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A simple model for the motion of a vortex pair in two-dimensional inviscid flows is presented. In
this model the motion of the vortex pair is expressed by a set of ordinary differential equations for
the dipole moment, the length scale, and the centroid position. The length scale is the distance
between the positive vortex and the negative vortex in the pair. A self-propelling velocity of the
model vortex pair is introduced in response to a wide range of the length scale. If a background flow
is a linear function of the position, the dipole moment and the length scale of the model are exact.
This model works well for a separated vortex pair, although it is not applicable to an asymmetrically
deformed vortex pair. © 2009 American Institute of Physics. �DOI: 10.1063/1.3118648�

I. INTRODUCTION

A dipolar vortex is one of the basic vortical structures of
two-dimensional flows. It contains a pair of equal and oppo-
site vortices, and has often been observed in the atmosphere1

and oceans.2 A dipolar vortex has a self-propelling motion
which can transport fluid mass, momentum, and heat. There-
fore, it is important to understand how background flows
affect the motion of a dipolar vortex.

A numerical study by Kida et al.3 showed that a dipolar
vortex was deformed into a head-tail structure in a coopera-
tive strain flow. Trieling et al.4 confirmed experimentally the
prediction of Kida et al. Furthermore, Trieling et al. studied,
both numerically and experimentally, the motion of a dipolar
vortex separated by an adverse strain flow. On the other
hand, models for the motion of a dipolar vortex on the
�-plane were developed by Hobson5 and Shivamoggi and
van Heijst.6 However, studies of a dipole in other back-
ground flows are less common in literature.

In this paper, the motion of a vortex pair consisting of
two contour-rotating vortices of finite area in a steady back-
ground flow is studied through a simple model. In this
model, the evolution of the vortex pair is governed by a set
of ordinary differential equations for the dipole moment, the
dipole position, and the length scale. The motion of a vortex
pair in various background flows is calculated by the present
model and the validity of the model is discussed by compar-
ing to corresponding solutions of the vortex method.

II. DIPOLE MOMENT OF A VORTEX PAIR

The motion of a vortex pair in a two-dimensional incom-
pressible inviscid flow in an unbounded domain is consid-
ered in the present study. A schematic of the vortex pair is
shown in Fig. 1. The vortex pair consists of equal and oppo-
site vortices of finite area. Positive vorticity and negative
vorticity fill regions �+ and �−, respectively. Then circula-

tion � is given by the following area integral of the vorticity
�,

� = �
�+

��x�dS = − �
�−

��x�dS . �1�

The area of vortices S is given by

S = �
�

dS , �2�

where the domain of integration is �=�++�−. The circula-
tion and the area are constant because the flow is inviscid
and incompressible.

The centroid of the vortex pair xd is defined as the mid-
point between centroids of positive vortex x+ and negative
vortex x−,

x� = �
1

�
�

��

x��x�dS , �3�

xd = �x+ + x−�/2. �4�

The following length scale a is introduced in this study:

a = �x+ − x−� . �5�

This variable, which shows the distance between the positive
vortex and the negative vortex in the pair, plays an important
role in this study.

A flow field induced by the vortex pair is expressed in
terms of a stream function �d as

�d�x� = −
1

2�
�

�

��x��log�x − x��dS�. �6�

The assumption that x is far from the vortex pair gives
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log��x − xd� − �x� − xd�� = log r −
�x − xd� · �x� − xd�

r2

+ O�� r�

r
	2
 , �7�

where r= �x−xd� and r�= �x�−xd�. Substituting Eq. �7� into
Eq. �6� yields

�d�x� =
1

2�r2� � �x − xd� · ez + O�� r�

r
	2
� , �8�

where ez is the unit vector in the z-direction and � is the
first-order moment of vorticity defined by

� = �
�

�x� − xd���x��dS� � ez. �9�

If the second term of the right-hand side of Eq. �8� is negli-
gibly small, Eq. �8� is reduced to the flow field induced by a
point dipole at xd with the dipole moment �. Definition �9� is
applicable to a finite area vortex pair in any shape, and the
dipole moment characterizes the direction and the strength of
the vortex pair.

III. FORMULATION OF THE MOMENT MODEL

In the present study, a moment model7 for a vortex pair
in connection with the dipole moment is proposed. In this
moment model, the vortex pair is represented by three vari-
ables and two constants: the centroid xd�t�, the length scale
a�t�, and the dipole moment ��t� are the variables; the cir-
culation � and the area S are the constants. The motion of the
vortex pair in a background flow is described by a set of time
evolution equations for the above three variables. The deri-
vations of the evolution equations for the variables of the
moment model are described in this section.

