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We report on the dynamic calibration of a thermocouple for the measurement of the oscillating
temperature. Temperature oscillation is induced in a gas-filled tube by a periodically forced pressure
oscillation and measured by a thermocouple. The radial profile of the measured temperature
oscillations is compared with the theoretical one, which is determined from the simultaneously
measured pressure. A response function of the thermocouple is obtained from the difference in
amplitude and phase angle between them by varying the diameter of the thermocouple, oscillating
frequency, tube radius, and working gas. We can obtain a true temperature oscillation by using the
response function given in this experiment. © 2005 American Institute of Physics.
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I. INTRODUCTION

An acoustic wave in a gas-filled tube is capable of con-
verting acoustic heat flow, Q=�mTm�SU�, into work flow,
I= �PU�, or vice versa through heat exchange with the tube
wall,1,2 where S, U, and P denote the oscillating entropy,
velocity, and pressure of a gas, respectively, �m and Tm a
mean density and temperature,3 and the angular brackets rep-
resent the time average over a period. The method for the
accurate determination of the acoustic work flow I in the
tube has been experimentally established through simulta-
neous measurements of P and U,4 which has contributed to
deepening the understanding of the thermoacoustics5–8 and
acoustics.9 However, the method of measuring the heat flow
Q in the tube has not been well established because of the
difficulty in the direct measurement of oscillating entropy S.

We direct our attention to the total energy flow H=Q
+ I, rather than on Q itself. Fortunately, most of the gases,
including inert ones like He and Ar and even air at an ambi-
ent temperature, can be well approximated as an ideal gas.
The relation H=�mCP�TU� holds for an ideal gas, where CP

is an isobaric specific heat and T the oscillating temperature
of the gas. Once H is derived by inserting measured T and U
into this relation, Q is obviously deduced by subtracting the
measured I from H. This is true only when a thermometer
can measure accurately the temperature of a gas parcel at any
instance without any delay. Otherwise, corrections are
needed to determine accurately the value of H.

To the best of our knowledge, only a very limited num-
ber of works have been reported on the oscillating tempera-
ture measurement of the acoustic wave in a tube. Huelsz
et al.10 used a cold wire anemometer for the measurement in
the fundamental mode �130 Hz� of a rectangular resonator
filled with one-bar air. They stressed the need to employ a
scale corrected accurately for the phase delay of the an-
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emometer in response to temperature oscillations. We con-
sider the need of corrections, not only for the delay in phase
but also for that in the amplitude of temperature oscillations,
both of which would depend on factors such as the size of
the probe, the frequency of the acoustic wave, and thermal
properties of a gas. It is, therefore, of critical importance to
study a thermometer response to temperature oscillations in a
gas by taking into account all possible factors affecting both
the amplitude and phase in order to reliably determine H in a
variety of acoustic systems.

In this paper, we report on the calibration of a thermo-
couple to measure oscillating temperatures of the gas-filled
cylindrical tube, where the gases are forced by pressure
oscillation. The radial distribution of oscillating temperatures
was measured and compared with a solution of a laminar
oscillating flow theory.1,2 From the difference in these tem-
perature oscillations, we derive a response function that
serves as a correcting factor for both the amplitude and phase
angle of the measured temperature. The response function is
determined by varying the diameter of the thermocouple, the
frequency of acoustic wave, the tube radius, and the working
gas. Using the response function, we can reliably determine
temperature oscillations and hence the heat flow Q.

II. THEORETICAL TREATMENT FOR TEMPERATURE
OSCILLATIONS IN A TUBE

We employ a conventional complex number as acoustic
variables to describe time-oscillatory quantities of gas parcel:
for example, the pressure oscillations are expressed as
P= P1ei�t, where � and P1 are the angular frequency and
amplitude of pressure oscillations. A mean value of the os-
cillating pressure is denoted as Pm. We first consider the
acoustic plane wave in an ideal gas. In the adiabatic limit, the
temperature oscillations TS around the mean temperature Tm
can be expressed in terms of P as

© 2005 American Institute of Physics1-1
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Ts = � �T

�P
�

s
P =

� − 1

�

Tm

Pm
P1ei�t, �1�

where the subscript s is attached to emphasize the adiabatic
condition and � is the ratio of isobaric to isochoric specific
heats of a gas. In reality, any acoustic wave in a tube is
subjected to the heat exchange with the tube wall. The tem-
perature oscillation T under such arbitrary conditions is theo-
retically predicted from a laminar oscillating flow theory1,2

and are given in the following form:

T = �1 − f��Ts + g�

U

�

dTw

dx
, �2�

where Tw is the temperature of the tube wall, x is an axial
coordinate along the tube, and both �1− f�� and g� are func-
tions involving only the radial coordinate r directed from the
cylindrical axis to the wall, as described below.

