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Double magnetic tunnel junctions (DMTJs) using half-metallic Co,MnSi Heusler alloy electrodes
were fabricated. Their tunnel magnetoresistance (TMR) effects were then investigated. Large TMR
ratios were observed as 25% at room temperature and as 320% at 6 K. The bias voltage dependence
of tunnel conductance suggests a half-metallic nature of the Co,MnSi electrode. These results show
that high-quality DMTJ with half-metallic Heusler alloy electrodes was fabricated and that the
DMT]J exhibited the expected performance. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3072023]

I. INTRODUCTION

Half-metallic ferromagnets (HMFs), which have full
spin polarization, have attracted great interest because they
are expected to improve the performance of spin electronics
devices such as magnetic random-access memory and mag-
netic sensors considerably. Some Co-based full-Heusler al-
loys (Co,MnAlSi, Co,FeSi, Co,MnSn, etc.) are most prom-
ising as HMFs because they are expected to have both a
half-metallic band structure and high Curie temperature.l_3
Recently, we fabricated a magnetic tunnel junction (MTJ)
with epitaxially grown Co,MnSi (CMS) Heusler alloy elec-
trodes and an Al-oxide tunnel barrier. This MTJ exhibited a
large tunnel magnetoresistance (TMR) ratio of 570% at 2 K.*
We found that tunneling conductance increased sharply with
increasing bias voltage in the tunneling conductance
(dI/dV)-bias voltage (V) curves for this MTJ. This result
suggests the half-metallic energy gap of CMS.

The double MTJs (DMTJs) are the basic structure of
some spin transistors.”” HMFs, used as a spin-injected layer,
are key materials to develop spin transistors. We are trying to
develop an innovative spin transistor using DMTJ with half-
metallic electrodes. For this study, we fabricated high-quality
DMTJs with CMS Heusler alloy electrodes and investigated
their TMR effects.

Il. EXPERIMENTAL METHODS

Single-barrier MTJs with a stacking structure of MgO
substrate/Cr(40)/CMS(30)/A1-O(1.3)/CMS(10)/Ta(5) were
deposited using magnetron sputtering. Each layer’s thickness
is shown in nanometers in parentheses. The Al-O barrier
layer was formed by inductively coupled plasma oxidation of
the metallic Al layer. The prepared MTJs were annealed at
250 °C for 1 h under vacuum with a 350 Oe magnetic field.

The stacked single-barrier MTJs were microfabricated
into DMTIJs using electron-beam lithography and Ar-ion
milling using metallic Ti nanowire as a hard mask stencil.
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Details of the fabrication process for the DMTJs were re-
ported previously.8 The junction area of each MTJ is between
50X 100 and 500 X 1000 nm?. Figure 1 presents a schematic
illustration of the fabricated DMTJ: electrons flow from the
source to the drain through the nanowire. The TMR effects
and G-V curves in the fabricated DMTJs were measured us-
ing standard ac lock-in techniques with modulation of
1-5 mV,, at room temperature (RT) and 6 K.

lll. RESULTS AND DISCUSSION

Figure 2 shows a scanning electron microscopy (SEM)
image of the fabricated DMTJ with junction area of 100
X500 nm?. The 100-nm-wide Ti narrow wire was confirmed
to connect the two MTJs. The distance between two MTJs is
about 1 wm. A gate electrode was also prepared to allow the
device to work as a spin transistor. Figures 3(a) and 3(b)
show typical TMR curves of the DMTJ measured at RT and
6 K, respectively. The difference of switching field of the top
and bottom electrodes is due to large shape anisotropy of top
electrodes. Coercivity of top electrodes in each MTJ was also
different because the edge shapes of two MTIJs are slightly
different. The TMR ratios were 25% at RT and 320% at 6 K.
The large increase in TMR ratio with decreasing temperature
is so far normal for MTJs with CMS electrodes.* But the
TMR ratio is slightly smaller than that of the single barrier
MT]J reported previously4 because of damage incurred during
microfabrication processes. The resistance-area (RXA)
product of the DMTJ was twice as large as the single barrier
MT]J at each junction area, which shows that the DMT]J size
can be controlled with high accuracy using our microfabri-
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FIG. 1. Schematic illustration of a fabricated DMT]J.
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FIG. 2. SEM image of a fabricated DMT]J.

cation process. In addition, almost all TMR curves for the
DMTIs exhibited multiple resistance drops, as shown in Fig.
3, because switching fields of the hard magnetic layer dif-
fered slightly between the two tunnel junctions.

The source-drain voltage (Vpg) dependence of the tun-
neling conductance (dI/dV) for the fabricated DMTJ is
shown in Fig. 4. Bold and thin lines represent curves mea-
sured at parallel and antiparallel magnetic configurations, re-
spectively. A positive Vpg is defined here as the case in
which electron tunneling occurs from the source to the drain.
The dI/dV-Vpg curve shows that tunneling conductance in-
creased sharply with increasing bias of less than 300 mV,
especially for the antiparallel magnetic configuration. The
dl/dV-Vpg curve shape for the DMTJ resembles that of a
single barrier MTJ with the CMS electrode reported
previously.5 This peculiar shape of dI/dV-Vpg curve is in-
ferred to reflect the half-metallic band structure of CMS.
This result demonstrates that a high-quality DMTJ with a
half-metallic CMS electrode was fabricated and that the
DMT]J exhibited the expected performance. Finally, we in-
vestigate the drain current (Ip)-Vpg characteristics in the
DMT], applying the gate voltage. However, we observed no
change in Ip-Vpg characteristic against the gate voltage be-
cause of the leak current from the gate electrode. Therefore,
improvement of the gate electrode structure is necessary to
develop a spin transistor using a DMTJ with half-metallic
Heusler alloy electrodes.
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FIG. 3. (Color online) TMR curves for the DMTJ at (a) RT and (b) 6 K.
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FIG. 4. (Color online) Source-drain voltage dependence of tunnel conduc-
tance for the DMTJ. Bold and thin lines are parallel and antiparallel align-
ments of magnetization, respectively.

IV. SUMMARY

We fabricated DMTJs with a gate electrode using half-
metallic Co,MnSi Heusler alloy electrodes. The DMTJ
showed large TMR ratios of 25% at RT and 320% at 6 K.
Moreover, the half-metallic electronic band structure of
Co,MnSi was observed in the bias voltage dependence of
tunnel conductance. These results demonstrate the fabrica-
tion of high-quality DMT]Js.
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