First, let us consider the length scale. Substituting Eq.
�3� into Eq. �9� yields the following relation between the
length scale and the dipole moment:

a�t� = 	�t�/� , �10�

where 	= ���. According to Kelvin’s circulation theorem, the
circulation around a material circuit in an inviscid fluid is
invariant with respect to the fluid motion. Therefore, the cir-
culation �� of each vortex is conserved during the vortex
pair evolution. Consequently, the length scale a�t� varies in

proportion to the magnitude of the dipole moment 	�t�.
Next, the evolution equation for the centroid xd of the

vortex pair is discussed. It is expressed as

dxd

dt
= U�xd� + uself�t� , �11�

where U�xd� is the velocity of the background flow at x
=xd, and uself is the self-propelling velocity of the vortex
pair. In a fluid at rest the vortex pair moves with uself parallel
to the dipole moment. This is not the same as the velocity
�� ��dez� �xd

induced by the vortex pair at its own centroid.
When the two vortices in the pair are far apart from each
other, the self-propelling velocity is approximately given as
follows:8

uself = �uself� =
�

2�a
. �12�

Unfortunately, Eq. �12� is inadequate when the vortices are
close to each other.8 If the vortices are in touch each other
and � is a circle of radius R, the self-propelling velocity is
given by

uself =
	

2�R2 , �13�

where R is a constant equal to �S /�. The flow field induced
by this circular vortex pair outside of � is equivalent to the
flow field induced by a circular cylinder of radius R moving
at the same speed with Eq. �13�.9 The self-propelling velocity
should smoothly vary with a�t� between Eqs. �12� and �13�.
Let uself=�a / �k1a2+k2aR+k3R2�, where ki is a constant co-
efficient. On the assumptions that uself satisfies conditions
given by Eq. �12� for a
C0R and Eq. �13� for a=C0R, the
following expression is introduced in this study:

uself =
�

2�

4C0a

�a − C0R��4C0a − R� + 4aR
, �14�

where the constant C0 is the value of a /R when � is a circle.
Finally, the evolution equation for the dipole moment is

derived. Let us consider the conservation of momentum of
the fluid around the vortex pair in the Lagrangian frame
which moves at the same velocity as the vortex pair. A con-
trol volume Vc encloses the vortex pair with a certain margin.
The conservation of momentum is expressed as

d

dt
�

Vc

�udV + �
Sc

�u�u −
dxd

dt
	 · ndS = − �

Sc

pndS ,

�15�

where u is the velocity, p is the pressure, � is the density of
the flow field, and n is the unit vector normal to the control
surface Sc. Here, the velocity u is decomposed into the
background flow U and the induced flow by the vortex pair
�� ��dez�,

u = U�x� + � � ��d�x,t�ez� . �16�

The background flow U�x� is expanded about xd�t� as

y

x

x+

x−

xd

Ω−

Ω+

ω < 0

ω > 0

a
µ

FIG. 1. Schematic of a vortex pair. The region and the centroid of each
vortex are denoted by �� and x�, respectively. The arrow shows the dipole
moment �. The centroid and the length scale of the vortex pair are denoted
by xd and a.
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U�x� = U�xd� + �x − xd�� �U

�x
�

xd

+ �y − yd�� �U

�y
�

xd

+ ¯ .

�17�

In order to obtain the pressure using the velocity, it is as-
sumed that the background flow U is a flow field of constant
vorticity �c. Since the flow field induced by the vortex pair
�� ��dez� is irrotational on the control surface Sc, the pres-
sure is obtained from Bernoulli’s equation for the region of
constant vorticity8,9 as follows:

p

�
= −

��

�t
−

1

2
u2 − �c� + F�t� , �18�

where � is the velocity potential of the irrotational part of u,
� is the stream function of Eq. �16�, and F�t� is an arbitrary
function of time. Substituting Eqs. �8� and �16�–�18� into Eq.
�15� and integrating it, evolution equation for the dipole mo-
ment is obtained as follows:

d	x

dt
= − 	x� �U

�x
�

xd

− 	y� �V

�x
�

xd

,

�19�
d	y

dt
= − 	x� �U

�y
�

xd

− 	y� �V

�y
�

xd

.

These equations are of the same form as the equation derived
from relation �10� by Winckelmans10 and the equations ob-
tained by Roberts11 and Buttke12 in terms of a Hamiltonian
for the incompressible Euler equations. Equation �19� is ex-
act if the Taylor series �17� of the background flow does not
have the higher-order terms. It is also exact if the induced
flow field �6� by the vortex pair does not have the higher-
order moment. Contribution of the higher-order terms to evo-
lution of � when both �d and U include the higher-order
terms are neglected in Eq. �19�. Equations �10�, �11�, �14�,
and �19� constitute the moment model for motion of the vor-
tex pair.