The first term on the right-hand side in Eq. �2� represents
temperature oscillations induced by pressure oscillations un-
der the condition where the gas exchanges heat with the tube
wall, and, hence, corresponds to the extension of Eq. �1� to a
more general situation. The second term refers to tempera-
ture oscillations caused by the displacement of the gas along
the tube wall with an axial temperature gradient dTw /dx. If
Tw remains constant along x, Eq. �2� is obviously reduced to

T

Ts
= �1 − f��r�� . �3�

The function �1− f�� is now expressed simply in terms
of a dimensionless radial temperature profile. For a cylindri-
cal tube with a radius r0, f� is analytically given from a
laminar oscillating flow theory1,2 as

f��r� =
J0�	2i3/2r/���
J0�	2i3/2r0/��� , �4�

where J0 is the complex Bessel function of the first kind,
r is a radial coordinate ranging from 0 to r0, and �� is a
thermal boundary layer thickness given as ��=	2� /�, using
the thermal diffusivity � of a gas.

The absolute value of �1− f��, Abs�1− f��, and its argu-
ment, Arg�1− f��, represent the amplitude ratio of T to Ts

and the phase lead of T relative to Ts and hence P, respec-
tively. They are plotted in Figs. 1�a� and 1�b� as a function of
the radial coordinate normalized with respect to r0, under
three conditions: r0 /��=1000, 5, and 0.5. In the case of
r0 /��=1000, values of both Abs�1− f�� and Arg�1− f�� are
indeed very close to unity and zero degrees, respectively,
nearly throughout the cross section of the tube. Hence, the
acoustic wave in a tube can be regarded as an adiabatic one
when r0 is far greater than ��. When r0 /��=0.5, we find
Abs�1− f��
0 and Arg�1− f��
90°. This means that the
acoustic wave is now described as an isothermal one, where
temperature oscillations are lost and temperature is every-
where the same as the wall temperature Tw. In the interme-
diate case of r0 /��=5, values of Abs�1− f�� and Arg�1− f��
change significantly as a function of r due to imperfect ther-
mal contact of the gas with the wall.

Before ending this section, we should emphasize the fact

that, as long as Tw remains constant along x in the tube, the
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radial distribution of the temperature ratio T /Ts is expressed
as a function of only the parameter r0 /��, which can be
determined from experiments described below. In the present
work, we have employed the theoretical radial temperature
profile �1− f�� as a reference to obtain a true temperature and
discussed how accurately and reliably a correction is made
for both the existing amplitude damping and phase delay in
the response of a thermocouple to oscillating temperatures.

III. EXPERIMENTS

A. Experimental setup

The present experimental apparatus is schematically il-
lustrated in Fig. 2. Three Pyrex glass tubes of length 0.6 m
with different inner diameters of 2r0=11.5,21,40 mm were
used as cylindrical waveguides. One end of the glass tube is
rigidly closed with a solid plate, and the other end is con-

FIG. 1. Radial distributions of �a� Abs�1− f�� and �b� Arg�1− f�� for acous-
tic waves in a tube with different values of r0 /��=1000, 5, and 0.5.
FIG. 2. Schematic illustrations of the present experimental setup.
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nected to the outlet of a rotary valve. Pressure oscillations
are activated in the tube by designing the rotary valve such
that it allows us to switch periodically either to a pressurized
tank or a vent port. Its switching frequency f was varied
from 0.5 to 18 Hz. The wall temperature was monitored and
found to remain the same as the room temperature of 290 K
throughout the experiments. Thus, we validated our basic
assumption that the second term arising from the temperature
gradient along the tube11 can be ignored and, hence, only the
first term in Eq. �2� is retained. Helium, nitrogen, and argon
gases were employed as working gas. The physical proper-
ties of relevant gases at 290 K are summarized in Table I.

B. Temperature and pressure measurements

We used two chromel-alumel �K-type� thermocouples:
one with the diameter of d=15 �m and the other with
d=50 �m. The sensitivity of these thermocouples was ex-
perimentally confirmed as 39 �V/K. The thermocouple was
covered with a support sheath made of a stainless-steel tube,
but the junction was exposed to its surrounding working gas.
The sheathed thermocouple was inserted into a glass tube
through a narrow duct mounted on the wall, as marked with
an A in Fig. 2. A small gap between the duct and the sheath
was sealed with a rubber O ring, which enabled us to move
smoothly the junction at any radial position and measure the
radial distribution of temperature oscillations in the tube. The
pressure at the same position as that where the junction of
the thermocouple was located was also measured using a
small pressure transducer mounted on the wall via a short
duct.

