se-
quences are denoted by a set Q of time instants as follows.

1. Search the past sequence for time instants at which a
set of running task is identical with the set of current
running task. Let us define the set Q as a set of all the
found time instants.

2. If the set Q is empty, search the past sequence for time
instants at which at least one task in the set of current
running task was running. Let us redefine Q as the set
of the found time instants.

3. If the set Q is still empty, we set Q to the set of all the
time instance in the past sequence. In this case, process
search method is almost same as similarity method.

We do not aim to predict starting of a new task because
a new task will be independent of sequences of past CPU
loads and task properties. Therefore, time instants after
which tasks except current running task were launched are
removed from the set Q.

2.1.3 Calculation of prediction sequence

Let us define an error (un-similarity) between a window Wt

and the current window WT as:

err(t) =
D∑

i=1

|Wt(i) − WT (i)|, (1)

where t is an element of Q which was described in the pre-
vious subsection. (1) is calculated for each t ∈ Q. A se-
quence of load values which is predicted by the window Wt

is determined as:

Pt(T + k) = V (T) +
k∑

j=1

V ′(t + j), (2)

for each k=1,. . . , p. This is the sequence that differences
after t are accumulated on V (T).

Since a window with less error is more similar to the
current window, it seems that the predicted sequence by the
window with less error is more reliable. However, there
is often the case that predicted sequences by second or later

972972

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on April 15,2010 at 02:58:13 UTC from IEEE Xplore. Restrictions apply.

similar windows are more appropriate than the predicted se-
quence by the most similar window. This is occurs acciden-
tally. Therefore, we calculate an output predicted sequence
by averaging of predicted sequences by N most similar win-
dows. It is defined as

P (T + k) =
1
N

∑
t∈S

Pt(T + k), (3)

where S is a subset that consists of N of time instants t in
the ascending order of err(t), and parameter N is deter-
mined by preliminary experiments.

2.2. Runtime-prediction-based method

We propose another long-term CPU load prediction
method, which is named runtime-prediction-based method.
The method consists of two steps. First, it predicts remain-
ing CPU time of current tasks by using task histories which
are records of task properties. The method is based on an
assumption that tasks with similar properties consume sim-
ilar CPU time. As the property, we consider user name, task
name and task arguments. Second, it predicts the future se-
quence of CPU loads by using the predicted remaining CPU
time of current running tasks.

2.2.1 Remaining CPU time prediction of current run-
ning task

The proposed method picks out L (or less) tasks which have
the identical property to a current running task and consume
CPU time longer than the age of the current running task in
CPU time. And then, the standard deviation of the set of
tasks in consumed CPU time is calculated.

If the standard deviation is larger than the predic-
tion span p, it is thought that remaining CPU time
Task X.runtime may exceed the prediction span, there-
fore, we set Task X.runtime = p. Otherwise, those tasks
are arranged in chronological order of start time, and then it
is divided in two classes so that the between-class variance
becomes maximum. A predicted CPU runtime of the task
is determined as an average CPU time of the later class,
and remaining CPU time Task X.runtime is calculated
by subtracting the age of the task from the predicted CPU
runtime. The reason why we use only the later class is that
the character of tasks in the earlier class is sometimes dif-
ferent from current tasks in comparison with the tasks in
the later class; users sometimes run a same name task with
a subset data to debug the program before running the task
with a normal data set, for example.

2.2.2 Load prediction using predicted CPU runtime

Depending on CPU percentage, which is the utilization ratio
of the CPU, an estimated load Task X.eload generated by

a task X is defined as follows:

Task X.eload =
{

1 · · · if CPU% ≥ M%,
0 · · · otherwise,

(4)

where M is a threshold to judge whether the task X will
exploit CPU resources significantly or not, in other words,
whether the task is a CPU-bounded task or not. The thresh-
old M is determined by preliminary experiments.