IV. BEHAVIOR OF THE VORTEX PAIR IN LINEAR
BACKGROUND FLOWS

If a background velocity field U is a linear function of
the coordinates x and y, the evolution equation for the dipole
moment �19� has no modeling error. Therefore, the solution
of Eq. �19� represents the dipole moment of an actual vortex
pair in the linear background flow, and it can be obtained
analytically. Behavior of such vortex pairs in the linear back-
ground flows is investigated in this section.

Let us consider the linear background flow given by the
following stream function:

 =
A

2
x2 +

1

2
y2. �20�

Streamlines of Eq. �20� are shown in Fig. 2. Our attention is
restricted to the cases when �A��1. The other cases when
�A��1 or when Eq. �20� has a term of xy with nonzero co-
efficient are omitted here because flow fields for such cases
are obtained by the coordinate rotation of Eq. �20� around the
z-axis.

For intuitive understanding of behavior of the vortex
pair, the angle of the dipole moment �=tan−1�	y /	x� and the
length scale a=	 /� are used instead of the Cartesian com-
ponents 	x and 	y in the following part of this section, al-
though analytic solutions of 	x and 	y are obtained �see
Appendix�. Equations for � and a are derived from Eqs.
�10�, �19�, and �20� as follows:

d�

dt
= − cos2 � − A sin2 � , �21�

1

a

da

dt
= − �1 − A�sin � cos � . �22�

The vortex pair rotates anticlockwise if d� /dt�0, and
clockwise if d� /dt�0. The distance between two vortices in
the pair increases if da /dt�0 and decreases if da /dt�0.
The right-hand sides of Eqs. �21� and �22� show that the
evolution of � and a does not depend on the position xd at
all. Indeed, these equations are solved analytically and the
solutions are obtained as

��t� = − tan−1� tan�At − tan−1��A tan �0��
�A


 , �23�

a�t� = a0� − 1 − A + �− 1 + A�cos 2�0

− 1 − A + �− 1 + A�cos 2��t�
, �24�

where a0 and �0 denote initial values of a and �, respec-
tively. Evolution of the length scale a depends on only the
initial angle �0 and the parameter A of the background flow.
Further, the following relation between � and a is obtained
by dividing Eq. �22� by Eq. �21�:

1

a

da

d�
=

�1 − A�sin � cos �

cos2 � + A sin2 �
. �25�

If A=0, the background flow is a shear flow parallel to
the x-axis. In this case, the angular rate d� /dt is negative
except when �=� /2 and 3� /2. Thus, the vortex pair rotates
clockwise, and then, the moment gradually approaches a di-
rection parallel to the y-axis. This means that the two vorti-
ces in the pair are horizontally aligned. Because the right-
hand side of Eq. �22� is −sin � cos �, the growth rate da /dt
is negative for 0���� /2 or ����3� /2, while positive
for the other � �see Fig. 3�. This relation between � and
da /dt is common to all cases for �A��1. In addition, it is
found from Eq. �25� that the length scale has a local mini-
mum a /a0= �cos �0� at �=0 or �. The evolution of � and a
for various initial angle �0 is summarized in Table I. For

x

y

x

y

(a) (b)

FIG. 2. Streamlines of linear background flows given by = �Ax2+y2� /2.
�a� A=0.36. �b� A=−0.36.
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example, in the case of ���0�3� /2 �region �4� in Fig. 3�,
the vortex pair rotates clockwise and the length scale initially
decreases. The length scale takes the minimum value at �
=�. Thereafter, the vortex pair continues to rotate clockwise
while the length scale increases. On the other hand, in the
case of � /2��0�� �region �3� in Fig. 3�, the length scale
monotonically increases. At the final stage of the evolution,
the direction of the vortex pair approaches �→� /2 �axis �2�
in Fig. 3� and the length scale continues to increase in pro-
portion to time for any case of � /2��0�3� /2.

If 0�A�1, streamlines of the background flow �20� are
elliptic curves, as shown in Fig. 2�a�. In this case, Eq. �21�
gives d� /dt�0 for all �. Hence, the vortex pair always ro-
tates clockwise. Equation �25� for 0�A�1 implies that a
periodically changes with �, and a has the following mini-
mum value at �=0 or � and the following maximum value
at �=� /2 or 3� /2:

�A sin2 �0 + cos2 �0 �
a

a0
� �sin2 �0 + �cos2 �0�/A .

�26�

The length scale a is always larger than the initial value a0 if
�0=0 or � and always smaller than a0 if �0=� /2 or 3� /2.

In case of A=1, the background flow velocity is the
same as the velocity of a rigid-body rotation. In this flow, a
is a constant and d� /dt is the same constant as the angular
rate of the rotating background flow.