Electrical signals from the pressure transducer and
thermocouple were simultaneously recorded with a multi-
channel 24 bit spectrum analyzer. By using the power and
phase spectra of their signals, we determined both the pres-
sure oscillations P= P1ei�t and temperature ones Tex�r�
=Tex1�r�ei��t+��r��, where the suffix ex is attached to empha-
size the experimentally derived temperature by the use of a
thermometer. The temperature oscillations Ts for the adia-
batic acoustic wave were determined by inserting measured
values of Tm, Pm, and P into Eq. �1�. In this way, we could
determine experimentally the r dependence of the tempera-
ture ratio Tex�r� /Ts to allow a direct comparison with the
theoretical one �1− f�� given in Eq. �3�.

IV. RESULTS AND DISCUSSION

A. Response function of a thermocouple

The radial dependence of temperature oscillations was
measured at f =15 Hz, r0=10.5 mm, and helium as a work-

TABLE I. Specific heat ratio � and thermal diffusivity � of helium, argon,
and nitrogen at 290 K.

Working gas Specific heat ratio Thermal diffusivity

Helium 5/3 180
10−6 m2/s
Argon 5/3 17
10−6 m2/s
Nitrogen 7/5 21
10−6 m2/s
ing gas. Abs�Tex/Ts� and Arg�Tex/Ts�, obtained with d=15
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and 50 �m, are shown by solid circles and squares in Fig. 3
as a function of r normalized with respect to r0. The mea-
surements were made with P1 from 0.5 to 5.0 kPa, and the
temperature ratio Tex/Ts was found to be independent of P1.
The theoretical profile �1− f�� is shown in the form of solid
curves in Fig. 3. We see that the r dependence of Tex/Ts

obtained with d=15 and 50 �m qualitatively reproduces that
of �1− f��. However, there exist quantitative disagreements
in both the absolute value and argument between Tex/Ts and
�1− f��: the observed amplitude damping and phase delay
indicate that the thermocouples cannot reproduce the true
temperature oscillation. The deviation of Tex/Ts measured by
the thermocouple with d=50 �m from �1− f�� is larger than
that with d=15 �m, so Tex/Ts would approach �1− f�� with
decreasing the diameter d of the thermocouple. However, it
becomes harder to handle a thermocouple wire when its di-
ameter becomes thinner than 15 �m.

Instead of using a further thinner thermocouple, we tried
to reproduce the theoretical profile �1− f�� from the mea-
sured Tex/Ts. The value of Abs�Tex/Ts� was multiplied by
1.33 �1/�� and 4.78 while Arg�Tex/Ts� was advanced
by 37° �−	� and 75° for the data with d=15 �m and
d=50 �m, respectively. The corrected Abs�Tex/Ts� and
Arg�Tex/Ts�, which are plotted by open circles and squares in

FIG. 3. Radial distributions of �a� the absolute value and �b� the argument of
Tex/Ts and �1− f�� in the tube with r0 /��=5.4. Abs�1− f�� and Arg�1− f��
are shown by solid curves. Solid circles and squares represent the data
obtained with d=15 �m and 50 �m thermocouples, respectively. Open
circles and squares are obtained after the correction described in the text.
Uncertainties in determining the radial coordinate were smaller than the size
of the symbols.
Figs. 3, agree with �1− f�� to within 5%. Therefore, the fol-
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lowing relation is given between Tex/Ts and �1− f�� by using
a complex number Zex=�ei	:

1

Zex

Tex

Ts
� �1 − f�� =

T

Ts
,

and, hence,

Tex � ZexT .

We hereafter call Zex a response function of the thermo-
couple, which converts both the absolute value and argument
of Tex into those of true T. An ideal thermocouple with a
perfect response to temperature oscillation T should possess
Zex=1 ��=1 and 	=0�, but ��1 and 	�0 in any thermo-
couple. Thus, the determination of the response function Zex

enables us to deduce true temperature oscillations T from
measured Tex by using a thermocouple of a finite size.

To examine the behavior of Zex under different experi-
mental conditions, we carried out repeatedly experiments by
changing f , r0 and working gas. We employed the thermo-
couple with d=15 �m rather than that with d=50 �m
because of its better response to temperature oscillations.
Figures 4�a� and 4�b� show Abs�Zex�=� and Arg�Zex�=	 as a
function of f for helium gas. Both � and 	 are found to
depend strongly on f . The value of � corresponding to the
amplitude ratio of Tex to T decreases with increasing f , while
that of 	 corresponding to the phase delay of Tex relative to T
becomes large. This means that the response of the thermo-
couple becomes worse with increasing f .

