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The use of two pressure sensors �Fusco et al., J. Acoust. Soc. Am. 91, 2229 �1992�� makes it
possible to determine the acoustic intensity of a gas column in a duct, but the application of this
method was limited to wide ducts. In this letter, the formulation of the method is modified to include
narrow ducts where the duct radius is as small as the viscous boundary layer thickness of the gas.
The validity of this method is shown by comparison with the direct measurements of the pressure
and velocity. © 2007 American Institute of Physics. �DOI: 10.1063/1.2768929�

Acoustic intensity I represents a time-averaged energy
flux sustained by coupled oscillations of pressure and veloc-
ity of a gas. For a sound wave in a duct, the acoustic inten-
sity I is expressed by

I = �PV� , �1�

where P and V are the acoustic pressure and cross-sectional
average of axial acoustic particle velocity and angular brack-
ets represent time average. Recent measurements of I have
been contributing to deepening the experimental understand-
ing of acoustics in ducts, particularly those involving ther-
moacoustic energy conversions and energy dissipations.

Two methods have been widely used in the measurement
of I. One is the direct method simultaneously measuring P
and V using a small pressure sensor and a laser Doppler
velocimeter �LDV�. This method was first reported in 1998
�Ref. 1� and has been employed for the measurements of the
acoustic power of thermoacoustic heat engines2–6 and the
quality factor of a resonator.7

The second method is called a two-sensor method. In
this method, P and V in Eq. �1� are deduced from the differ-
ence and the sum of the two pressures located side by side on
the duct wall.8 The simplicity of the measurements is a great
advantage of the two-sensor method over the direct method
involving LDV. This method has been successfully used in
the study of thermoacoustic phenomena,9–11 and we have
also confirmed the validity of this method. However, the ap-
plication of this method was limited in “wide” ducts where
the duct size such as the radius r0 for a circular tube is much
longer than the viscous boundary layer thickness � of the
gas.12

In this letter, we show from the comparison with the
direct method that the conventional two-sensor method be-
comes inapplicable for a narrow tube having r0 /��1 and
introduce a more general formulation of the two-sensor
method that is applicable regardless of the magnitude of

r0 /�. This method would become a good experimental tool
in thermoacoustics and in the study of acoustic waves in
various porous media.

Figure 1 shows the schematic illustration of the present
experimental setup to test the two-sensor method when
r0 /�=r0

�� /2� �Ref. 12� is close to 1. A Pyrex glass tube
with internal radius of 2 mm was filled with atmospheric air
at room temperature �284 K�. The gas column in the tube
was driven sinusoidally at f =2.0 Hz by an acoustic driver at
the end of the tube. Thus, the nondimensional parameter
r0 /�=1.3 was achieved in this experiment.

The acoustic pressure P�x , t�= p�x�ei�t ��=2�f� was
measured by a series of small pressure transducers flush
mounted on the tube wall, where the axial coordinate x was
taken from the driver end of the tube �x=0� to the other end
�x=4.3 m�. The amplitude 	p�x�	 and the phase relative to
P�4.2�, ��x�=arg�p�x� / p�4.2��, were determined from the
spectra obtained with a multichannel spectrum analyzer.

We closed the end of the tube with a rigid plate and
found that ��x� monotonically decreased with increasing x,
and its total decrease was very small ���0.1�=2.6° �. The
measuring uncertainty of I by the two-sensor method tends to
become large when the acoustic wave has a high standing-
wave ratio.8 Hence, we replaced the rigid plate at the end
with a rubber balloon, to increase the traveling wave compo-
nent. The measured � and 	p	 are shown in Figs. 2�a� and
2�b� by solid circles �•�. It is shown that ��0.1� reached
54.5° and d� /dx became large enough to decrease the error
within the size of the symbols shown in Fig 2.

We determine the acoustic intensity I from the measured
pressure shown in Figs. 2�a� and 2�b�. We choose a pair of
pressures separated by the distance �x=0.7 m and denote the
pressure closer to the driver as pA and the other as pB. For a
plane and monofrequency acoustic wave, the acoustic inten-
sity I �Ref. 8� is expressed as
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I =
1

8��

Im�H��	pA	2 − 	pB	2� + 2 Re�H�	pA		pB	sin �� ,

�2�

using

H =
kF

cos�k̃�x/2�sin�k�x/2�
, �3�

where � is the mean density of the gas, Re� � and Im� � rep-
resent the real and imaginary parts, and �=arg�pA / pB� rep-
resents the phase lead of pA relative to pB. Also, k represents
the complex wave number and F is a complex factor relating
the cross-sectional averaged velocity with the pressure gra-
dient in the momentum equation,13,14