If −1�A�0, background �20� is a strain flow with a
constant vorticity �c=−�1− �A��, as shown in Fig. 2�b�. In
contrast with the cases of 0�A�1, the sign of d� /dt for
−1�A�0 depends on �: the angular rate d� /dt is positive
when tan2 ��1 / �A�, while negative when tan2 ��1 / �A�.
The vortex pair rotates to approach �→�−tan−1�1 / �A� or
2�−tan−1�1 / �A� without change in rotational direction, al-
though the vortex pair keeps its initial direction if tan �0

= ��1 / �A�. The length scale a decreases if 0���� /2 or
����3� /2 and increases if � /2���� or 3� /2��
�2� �see Fig. 4�. Equation �25� gives a local minimum of
the length scale a /a0=�cos2 �0− �A�sin2 �0 at �=0 or �, and
another local minimum a /a0=�sin2 �0− �cos2 �0� / �A� at �
=� /2 or 3� /2. The evolution of � and a for various initial
angle �0 is summarized in Table II. For example, if ���0

��+tan−1�1 / �A� �region �7� in Fig. 4�, the vortex pair ro-
tates clockwise and a decreases to the minimum value at �
=�. Thereafter, the pair continues to rotate while a increases.
On the other hand, if �−tan−1�1 / �A���0�� �region �6� in
Fig. 4�, the length scale monotonically increases with clock-
wise rotation. At the final stage of the evolution, the direction
of the vortex pair approaches �→�−tan−1�1 / �A� �axis �5� in
Fig. 4�, and the length scale continues to increase exponen-
tially with time for any case of �−tan−1�1 / �A���0��
+tan−1�1 / �A�. In other instances, if �0=�+tan−1�1 / �A� or
�−tan−1�1 / �A�, the angle � keeps constant, while a expo-
nentially decreases or increases, respectively. The exponen-

TABLE I. Behavior of a vortex pair in the shear flow =y2 /2 �A=0�.

No. �0 d� / dt lim
t→�

� Evolution of the length scale a /a0

�1� 0��0�� /2 Negative 3� /2
Decrease to the minimum value �cos �0� at �=0, thereafter in-

crease

�2� � /2 0 � /2 Constant

�3� � /2��0�� Negative � /2 Monotonic increase

�4� ���0�3� /2 Negative � /2
Decrease to the minimum value �cos �0� at �=�, thereafter

increase

�5� 3� /2 0 3� /2 Constant

�6� 3� /2��0�2� Negative 3� /2 Monotonic increase

(1)
(2)

(5)
(6)(4)

(3)

FIG. 3. Ranges of � for da /dt�0 �shaded area� in the shear flow 
=y2 /2�A=0�. The numbers in this figure correspond to those in Table I.

(1)

(7)
(8)

(2)

(9)
(11)

(5)

(12)

(6)
(4) (3)

(10)

FIG. 4. Ranges of � for da /dt�0 �shaded area� in the strain flow 
= �Ax2+y2� /2 for −1�A�0. The numbers in this figure correspond to those
in Table II.
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tial increase in a at �=�−tan−1�1 / �A� is caused by the char-
acteristics of the background flow, and there is no physical
inconsistency.

Equations and solutions for the length scale a and the
angle of the dipole moment � are exact in the linear back-
ground flow as mentioned before. Therefore the validity of
the system of the moment model in the linear background
flow depends on the modeling of dxd /dt, that is, the approxi-
mation of the self-propelling speed uself.

The self-propelling speed uself introduced in Eq. �14� is
proposed so as to be applicable to vortex pairs in a wide
range of a, although its validity has not been confirmed yet.
Therefore, the validity of Eq. �14� is discussed in Sec. V in
comparison between numerical simulations by the moment
model and the vortex method.

The self-propelling speed uself given by Eq. �14� is intro-
duced on the assumption that the vortex pair is symmetric.
However, there is a possibility that the actual vortex pair is
asymmetrically deformed and broken up into three or more
vortices by the background flow and a vortex-vortex interac-

tion. The moment model has no information on such internal
deformation, and it is probably not applicable to the broken
vortex pair. Therefore, the range of application of the mo-
ment model should be clarified in comparison with behavior
of actual vortex pairs in various background flows.

V. VALIDATION OF THE MOMENT MODEL
BY NUMERICAL SIMULATIONS

In this section, time evolutions of a vortex pair in several
types of background flows are calculated by the moment
model. In order to show the validity of the moment model,
the results of the model are compared to the numerical re-
sults of the equivalent vortex pair calculated by the vortex
method.13 The vortex method gives reliable solution for two-
dimensional Euler equations when there is no boundaries and
the number of vortex elements are sufficient.