Since each task X will generate a load Task X.eload
during Task X.runtime, the load generated by the task X
at time t = T + 1, . . . , T + p is described as follows:

Task X.load(t) ={
Task X.eload (t ≤ T +Task X.runtime),

0 (t > T +Task X.runtime).
(5)

A predicted total load of the CPU at the time t = T +
1, . . . , T + p is calculated by sum of Task X.load(t) of all
tasks X as follows:

P (t) =
all task∑

X

Task X.load(t). (6)

2.2.3 Regulation of predicted load

Indeed, wall-clock runtime of a task depends on the CPU
load at that time. When the number of CPU-bounded tasks
exceeds the number of CPU, wall-clock runtime of each
task becomes longer than Task X.runtime, because it is
not a predicted remaining runtime in wall-clock time but in
CPU time. In case of CPU-bounded tasks, wall-clock run-
time increases approximately linear as the load increases.
The fact is confirmed by preliminary experimental observa-
tions.

Therefore, we have to regulate predicted sequence of
loads. Let Ia denote the span at which a predicted load
before the regulation is P (t) = a. Ia is extended to I ′a as
follows:

I ′a =
{

Ia ∗ a
C · · · if a ≥ C,

Ia · · · otherwise, (7)

where C is the number of CPU. The regulated load P ′(t) is
straightforwardly obtained by the regulation, this is a final
result of this method. Figure 1 demonstrates an example of
the regulation.

3. Prediction module selection

We evaluated several conventional methods, similarity
method[3], process search method and runtime-prediction-
based method by preliminary experiments. When sequence

973973

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on April 15,2010 at 02:58:13 UTC from IEEE Xplore. Restrictions apply.

Figure 1. An example of P(t) and P’(t) of the
runtime-prediction-based method in case of
a dual CPU computer.

V(T)

V(T-1)

V(T-2)

lo
ad

LAST

Process Search

Runtime
Prediction

V (T)

V (T-1)

V (T-2)

V(T)

V(T-1)

V(T-2)

lo
ad

di
ff

er
en

ce
 o

f
lo

ad

LAST

Process Search

Runtime
Prediction

V (T)

V (T-1)

V (T-2)

Figure 2. Neural network for prediction mod-
ule selection.

of loads is steady state, LAST which simply assumes the
present load value to be predicted value can predict fastest
and more properly in many case. On the other hand, pro-
cess search method or runtime-prediction-based method can
predict more properly in unsteady load state. From the ob-
servations, we can conclude that an appropriate prediction
method is different according to the state of load changing.
It can be expected that prediction accuracy will be improved
if we can dynamically select a proper prediction module de-
pending on the condition of changing of load.

We propose a prediction module selection using a neu-
ral network(NN) as shown in Fig 2. The NN is a 3-layer
perception and each layer is fully connected. The number
of cells in each layer is 6-6-3 (input-hidden-output), respec-
tively. The last three observed load values V (T), V (T −
1), V (T − 2) and three of those differences V ′(T), V ′(T −
1), V ′(T − 2) are fed to the input layer. Each cell in out-

put layer corresponds to each prediction module, which
is LAST or process search method or runtime-prediction-
based method, and the cell that most strongly fires indicates
the prediction module to be selected at that time.

By backpropagation learning, the NN is trained which
module should be selected when some kind of load se-
quence was observed. The training is performed in advance
using results of preliminary experiments. The teacher data
are made so as to choose the best method whose error is the
smallest among three methods, but LAST should be chosen
as a teacher when errors of them are almost same.

4. Experiments

We have conducted experiments to compare with LAST,
MEAN, MEDIAN, AR[5], similarity method and our pro-
posed methods. LAST is a method to assume the present
value to be a predicted value as is. MEAN and MEDIAN
assume the mean or the median of last D′ values to be a pre-
dicted value, respectively, where D′ is dynamically set so
that the error of prediction P (T) of the present load value
using V (T − 1), V (T − 2), · · · becomes smallest. AR is a
prediction method by autoregressive model.