Figures 4�c�–4�f� show the results obtained when nitro-
gen and argon are used as working gas. Frequency depen-
dences of � and 	 in nitrogen and argon are qualitatively
similar to those in helium, but they are quantitatively differ-
ent from those in helium. The better response in helium than
in nitrogen and argon can be attributed to the possession of a
higher thermal diffusivity � in helium, as listed in Table I. As
a working gas with a high � can easily diffuse heats around

FIG. 4. Frequency dependences of ��=Abs�Zex�� and 	�=Arg�Zex�� of
acoustic waves in a tube filled with different working gases ��a� and �b� in
helium, �c� and �d� in argon, �e� and �f� in nitrogen�. The data obtained by
using different tube radii are found to fall onto master curves. Solid lines
represent fitting lines using Eq. �6� with =0.08.
it, the thermocouple inside the gas can faster reproduce the
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temperature of helium than that of nitrogen and argon. The
results obtained using 2r0=11.5 mm, 21 mm, and 40 mm are
incorporated in Fig. 4. We found that both � and 	 are inde-
pendent of r0.

B. Interpretation of Zex

Tagawa et al. expressed the response of a thermocouple
using the response function Z in a first-order lag system,12

which is given as

Z =
1

1 + i��
, �5�

where � is a time constant for a thermocouple to achieve
thermal equilibrium with the surrounding gas. Equation �5�
is plotted in Fig. 5 in the form of Arg�Z�=−arctan����
against Abs�Z�=1/	1+ ����2 as a dashed curve. The present
data of Zex are incorporated in Fig. 5 for comparison. An
agreement between Zex and Zis fairly good in the range
��0.5, but the discrepancy significantly appears above 0.5.
In particular, in the limit of 	 and Arg�Z� to 0, the value of
Abs�Z� obviously approaches unity, whereas that of � is well
suppressed below unity.

A whole set of � vs 	 data may be phenomenologically
described by the response function Z� in the following form:

Z� =
1 − 

1 + i��
, �6�

where  is a positive number. Now the absolute value of Eq.
�6�, i.e., Abs�Z�� approaches �1−� in the limit of Arg�Z�� to
0. A solid curve in Fig. 5 represents Z� when =0.08. The
agreement with Zex becomes almost perfect over a whole
range of �. Moreover, we found that the value of  does not
sensitively depend on the gas species. The time constant � is
deduced to be 5, 35, and 47 ms for helium, nitrogen, and
argon gases, respectively, by fitting Abs�Z�� and Arg�Z�� to
the data in Fig. 4 �shown by solid curves�.

Forney et al.13 theoretically derived the response func-
tion in the case where the thermal diffusion along a thermo-
couple wire cannot be neglected. The additional parameter 

FIG. 5. The relation between ��=Abs�Zex�� and 	�=Arg�Zex�� obtained un-
der different conditions. Solid and open symbols were obtained by using
d=15 �m and 50 �m, respectively. The dashed curve is drawn by using Eq.
�5�, while the solid and dotted curves by using Eq. �6� with =0.08 and
0.20, respectively.
in Eq. �6� is similar to the term that they used to represent a
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degree of the heat leak through the wire. The parameter 
would depend strongly on the cross-sectional area of the
thermocouple. The data of � and 	 obtained by using the
thermocouple with 50 �m in helium are included in Fig. 5 as
open circles. The data are found to be well fitted to Eq. �6�
with the choice of a larger value of  equal to 0.25, as shown
by a dotted line in Fig. 5. We believe the analysis above to
ascertain the validity of Eq. �6� and the existence of heat leak
in a thermocouple.

As is clear from the argument above, the response func-
tion of a thermocouple Zex is well described in terms of Z�
given by Eq. �6�, particularly when thermal diffusion along a
thermocouple wire is non-negligible. An oscillating tempera-
ture T in an acoustic wave can be reliably determined from
Tex measured with a thermocouple, once the � and 	 data in
Zex are analyzed in terms of Eq. �6�.

V. SUMMARY

We showed the dynamic calibration of a thermocouple to
measure temperature oscillations induced by pressure oscil-
lations in gas-filled tube. Radial distributions of temperature
oscillations were measured and compared with the analytical
solution derived from a laminar oscillating flow theory. We

experimentally determined the response function of the ther-
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mocouple from the difference between them. The response
function Zex is found to be described well by Eq. �6�. The
oscillating temperature T can be accurately determined by
measuring Tex with the thermocouple with its subsequent di-
vision by Zex at the frequency employed.
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