In moment model calculations, motions of a vortex pair
are obtained by solving the system of Eqs. �10� and �11� with
Eq. �14�, and Eq. �19� numerically. The value of the coeffi-

TABLE II. Behavior of a vortex pair in the strain flow = �Ax2+y2� /2 for −1�A�0. The constant �A in this table denotes tan−1�1 / �A�.

No. �0 d� / dt lim
t→�

� Evolution of the length scale a /a0

�1� 0��0��A Negative 2�−�A Decrease to �cos2 �0− �A�sin2 �0 at �=0, thereafter increase

�2� �A 0 �A Exponential decrease

�3� �A��0�� /2 Positive �−�A Decrease to �sin2 �0− �cos2 �0� / �A� at �=� /2, thereafter increase

�4� � /2��0��−�A Positive �−�A Monotonic increase

�5� �−�A 0 �−�A Exponential increase

�6� �−�A��0�� Negative �−�A Monotonic increase

�7� ���0��+�A Negative �−�A Decrease to �cos2 �0− �A�sin2 �0 at �=�, thereafter increase

�8� �+�A 0 �+�A Exponential decrease

�9� �+�A��0�3� /2 Positive 2�−�A

Decrease to �sin2 �0− �cos2 �0� / �A� at �=3� /2, thereafter
increase

�10� 3� /2��0�2�−�A Positive 2�−�A Monotonic increase

�11� 2�−�A 0 2�−�A Exponential increase

�12� 2�−�A��0�2� Negative 2�−�A Monotonic increase

(a) (b) (c)

FIG. 5. Evolution of a vortex pair in the adverse strain flow = �−x2+y2� /2. The arrow indicates the dipole moment �, and the line segment perpendicular
to the arrow shows the length scale a of the moment model. Contours show vorticity calculated by the vortex method. Streamlines of the background strain
flow are shown in �a�. The initial conditions of the vortex pair are xd= �0,0�, 	=25.5415, �0=3� /4, and a0=1.0216 �R=� /�8 and �=25�. �a� t=0, �b� t
=0.4, and �c� t=1.6.
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cient C0=a0 /R in Eq. �14� is fixed at 0.9198 after the Lamb–
Chaplygin dipole. The forth-order Runge–Kutta method is
used for time integration with �t=10−4–10−3.

In the vortex method, the vorticity field is discretized by
thousands of vortex elements and the evolution of elements
is obtained from the vorticity equation in the Lagrangian
description. For smoothness and accuracy, the Gaussian ker-
nel is used as a cutoff function. The second-order Adams–
Bashforth scheme is used for time integration with �t= �1
�10−3�– �5�10−3�. An initial condition for the vortex pair is
given by the Lamb–Chaplygin dipole,9,14 which is equivalent
to the initial condition of the moment model. After obtaining
the results of the vortex method, the centroid position, the
length scale, and the dipole moment are calculated from the
vorticity distribution by using Eqs. �4�, �5�, and �9�, respec-
tively.

A. Motion of a vortex pair in a strain flow

Let us consider a vortex pair in the strain flow obtained
by Eq. �20� with A=−1 in order to validate uself given by Eq.
�14�. Two initial cases corresponding to Table II ��5� and �2��
are calculated; �0=3� /4 and � /4. For these cases solutions
�23� and �24� are simplified to

��t� = �0, �27�

a�t� = � a0et, ��0 = 3�/4�
a0e−t, ��0 = �/4� .

� �28�

The distance between vortices exponentially increases if �0

=3� /4 and exponentially decreases if �0=� /4 without rota-
tion. Initial configurations of the vortex pair are illustrated in
Figs. 5�a� and 7�a�. In terms of effect of the strain flow on the
vortex pair motion, the former case is referred to as “ad-
verse” and the latter is referred to as “cooperative” after Tri-
eling et al.4 In both cases, initial values of the centroid, the
length scale, and the dipole moment are given by xd=0, a0

=C0R=1.0216, and 	=a0�=25.5415, where R=� /�8 and
�=25. The value of R and the initial ratio uself /U are the
same as those used by Kida et al.3

Figure 5 shows results for the adverse case correspond-
ing to Table II �5�. In this figure and other similar figures
shown later, the results of the moment model and the vortex
method are plotted together. The thick arrow indicates the
dipole moment vector � and the thick line segment perpen-
dicular to the arrow shows the length scale a of the moment
model. The intersection point of the dipole moment vector
with the line segment of the length scale indicates the cen-
troid of the vortex pair calculated by the moment model. The
thin lines indicate contours of vorticity calculated by the vor-
tex method. Black lines illustrate contours of positive vortic-
ity and gray lines illustrate contours of negative vorticity.
The contour levels are 10%, 30%, 50%, 70%, and 90% of the
initial maximum or minimum of vorticity. Streamlines of the
background flow are also displayed by thin lines in the fig-
ures at t=0.