Sequences of CPU loads are obtained by system load av-
erages for five minutes sampled every five minutes on four
Linux 2.4.x machines equipped with dual Xeon 2.4GHz
processors, which are utilized for scientific computations
or computer simulations. Task properties are obtained by
ps command at the same timing with sampling of CPU load
values and are also obtained from the process accounting
file logged by Linux operating system. We attempt to pre-
dict a sequence of total loads of the four machines on the
assumption predicting load of a computer cluster. The span
to be predicted is p = 12 (60 minutes), and data from pre-
diction start time T to three months before are employed to
search for similar windows and similar tasks. In the exper-
iments, we use difference sequence of CPU loads not only
in proposed methods but also conventional methods.

Parameters are determined by preliminary experiments.
The width of the search window is D = 3 (15 minutes), the
number to average predicted sequences in process search
method is N = 5, and the maximum number of tasks to
acquire in runtime-prediction-based method is L = 10. We
set the threshold of CPU percentage to M = 80 when the
number of running tasks is two or less, or set it to

M =
200

the number of tasks
× 0.8,

when the number of running tasks exceeds two, because
each computer has two CPU and a maximum of a total CPU
percentage is about 200% in our environment. Training data
used for NN in prediction module selection are gathered

974974

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on April 15,2010 at 02:58:13 UTC from IEEE Xplore. Restrictions apply.

Table 1. The results of evaluation experi-
ments of prediction methods in steady state.

method AVG STD ≤ 0.2 ≥ 1.0
LAST 0.102 0.353 89.8% 2.4%
MEAN 0.105 0.365 89.0% 2.4%

MEDIAN 0.252 0.466 66.2% 6.6%
AR 0.119 0.322 86.2% 2.4%

similarity 0.176 0.497 82.4% 4.0%
process 0.135 0.363 81.8% 2.4%
runtime 0.213 0.620 84.6% 7.8%

NN 0.101 0.349 90.4% 2.2%
The ratio of methods selected by NN
LAST:93%process:2%runtime:5%

Table 2. The results of evaluation experi-
ments of prediction methods in unsteady
state.

method AVG STD ≤ 0.2 ≥ 1.0
LAST 0.797 0.834 21.8% 26.0%
MEAN 0.851 0.852 14.4% 28.0%

MEDIAN 0.917 0.868 15.0% 32.4%
AR 1.347 1.500 12.8% 43.6%

similarity 0.951 1.097 28.2% 35.6%
process 0.779 0.812 21.6% 26.2%
runtime 0.861 1.090 38.6% 30.0%

NN 0.747 0.954 32.6% 22.0%
The ratio of methods selected by NN
LAST:22%process:37%runtime:41%

from the identical sequence with testing data, but each pre-
diction start time is distinct. We employed 300 start time
for learning, and used the rest for testing.

We evaluate those methods in terms of average error be-
tween the observed value and a predicted value, which is
defined as

PredictionErr(T) =
1
p′

p′∑
k=1

|V (T +k)−P (T +k)|, (8)

where p′ satisfies 0 ≤ p′ ≤ p and it is the time when a new
task which was not running at the prediction start time T is
launched. When there is not such a new task, p′ is same as
p. That is because we decided not to consider launch of new
tasks in this paper.

We performed predictions by 500 times using each
method in both of steady state and unsteady state. Table 1
and Table 2 show the average of PredictionErr(AVG),
the standard deviation(STD), the ratio of predictions that
are PredictionErr ≤ 0.2 and the ratio of predictions that
are PredictionErr ≥ 1.0, respectively. We defined that
steady state is the case that the variance of the last three

load values just before T is less than 0.1 and unsteady state
is the case that the variance is 1.0 or more.

In steady state (Table1), LAST is excellent among in-
dividual methods. Process search and runtime-prediction-
based method, which are our proposed methods, are not su-
perior in comparison with conventional methods in terms of
prediction accuracy. Accordingly, we confirmed that some
conventional methods can predict well in steady state. Pre-
diction selection by NN is the best among all methods. It
selects LAST at the ratio of 93%, which is an appropriate
selection in steady state, and furthermore, it is thought that
an appropriate method for unsteady state can be also se-
lected when a task is launched just before prediction.