V =
iF

��

dP

dx
. �4�

In contrast to the conventional two-sensor method,8 we
propose to use k and F given by

k = − ik0�J0�i3/2�2r0/��
J2�i3/2�2r0/��

�	 + �	 − 1�
J2�i3/2�2
r0/��

J0�i3/2�2
r0/��
�5�

and

F = 1 −
2J1�i3/2�2r0/��

i3/2��2r0/��J0�i3/2�2r0/��
, �6�

where Jn is the nth order complex Bessel function,14,15 k0 is
the wave number in free space, and 
 and 	 denote the
Prandtl number and the specific heat ratio. The obtained I in
the use of k and F is plotted by open squares ��� in Fig. 2�c�.
For comparison, we also determined I by the conventional
two-sensor method proposed by Fusco et al.,8 and plotted it
by open triangles ���. The derivation of this method is done
by replacing k and F in Eqs. �5� and �6� with their approxi-
mate solutions obtained when the boundary-layer approxi-
mation is appropriate. Figure 2�c� shows a significant differ-
ence between I by these two methods; the conventional
method gives 85% larger I at x=0.45 m than that determined
by the present method.

In order to show the validity of the method that we de-
veloped, we determined I by the direct method. We measured
the acoustic particle velocity U�x , t� on the central axis using
a LDV with cigarette smoke as seeding particles. The rela-
tive phase of U was determined with reference to the pres-
sure P at the same x. The observed velocities �	U	
�0.4 m/s� were all low enough to ensure laminar flow.
Hence, on the basis of the laminar oscillating flow theory, the
radial average velocity V�x , t�=v�x�ei�t was determined from
the measured U and the theoretical factor �= 	�	ei as V
=U /�. Here, 	�	=1.99 and =4.1 �Ref. 7� when r0 /�=1.3.
The acoustic intensity is then determined from Eq. �1� as

I =
1

2
	p		v	cos � , �7�

where �=arg�v / p�. The acoustic intensity I by the direct
method is further plotted in Fig. 2�c� by solid circles �•�. We
see that I obtained by the modified two-sensor method agrees
with that by the direct method. Thus, we conclude that the
conventional two-sensor method is inapplicable when r0 /�
=1.3, and the present method by the use of k and F in Eqs.
�5� and �6� should be applied.

The complex wave number k in Eq. �5� is theoretically
derived by Tijdeman15 and is experimentally verified includ-
ing the narrow tube region from r0 /�=10−2 to 10 very
recently.16 As is shown in these literatures, k obtained under
the boundary-layer approximation deviates from the exact k
below r0 /��4. However, in the present experiment, the use
of the boundary-layer limit does not cause serious difference,
even though r0 /� is as low as 1.3. As shown in Figs. 2�a� and
2�b�, the phase � and the amplitude 	p	 estimated by the
two-sensor methods �� and �� fall onto the data obtained by
the direct measurements. Such agreement is attributable to
the fact that �x is much smaller than the wavelength in this
experiment.

The large discrepancy of I originates from the complex
factor F= 	F	ei�. We plotted the absolute value 	F	 and the
argument � in Figs. 3�a� and 3�b�, together with those ob-
tained under the boundary-layer approximation. The differ-

FIG. 1. Schematic illustration of a present experimental setup. The axial
coordinate x is directed from the acoustic driver to a closed end.

FIG. 2. Acoustic field in a tube with r0 /�=1.3; �a� the phase � of the
acoustic pressure p�x� relative to p�4.2�, �b� pressure amplitude 	p	, and �c�
acoustic intensity I. Data shown by the solid circles ��� denote the results of
the direct measurements. Open triangles ��� represent the data obtained by
the modified two-sensor method with the use of k and F, whereas open
squares ��� by the conventional two-sensor method.
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ence of 	F	 rapidly grows below r0 /��4, and the difference
of � becomes a few degrees below r0 /�=10. When r0 /�
=1.3, the ratio of their absolute values reaches 2.2 and the
phase difference becomes 12°, respectively. These differ-
ences are reflected to the large deviation of I in Fig. 2�c�.

The apparent simplicity is a great advantage of the two-
sensor method over the direct method, but its application was
limited to the wide ducts where the boundary-layer approxi-

mation is appropriate. In this work, we extended the appli-
cability of this method to “narrow” tube regions and verified
it by the direct method. The modified two-sensor method
would offer a quick and accurate determination of the acous-
tic intensity in ducts and porous media.
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FIG. 3. The complex factor F= 	F	ei� as a function of the ratio r0 /�. Dotted
curves represent F obtained under the boundary-layer approximation.
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