Vorticity contours in Fig. 5 show that two vortices sepa-
rate with time and the shape of each vortex approaches a
circle. This behavior agrees with the experimental and nu-
merical study by Trieling et al.4 The length scale of the mo-
ment model increases as described in Eq. �28� corresponding
to the separation of vortices obtained by the vortex method.
The centroid position �xd� versus time is shown in Fig. 6. In
order to show the advantage of uself given by Eq. �14�, pro-
files using uself given by Eqs. �12� and �13� are also plotted.

FIG. 6. Position of the vortex pair centroid in the adverse strain flow dis-
played in Fig. 5. The centroid is calculated by the moment model and the
vortex method �solid triangles�. Profiles for the moment model are calcu-
lated using Eqs. �12� �squares�, �13� �inverted open triangles�, and �14�
�circles� as the self-propelling speed, and evolution equation dxd /dt=u�xd�
�crosses�.

(a) (b) (c)

FIG. 7. Evolution of a vortex pair in the cooperative strain flow = �−x2+y2� /2. The initial conditions are xd= �0,0�, 	=25.5415, �0=� /4, and a0

=1.0216 �R=� /�8 and �=25�. �a� t=0, �b� t=0.4, and �c� t=0.8.
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In addition, a profile using the incorrect relation dxd /dt
=u�xd� is also plotted. The result using uself given by Eq. �14�
is in good agreement with the result of the vortex method in
comparison with Eqs. �12� and �13� and dxd /dt=u�xd� in this
case.

Next, let us consider the cooperative strain flow corre-
sponding to Table II �2� in which the distance between two
vortices in the pair decreases �Fig. 7�. Vorticity contours cal-
culated by the vortex method show that this strain flow elon-
gates the vortex pair in the direction of the dipole moment.
This elongated “tail” is observed at the rear side after t
=0.4, as shown in Figs. 7�b� and 7�c�. This deformed vortex
pair is referred to as a “head-tail structure.”3,4 The length
scale obtained by the moment model decreases as described
in Eq. �28� and agrees very well with the result of the vortex
method because the background flow is linear. The centroid
position �xd� versus time is shown in Fig. 8. The result using
uself given by Eq. �14� is the best approximation of the result
of the vortex method in comparison with Eqs. �12� and �13�
and dxd /dt=u�xd� in this case. As far as our many test cal-
culations including the above results show, Eq. �14� gives a
good approximation for uself if the length scale changes with-
out rotation.

B. Motion of a vortex pair in shear flows

In the last subsection, the validity of Eq. �14� in the
cases without rotation of a vortex pair has been shown. Here,
let us consider cases in which both the direction and the
length scale of the vortex pair change with time, and inves-
tigate a relation between deformation of the vortex pair and
the range of application of the moment model. As typical
cases with rotation in linear background flows, motions of
the vortex pair in the shear flow described in Table I ��3� and
�1�� are illustrated. Initial configurations of the vortex pair
are shown in Figs. 9�a� and 11�a�. Initial conditions are set to
xd= �0,0�, 	=1, a0=0.4599�R=0.5�, and �0=3� /4 or � /4.

Figure 9 shows results of the moment model and the
vortex method in the case of �0=3� /4, in which the distance
between vortices in the pair monotonically increases and the
vortex pair rotates clockwise. Vorticity contours obtained by
the vortex method show that the shape of each vortex in the
pair approaches a circle with increasing their distance, and
the symmetry of two vortices is preserved even when the
vortex pair is rotated by this background flow. Figure 10
shows time profiles of the centroid position �xd� of the vortex
pair depicted in Fig. 9. A good agreement is observed be-
tween the present model and the vortex method. As far as our
many test calculations in linear back ground flows including
the above result show, the symmetry of separated vortex

FIG. 8. Position of the vortex pair centroid in the cooperative strain flow
shown in Fig. 7. The centroid is calculated by the moment model and the
vortex method. Meanings of symbols are the same as Fig. 6.

(b)(a) (c)

FIG. 9. Evolution of a vortex pair in the shear flow =y2 /2. The initial conditions for the vortex pair are xd= �0,0�, 	=1, �0=4� /3, and a0=0.4599�R
=0.5�. Velocity vectors of the shear flow are shown in �a�. �a� t=0, �b� t=2, and �c� t=4.

FIG. 10. Position of the vortex pair centroid in the shear flow shown in Fig.
9. The centroid is calculated by the moment model and the vortex method.