In unsteady state (Table2), process search method is the
best among individual methods in terms of accuracy, the
second is LAST, and the third is runtime-prediction-based
method. The prediction error of process search is 18%
smaller than the error of similarity method. This result
indicates that task properties are beneficial for long-term
CPU load prediction. The average accuracy of runtime-
prediction-based method is not so good, but there are a lot of
cases that the prediction errors are 0.2 or less. It means that
runtime-prediction-based method can often predict a long-
term sequence of CPU loads considerably precisely com-
pared with other methods. Also in unsteady state, prediction
selection by NN is the best among all methods. It selects
process search or runtime-prediction at the ratio of 78%.
The fact indicates that it can select an appropriate method
in also unsteady state. It seems that it can select an appro-
priate method accordingly whether in steady or unsteady or
intermediate. By backpropagation learning, NN can select
an appropriate prediction module according to the state of
changing load, it improves prediction accuracy.

Figure 3 is an example of a prediction results. Runtime-
prediction-based method can predict a sequence of loads
considerably precisely in this case, and process search
method also can predict a rough tendency.

5. Implementation of load prediction system

We are building a real-time load prediction system to
provide predicted loads for task scheduler, system admin-
istrators and users. The process search method already has
been implemented in the system. To exploit the system
for scheduling or task allocation, it is required that it can
quickly return a result with low system load. Therefore, we
have to consider following two issues for implementation.

5.1 Data structure of load average history

For low system load and fast search of a sequence of dif-
ference of load values, we decided to store all the history
of the sequence on memory by PackBits encoding, which

975975

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on April 15,2010 at 02:58:13 UTC from IEEE Xplore. Restrictions apply.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-2 0 2 4 6 8 10 12

lo
ad

time

LAST
similarity

process search
runtime

observed

Figure 3. An example of prediction results.
The span to predict at time 0 is from 1 to 12
(from 5 min to 60 min).

Table 3. Compress rates of PackBits and run-
length encoding.

PackBits run-length
compress rate 3.55% 21.35%

switches run-length encoding and raw data sequence by
flag bits. Although it requires some overhead for decod-
ing, PackBits encoding will sometime reduce the number
of calculation of error between windows; an error between
a window and the current window can be calculated without
decoding in run-length encoding part except the neighbor of
border. When a value of load average is constant in a cer-
tain range, the sequence of all the windows in the range are
identical, and the calculation of error can be skipped.

Table 3 shows compress rate of PackBits and run-length
encoding, where compress rate is defined as

compress rate =
memory usage with encoding

memory usage without encoding
. (9)

We confirmed that the compress rate of PackBits is very
high, because there are many constant data corresponding
to idle time on our environment. Note that PackBits does
not increase memory usage different from run-length even
if there is less constant range.

The execution time of a prediction is shown in Table 4.
It is confirmed that there is overhead by encoding but it is
not so significant. The variances by using PackBits or run-
length are much greater than one by no encoding because it
depends on whether the window of which error should be
calculated is constant.

Table 4. Execution time of a prediction by us-
ing PackBits, run-length and no encoding.

encoding average (ms) variance (ms2)
PackBits 9.970 15.826

run-length 9.801 14.855
no encoding 6.795 2.627

Table 5. Error of predictions when it is not a
sampling instant.

average variance
ignored 0.361 0.184

shortened 0.368 0.226
exhaustive 0.329 0.182

5.2 Prediction between sampling timings

In preceding section, it is implicitly assumed that pre-
diction start time T , which is the present time in load pre-
diction system, is also a sampling instant. If a prediction
will be performed when it is not a sampling instant, the cur-
rent window can not be made correctly. It is necessary to
discuss about this influence for implementing the process
search method into the system. To solve the problem, we
consider the following two manners.

