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Abstract 
This paper addremes ball-catching behavior by the 

humanoid robot Saika. The a im of this study is to 
amplement human skalls on  the humanoid in the same 
manner as human performs them. The behavior of 
catching a falling and a thrown ball is  chosen as a n  ex- 
ample of dynamic skdlful manipulation. Considering 
the human behavior, we realize ball-catching behavior 
by three steps: (a) localization of the ball by the viszon 
system, (b) prediction of the ball’s path to  determzne 
the catching point, and (c) reaching out the hand to  
the catching point by a neural network inverse kine- 
matics model. Experimental results demonstrate the 
validity of the catching strategies. 

1 Introduction 
Future robots are expected to be used in an en- 

vironment where hunnans live and work. Humanoid 
robots of similar size, figure and DOFs arrangement 
as human beings’ are considered to have the advantage 
of behaving themselves like a human in such tasks as 
handling tools and communicating by gesture. 

The first humanoid robot in the world, WABOT-1 
WAseda roBOT l), was developed in 1973 by Kat0 
11. Many other humanoid robots have subsequently 
een developed [2, 3, 41. 

On the other hand, some dynamic skillful manip- 
ulations have been studied such as Ping-Pong [5, 61 
and devil sticking [7]. These manipulations were car- 
ried out in an environment where the cameras were 
placed outside of the robot. 

In this work we study dynamic skillful manipulation 
on a humanoid robot where the positional relationship 
between the eyes and arms is designed to be similar 
to that of a human. 13all-catching behavior is chosen 
as an example of dynamic skillful manipulation on the 
humanoid robot S a i h  which is developed for general 
study of humanoid robots. 

2 

i 

The aim of the work 
The aim of the work is to implement human dex- 

terity on the humanoid. Especially, our interest is 
to achieve humanoid’s dexterous manipulations in the 
same manner as human performs them. Therefore, it 
is desired that the humanoid has similar size, figure, 
DOFs arrangement and binocular arrangement as that 
of a human being. 

Figure 1: Humanoid Robot Saika. 

Catching a falling and a thrown ball is chosen as an 
example of human dexterity. We assume the model of 
human ball-catching behavior as: (a) the ball’s local- 
ization in the human’s Cartesian coordinate system 
is done by using visual information, (b) the mapping 
between the coordinate systems of the arms and the 
human’s Cartesian coordinate system is acquired, and 
(c) catching behavior is composed of the ball’s path 
prediction and visual feedback. 

In this work, we do not deal with visual feedback. 
Catching a ball by the humanoid is done only by pre- 
diction of the ball’s path. Based on the assumed model 
of human catching behavior, the following three steps 
are considered necessary for the humanoid to achieve 
the ball-catching behavior; 

e 

e 

e 

3 
3.1 

localization of the ball using the humanoid’s vi- 
sion system, 
prediction of the ball’s path and determination of 
the catching point, 
positioning the humanoid’s hand using the ac- 
quired inverse kinematics neural network model. 

Humanoid Saika 
Mechanical structure 

The humanoid robot Saika is shown in Figure 1. 
The humanoid consists of a head, a torso, and arms. 
It has approximately the size of an adult female, and 
has 12-DOFs in total, 2-DOFs at the neck and 5-DOFs 
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Figure 2: The control system of Saika. 

at each arm. Two CCD cameras with internal pan 
and tilt DOFs are placed in parallel on the head. For 
this work, a cooking basket of 120 [mm] in diameter is 
attached to the left arm as a hand for ball-catching. 

3.2 Control system 
The control system is developed on the basis 

of the distributed computing environment consisting 
of a workstaion and transputers. The motor con- 
troller JSK-T-00s have A/D converters, D/A convert- 
ers, pulse processors, and transputers (INMOS-T225). 
The JSK-T-00 also controls pan and tilt DOFs in the 
cameras by commanding via RS-232C. 

Visual processing is carried out by the JSK- 
IFM/MT-01 [8]. Six JSK-IFM/MT-01 boards are 
used for the right e e and one is used for the left 
eye. The JSK-IFM$vYJ?-Ol has a transputer and a 
Motion Estimation Processor (MEP, SGS-Thomson 
STI3220E) on each board. The MEP can search for 
the region that is most similar to a previously mem- 
orized image. The JSK-IFM/MT-01 is used for the 
real-time tracking of moving objects. 

4 Localization of a ball using visual in- 
formation 

We discuss the localization strategies for the fol- 
lowing objects; (i) a vertically falling ball and (ii) a 
thrown ball. Different methods are used for each ob- 
ject depending on the characteristics of the measure- 
ment conditions. 

4.1 Localization of a vertically falling ball 
The characteristics for the localization of a verti- 

cally falling ball are: 

0 the falling movement is very quick, 
0 therefore there is not enough time for measure- 

ment (it takes about 250 ms] for the ball to move 
through the camera view I , 

0 the quick calculation of 3-dimensional position 
from the measurement is needed (it takes about 
400 [ms] for the ball to reach the catching point 
from the release point), 

Figure 3: The relationship between the depth 
and the parallex. 