047103-7 A moment model with variable length scale Phys. Fluids 21, 047103 �2009�

Downloaded 06 Apr 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



pairs for a�t��a0�=C0R� are preserved. In such cases, Eq.
�14� of the moment model gives a good approximation for
uself even when the vortex pair rotates.

Figure 11 shows results in the case of �0=� /4, in which
the distance between vortices in the pair decreases and the
direction of the pair rotates clockwise. In this case, the vortex
pair is elongated, and asymmetric deformation occurs as
shown by the result of the vortex method in Fig. 11�b�.
Thereafter, the vortex pair is broken up as shown in Fig.
11�c�. Figure 12 shows the centroid position �xd� as a func-
tion of time. The centroid position of the moment model has
remarkable error after the asymmetric deformation at t=2,
because the self-propelling speed uself given by Eq. �14� is
introduced on the assumption of a symmetric vortex pair. In
our test calculations including the above result, the asymmet-
ric deformation of the vortex pair is caused only when a�t�
�a0�=C0R�. For such asymmetric deformation, the moment
model is not applicable.

The moment model itself does not have information on
internal deformation of the vortex pair, while it gives the
value of a�t� / �C0R�. Therefore, it is probably appropriate to
regard a�t��C0R as the range of application of the moment
model in linear background flows. Although there are appli-
cable cases for a�t��C0R, as shown in Fig. 7, it is difficult to
distinguish such cases only by the results of the moment
model. It is noteworthy that the length scale and the dipole
moment obtained by the moment model are always in good

agreement with those obtained by the vortex method even in
the case of the broken vortex pair, because the background
flow is linear in this subsection.

In this section, results of typical cases in which the ini-
tial self-propelling speed of the vortex pair uself is in the
same range of the background flow U are shown. In case of
uself
U, uself plays a dominant role in translation of the vor-
tex pair, but qualitative property of rotation, length scale evo-
lution, and deformation of the vortex pair in the linear back-
ground flows are the same as in the case of uself�U. On the
other hand, the vortex pair is passively advected by the back-
ground flow in case of uself�U. In this case, the moment
model is applicable for a long time because the linear back-
ground flow �20� itself is symmetric. Nevertheless, it seems
meaningless to apply the moment model to the vortex pair
with extremely large deformation even if the vortex pair is
symmetric.

In order to extend the moment model for the vortex pair
in asymmetric deformation, as shown in Figs. 11 and 16, the
introduction of the second- or higher-order moment of vor-
ticity is promising. In another instance, the introduction of an
additional number of dipole elements is also promising.

C. Motion of a vortex pair in a weakly nonlinear
background flow

Let us consider a flow field induced by a point vortex at
the origin as a background flow,

 = −
B

2
log�x2 + y2� . �29�

Space derivatives of the velocity of the above background
flow depend on the position, in other words the velocity is
not a linear function of x and y. Such a background flow is
called “nonlinear” here. The second-order terms of the Tay-
lor series of Eq. �29� are equivalent to a strain flow. The
value of nth-order terms is approximately proportional to
�a / �xd��n. The nonlinear effect on the moment model comes
from these third- and higher-order terms of the Taylor series.
In this subsection, a weakly nonlinear case for a� �xd� is
calculated. The strength B=2 /� is used for calculation. Ini-
tial conditions of the vortex pair are set to xd= �2,0�, a0

=0.4599�R=0.5�, 	=�2 /5, and �=� /3 or −� /3.

(a) (b) (c)

FIG. 11. Evolution of a vortex pair in the shear flow =y2 /2. The initial conditions for the vortex pair are xd= �0,0�, 	=1, �0=� /4, and a0=0.4599�R
=0.5�. �a� t=0, �b� t=1, and �c� t=2.

FIG. 12. Position of the vortex pair centroid in the shear flow displayed in
Fig. 11. The centroid is calculated by the moment model and the vortex
method.
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Figure 13 illustrates results of the moment model and the
vortex method in the case of a separated and rotated vortex
pair similar to the cases of Table I ��3� and �6�� except the
rotation direction. The result of the vortex method shows that
the shape of each vortex gradually approaches a circle �see
Fig. 13�c��. The movement of the vortex pair is well repre-

sented by the moment model, as shown in Fig. 13, which is
similar to Fig. 9. Profiles of the centroid position plotted in
Fig. 14 show a good agreement between the moment model
and the vortex method even in this weakly nonlinear back-
ground flow. Profiles of the length scale are also plotted in
Fig. 15. There is a slight error in Fig. 15 due to the slight
deviation of xd and the truncation of second- and higher-
order terms in Eq. �17�. The moment model sufficiently well
represents the behavior of the vortex pair in this case.