The first manner is to ignore the gap between the latest
sampling timing and the prediction start time. Even if the
present time is not a sampling instant, eventually if time
lag with the last sampling instant T − 1 is not five minutes
before, sample the present load average and exploit it to
make the current window. It may make an error of under
five minutes when sampling timing is five minutes.

The second manner is to shorten sampling timing only
in the range of window width. If the normal sampling tim-
ing is five minutes and the shortened sampling time is one
minute, errors of sampling timing can be decreased to under
one minute. The error of sampling timing under one minute
has to be ignored same as the preceding manner, but the
error is decreased. The extra samples are required only in
the present window, and they will be discarded when they
become older than the present window.

We performed experiments to examine these two man-
ners. The comparison results are shown in Table 5. We
performed 2000 times of predictions in unsteady state by
each manner. “ignored” and “shortened” indicate first man-
ner and second manner, respectively. “exhaustive” is the
way that sampling timing is one minutes and keep all sam-
ples different from the second manner, in other words, it can
be regarded as the result of the case that all predictions are
performed when it is just a sampling instant. Note that we
may not adopt this timing for actual system because of the

976976

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on April 15,2010 at 02:58:13 UTC from IEEE Xplore. Restrictions apply.

necessity of low system load. It is confirmed that prediction
errors increased a little by using both “ignored” and “short-
ened”, but it does not seem critical. The error of “ignored”
is slightly larger than the error of “shortened”, but we think
that “ignored” is acceptable because it is simple and does
not require extra memory.

6. Conclusions

In this paper, we proposed novel long-term CPU load
prediction methods, namely process search method and
runtime-prediction-based method, which refer properties of
processes. We showed that these methods can predict long-
term CPU load more accurately compared with conven-
tional methods in unsteady state when process properties
can be acquired and can be exploited.

Furthermore, we proposed that prediction module selec-
tion using a neural network. It is confirmed that it can select
an appropriate module according to a state of load changing
by backpropagation learning and that it can improve predic-
tion accuracy.

To build a real-time load prediction system, we also dis-
cussed about some issues for the implementation. PackBits
encoding is reasonable to store load average history, and it
is an acceptable manner that the present load value is ex-
ploited to make the current window even if the present time
is not a sampling instant.

In future works, we will refine parameters to improve
prediction accuracy and will develop scheduling algorithms
to exploit long-term CPU load predictions.

References

[1] P. A.Dinda and D. R.O’Hallaron. Host load prediction using
linear models. J. Cluster Computing, 3:265–280, 2000.

[2] S. Akioka and Y. Muraoka. An extended forecast of cpu and
network load on the computational grid. IEICE Trans. Infor-
mation and Systems, J87-D-I(9):845–854, 2004 (in Japanese).

[3] H. Koide, N. Yamagishi, H. Takemiya, and H. Kasahara.
Evaluation of the resource information prediction in the re-
source information server. IPSJ Transactions on Program-
ming, 42(SIG3(PRO10)):65–73, 2001 (in Japanese).

[4] W. Smith, I. Foster, and V. Taylor. Predicting application run
times with historical information. J. Parallel Distib. Comput.,
64:1007–1016, 2004.

[5] R. Wolski. Dynamically forecasting network performance
using the network weather service. J. Cluster Computing,
1:119–132, 1998.

[6] L. Yang, I. Foster, and J. M. Schopf. Homeostatic and
tendency-based cpu load predictions. In Proc. of the 17th In-
ternational Symposium on Parallel and Distributed Process-
ing, page 42b, 2003.

[7] L. Yang, J. M. Schopf, and I. Foster. Conservative scheduling:
Using predicted variance to improve scheduling decisions in

dynamic environments. In Proc. Supercomputing 2003, vol-
ume 11, pages 15–11, 2003.

977977

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on April 15,2010 at 02:58:13 UTC from IEEE Xplore. Restrictions apply.