0 small change in the distance along the direction 
of the visual axis of the camera. 

Taking these characteristics into consideration, the lo- 
calization is done using a stereo view obtained by the 
binocular camera arrangement. Since the cameras do 
not have a synchronizing mechanism, the vision sys- 
tem cannot obtain the left view image and the right 
view image at the same time in a strict sense (max- 
imum time lag is 33 [ms]). However, in the case of 
the falling ball, the distance between the humanoid 
and the falling ball in depth (distance in Z direction 
in Figure 9) does not change much. Therefore, the 
time lag is not a big problem for the stereo viewing in 
this case. By fixing the relationship of the two cam- 
eras, the calculation of 3-dimensional position from 
the measurement is simplified. 

The relationship between the parallax and the 
depth is shown in Figure 3. The average error is 10 
[mm] in the range of 300-800 [mm] from the camera. 
4.2 

In the localization of a thrown ball, a large change 
of the distance between the ball and the humanoid in 
depth could be a big problem. Because the cameras 
used in this work do not have a synchronizing mecha- 
nism as mentioned above, stereo viewing would not be 
effective for localization. Therefore we use the ball’s 
size to localize the ball in depth. The relationship 
between the ball size n [pixel] on the image and the 
distance between the ball and the camera d [mm] in 
depth is expressed by the following equation, 

Localization of a thrown ball 

where, f is the focal length (820 [pixel]), and d is the 
diameter of the ball (70 [mm]h. The size of the ball 
measured at each depth and t e curve obtained from 
of the Eq.(1) are shown in Figure 4. The average error 
in depth is 13 [mm] in the range of 300-1200 [mm]. 
The resolution of the depth (AZ) at each point of 
distance calculated by Eq.(2) is shown in Figure 5. 
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Figure 4: The re- 
lationship between 
the distance and the 
ball size on the imt- 
age. 
5 Acquisition of 

Figure 5: The reso- 
lution in depth. 

inverse kinematics 
model using the neural network 

The humanoid Saika has five DOFs for each arm. 
Four DOFs (a, b, c, and d in Figure 1) are used to 
determine the hand position and one DOF (e in Fig- 
ure 1) is used for hand's posture control. 

The transformatio:n from the 3-dimensional hand 
position to the four joint angles (inverse kinematics) 
is acquired using a neural network model. After the 
four position controlling joint angles are determined, 
the posture-controllin,g joint is controlled so as to keep 
vertical the plane that includes the normal of the face 
covering the rim of the cooking basket and the rotation 
axis of the posture controlling joint. Each joint was 
then controlled by position feedback. 

5.1 Neural network model 
A three layered neural network with sigmoid func- 

tion is used for acquisition of the inverse kinemat- 
ics. The numbers of neurons are; three for the input 
layer, twenty-five for the hidden layer, and four for 
the output layer. The back propagation algorithm is 
employed to update the weight. 

Direct-inverse modeling is used for the acquisition 
(Figure 6). In the first place, 162 data sets of four joint 
angles that give a hand position within the humanoid's 
working area are prepared. In the second place, a set 
is taken from the 162 data sets and the hand position 
corresponding to the set is calculated from the previ- 
ously prepared forward kinematics model. In the third 
place, the calculated hand position is used as the input 
signal, while the taken, data set is used as the training 
signal. Furthermore, this procedure is iterated for the 
next data set. 

Since the arm has redundancy, the acquisition of 
inverse kinematics is an ill-posed problem. In order to 
avoid this ill-posed problem we prepare the learning 
data of joint angles so as to have a unique relation- 
ship between angles and hand position. To achieve 
this, we give the the following conditions depending 
on the hand position. The norm of joint angle vector 
is minimized when the hand is further out to the side 
than the shoulder, and. the arm dose not interfere with 
the torso when the hand is closer to the center of the 
body than the shou1dt:r. 

5.2 Learning - 
The reduction of total error of the normalized out- 

put in the learning process is shown in Figures 7. 