Finally, Fig. 16 shows evolution of the vortex pair in the
case of that the distance between two vortices decreases and
the direction of the vortex pair rotates. This behavior is simi-
lar to the cases of Table I ��1� and �4��. It is observed from
vorticity contours obtained by the vortex method that the
distance between vortices in the pair is reduced and the nega-
tive vortex is elongated by the background flow �see Fig.
16�b��. The centroid of the moment model disagrees with
that of the vortex method at t=4, when the further asymmet-

(a) (b) (c)

FIG. 13. Evolution of a vortex pair in the weakly nonlinear background flow =−�1 /��log�x2+y2� for the initial conditions xd= �2,0�, 	=�2 /5, �0=� /3,
and a0=0.4599�R=0.5�. Streamlines of the background flow are also shown in �a�. �a� t=0, �b� t=4, and �c� t=8.

(a)

(b)

FIG. 14. Position of the centroid of the vortex pair in the weakly nonlinear
background flow shown in Fig. 13. The centroid is calculated by the moment
model and the vortex method.

FIG. 15. Length scale of the vortex pair in the weakly nonlinear background
flow shown in Fig. 13. The length scale is calculated by the moment model
and the vortex method.
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ric deformation is observed. This result indicates that the
moment model is not applicable to this asymmetrically de-
formed vortex pair, as has been already shown in Fig. 11.

VI. CONCLUSION

In the present paper, a moment model for evolution of a
vortex pair in steady background flows was presented. A
vortex pair is modeled by three time-dependent variables and
two invariants: the centroid position xd�t�, the dipole moment
��t�, and the length scale a�t� are the variables, and the
circulation � and the area S of the vortex pair are the invari-
ants. The evolution of the vortex pair is described by a set of
ordinary differential equations for these three variables. The
length scale a is introduced as the distance between two
vortices in the pair and the proportional relation between the
length scale a and the magnitude of the dipole moment 	 is
obtained from Kelvin’s circulation theorem. The self-
propelling speed of the pair uself is also introduced in re-
sponse to a wide range of the length scale. The equation for
the dipole moment � is derived from conservation of mo-
mentum.

The dipole moment � and the length scale a of the mo-
ment model are exact when a background flow U is a linear
function of the coordinates x and y. Therefore, the validity of
the moment model in the linear background flows eventually
depends on the modeling of uself. Numerical results show that
the centroid position xd calculated by uself introduced in Eq.
�14� is in good agreement with the centroid of the actual
vortex pair in comparison with cases using uself given by Eq.
�12� and �13�, if the vortex pair is symmetric.

When vortices in the pair are separated by the linear
background flows, the shape of each vortex approaches a
circle and the symmetry of the vortex pair is preserved as far
as our calculations show. In such cases for a�C0R, uself �14�

gives sufficiently good approximation to the motion of the
separated vortex pair. On the other hand, there is a possibility
that the actual vortex pair asymmetrically deforms when a
�C0R. The moment model is not applicable to such a de-
formed vortex pair because the asymmetric deformation is
not considered in derivation of uself.

The motion of a vortex pair in a weakly nonlinear back-
ground flow was also calculated by the moment model. In
our calculations, behavior of the vortex pair and the range of
application of the moment model are qualitatively the same
as the case of linear background flows.

APPENDIX: DIPOLE MOMENT FOR LINEAR
BACKGROUND FLOWS

Exact solutions of Eqs. �19� for the linear background
flow �20� are given in this Appendix. If A=0 the dipole mo-
ment is

	x�t� = 	x0,

�A1�
	y�t� = 	y0 − 	x0t ,

where �	x0 ,	y0�= �	x ,	y� �t=0. The solutions of Eq. �19� for
A�0 is obtained as

	x�t� = 	x0 cos�At + �A 	y0 sin�At ,

�A2�

	y�t� = 	y0 cos�At −
1

�A
	x0 sin�At .

Both 	x�t� and 	y�t� are sinusoidal functions of time with a
period 2� /�A. The dipole moment obtained by solving Eq.
�19� for A�0 is

(a) (b) (c)

FIG. 16. Evolution of a vortex pair in the weakly nonlinear background flow =−�1 /��log�x2+y2� for the initial conditions xd= �2,0�, 	=�2 /5,
�0=−� /3, and a0=0.4599�R=0.5�. �a� t=0, �b� t=2, and �c� t=4.
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	x�t� = �1

2
	x0 −

��A�
2

	y0	e��A�t

+ �1

2
	x0 +

��A�
2

	y0	e−��A�t,

�A3�

	y�t� = �1

2
	y0 −

1

2��A�
	x0	e��A�t

+ �1

2
	y0 +

1

2��A�
	x0	e−��A�t.

These solutions are independent of the position xd.
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