Neural Network 

J; 
I 

~~~ 

Forward Kinematics 

Figure 6: Acquisition of an inverse kinematics 
neural network model. 

Figure 7: The total error of the normalized 
output in the learning process. 

After learning the 162 data sets for 100,000 cycles 
the average error becomes 5 [mm] when the output of 
the neural network is transformed to position by for- 
ward kinematics and compared with the input position 
data. 

The actual humanoid is also used, instead of for- 
ward kinematics, aiming for the learning without the 
influence of the backlash of the gears and the offsets 
of the origins of joint angles (see 
position is measured by the cameras. 
the 162 data sets for 100,000 cycles the average error 
becomes 52 [mm] when the output of the neural net- 
work is transformed to position with the actual robot 
and compared with the input position data. Since the 
average error is larger than that of the model acquired 
by calculating forward kinematics, the model acquired 
by calculating forward kinematics is adopted for the 
ball-catching experiment. 

6 Catching a falling ball 
By using the position measurement discussed in sec- 

tion 4.1 and the inverse kinematics neural network 
model discussed in section 5 the experiment of catch- 
ing a vertically falling ball is performed by moving 
the hand to a position vertically under the measured 
position of the ball (Figure 9). 

In the experiment a ball of 7 [cm] in diameter falls 
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Figure 8: Acquisition of inverse kinematics by 
seeing its own hand. 

Figure 9: The experiment of catching a verti- 
cally falling ball. 

from above the upper edge of the camera vision with 
0 initial velocity. The distance between the initial 
position of the ball and the catching point is 800- 
900 [mm]. Figure 10 shows the Saika's catching a 
falling ball behavior. 

7 Catching a thrown ball 
In the catching a thrown ball behavior, prediction 

of the ball's path is a key issue to determine the hand 
position to catch a ball. For the ball's path prediction, 
the ball's path in the sagittal plane (y-z plane in Figure 
11) is approximated by a parabola, while the ball's 
path in the horizontal plane (x-z plane in Figure 11) 
is approximated by a line. The prediction was carried 
out by determining the coefficient of the approximated 
parabola and line using the least squares method. The 
first prediction is carried out after getting five data 
points. The prediction is iterated when new data is 
obtained in order to modify the catching point. 

The least squares method is used where the weights 
of the data changes depending upon the reliability of 

data. 

7.1 

each data. Thc lower reliabilities are given to the older 

Prediction of the ball's path on the 
horizontal plane 

Let (x i ,  y/, z i ) ,  and p i  represent the i-th observed 
ball position and the reliability of the i-th data re- 

Figure 10: A scene of the experiment of catch- 
ing a vertically falling ball. 

spectively. The fitting line is represented by 

(3) x = a0 + a1z. 

After the observation of the n-th point the summation 
of the square errors is expressed by 

n 

i=l 

The prediction is done by solving a0 and a1 which 
minimize the El.  Consequently we can obtain the 
fitting line by solving the following equations: 

Let 
n n 

and then, Eq.(5) becomes 

(5) 
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Figure 11: The estimation of the trajectory. 

therefore, a0 and a1 are given by: 

In the experiment the reliability of the data is given 
by: 

The relationships between n-th summations 5’: and 
(n - 1)-th summations S2-I are expressed by the re- 
current formulas: 

p i  = To-’ (0 < T 5 1). (9) 

s,. = 1 + ,s;-1 

(10) S: = + T S ~ - ’  { 
Therefore we can reduce the amount of calculation 
using the above recurrent formulas. 
7.2 Prediction of the ball’s path on the 

sagittal plane 
Let (xi, y;, q), andl pi  represent the i-th observed 

ball position and the reliability of the i-th data re- 
spectively, and let the fitting parabola be represented 
bY 

y = bo + biz + b2z2, (11) 
in the same way as dtscribed in the previous section. 
After getting the n-th data point, the summation of 
the square errors is expressed by 

n 

E2 = C p i ( b 0  + b i z ;  + b2zt - (12) 
i= 1 

The fitting parabola is obtained by solving bo, b l ,  
and b2 which minimize the E2. Consequently the fit- 
ting parabola can be abtained by solving the following 

0 20 40  60 EO 100 120 140 160 
z (cm) 

Figure 12: Fitting a parabola to the observed 
point. 

equations in the same manner as described in the pre- 
vious section. 

The reliability of the data is decided to be the same 
as used in the previous section. 

8 Experiment 
By using the position measurement discussed in sec- 

tion 4.2, the prediction of the ball’s path discussed in 
this section, and the inverse kinematics neural net- 
work model discussed in section 5, the experiment of 
catching a thrown ball is performed. 

A ball, 7cm in diameter, was thrown from about 2 
meters away in front of the humanoid. The panning 
joint of the neck is turned to the front and the tilting 
joint of the neck is turned to 15 degrees above the 
horizontal. Right eye and left eye are turned to  the 
front and 15 degrees above the horizontal respectively. 
A scene of the experiment is shown in Figure 13. 

In this method, the small error in localization 
makes a significant difference in the predicted ball’s 
path near the catching point. Therefore visual feed- 
back is expected to increase the rate of success. 

9 Conclusion 
This work aimed to implement human manners in 

dexterous manipulations on the humanoid. The catch- 
ing of a falling and a thrown ball behavior was chosen 
as an example of dexterous manipulation. First we as- 
sumed the model of human ball-catching behavior as: 
(a) the ball’s localization in the human’s Cartesian co- 
ordinate system is done by using visual information, 
(b) the mapping between the coordinate systems of 
the arms and the human’s Cartesian coordinate sys- 
tem is acquired, and (c) catching behavior is composed 
of the ball’s path prediction and visual feedback. We 
realized the ball-catching behavior by the humanoid 
Saika based on these assumptions. The experiment 
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Figure 13: A scene of the experiment of catching a thrown ball. 

of catching a vertically dropping ball was successful 
though the area was restricted. Catching a thrown 
ball is performed by predicting the ball's path. The 
path prediction is done by introducing the reliability 
of data and fitting to the approximated path using the 
least squares method. Visual feedback in catching will 
be a topic for future research. 
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