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Multichannel Photonic Crystal Wavelength Filter
Array for Near-Infrared Wavelengths

Yasuo Ohtera, Teppei Onuki, Yoshihiko Inoue, and Shojiro Kawakami, Life Fellow, IEEE

Abstract—Multichannel wavelength filters consisting of 2-D
photonic crystal (PhC) for the near-infrared wavelength region
(~800 nm) are demonstrated. The filter is a thin-film wavy
multilayer structure and is fabricated by the autocloning method,
which is based on a radio frequency bias sputtering process.
Twelve long-pass-type filter regions are integrated on a common
silica substrate. Sharp cutoff characteristics and almost equal
channel spacing are experimentally verified. To precisely control
the effective lattice constant of PhC, a modulated lattice structure
on the substrate is utilized.

Index Terms—Autocloning, lattice modulation, photonic band
gap (PBG), photonic crystal (PhC), wavelength filter.

I. INTRODUCTION

ULTISPECTRAL imaging is a class of spectroscopic

methods that visualize the 2-D distribution of a space-
mixed state of target objects with different optical absorption/
radiation spectra. Information about the content of constituent
media is extracted by the data processing of the wavelength-
resolved image acquired by photographing them through mul-
tiple optical filters. With the advancement of image sensors,
such imaging technologies, especially those in near-infrared
(IR) wavelengths, have become important in various fields of
research and industry such as medical engineering (mapping of
hemoglobin and melanin density on human skin [1], endoscopic
tissue observation [2]), plasma science (visualization of the
dynamic behavior of the plasma [3]), and remote sensing (land
cover classification by reflection spectra [4]).

Multichannel optical filters and image sensors are the basic
building blocks of such an imaging system. To detect slight dif-
ferences in the reflection or radiation spectrum of the object, or
to measure the exact feature of the spectra, several wavelength-
selective filters with different characteristics are sometimes
needed. For some applications, the transmission spectra of
individual wavelength channels need to be contiguous within
the wavelength band of interest [4].

The ability to integrate such multiple filters on a common
substrate by a single manufacturing process has much merit
from an industrial viewpoint as such a structure is easily assem-
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bled with image sensors and other optical elements and, thus,
helps downsize the whole system.

One way to create such a multichanneled optical filter array
is to make use of the photonic crystal (PhC) structure fabricated
by the autocloning method [5].

Autocloning is a method for fabricating a multilayered-type
PhC and is based on lithography and sputtering [6]. First, a 1-D
or 2-D array of corrugations is prepared on a substrate by litho-
graphy and dry etching. Next, by stacking multiple dielectric
films on it by RF bias sputtering, a structure having refractive
index modulation in both horizontal and vertical directions is
obtained. According to this method, by changing the period of
corrugation (in-plane lattice constant) on the initial substrate
from position to position, it is possible to fabricate multiple PhC
regions with different horizontal lattice structures and common
vertical index profiles by a single sputtering process.

We have so far demonstrated several surface-normal-type
optical components, including wavelength filters for fiber-optic
communication systems by making use of this method [7], [8].
The basic characteristics of autocloning-type PhC wavelength
filters are mainly determined by the thickness and refractive
index of the multilayer. In addition, transmission or reflection
spectra are slightly shifted from those of an ordinary flat mul-
tilayer due to the in-plane corrugation. Therefore, by utilizing
the above property, parallel integration of various filter regions
with different transmission spectra on one substrate is possible.

The multichannel filters we have so far proposed were for the
1550-nm wavelength region [5]. They were Fabry—Pérot-type
bandpass filters utilizing the first photonic band gap (PBG) of
light propagating in the thickness direction.

The aim of this paper is to demonstrate autocloning-type
PhC filters for shorter wavelength range, especially for near
IR (~ 800 nm). Another purpose of this paper is to propose a
structure whose spectrum is more sensitive to the horizontal
shape of PhC.

The key points of this paper are as follows.

1) NbyO5 and SiO, are chosen as film material. (In our
previous work, we used TazO5/SiO2 [5].)

2) We use the upper band edge of the second photonic band.
The waves on the band are more sensitive to the in-plane
layer shape as it is a coupled state of the vertically and
horizontally propagating waves.

3) Long-pass filter characteristics are designed.

4) The in-plane lattice constant of the final PhC with resolu-
tion smaller than that of electron beam (EB) lithography
is controlled by the modulated lattice technique.

5) Twelve channel filters are integrated on one substrate.
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substrate

Fig. 1. Schematic view of an array of wavelength filters consisting of
2-D autocloning-type PhC. The refractive index is modulated in the x- and
z-directions.

II. PRINCIPLE OF OPERATION

Fig. 1 shows a schematic view of the PhC filter. It consists
of a wavy multilayer on a substrate with a periodic array of
grooves and has 2-D modulation of the refractive index in
the x—z plane. Light is incident along the z-axis. The global
feature of the transmission spectrum is governed by the index
profile along the z-axis, while its detail is influenced by the in-
plane lattice constant (p).

Polarization-independent operation is possible by making the
initial lattice geometry square or triangular. However, in this
paper, we employ a polarization-sensitive structure, as shown
in the figure, as such 2-D PhCs have a wider PBG and larger
spectral shift with respect to p than 3-D structures of square
or triangular in-plane geometry. In practice, an additional po-
larizer has to be used to eliminate the unwanted polarization
component for the filter.

Fig. 2(a) shows the dispersion relation of light in the infi-
nitely lying periodic structure. The horizontal axis denotes the
length of the z component (normal to the layer) of the Bloch
wave vector. In this paper, we used the frequency range around
the upper edge of the second band, as indicated by “A” in
the figure. Fig. 2(b) shows the dispersion relation of a similar
spatial lattice with zero index difference (vacant lattice). The
band “B” has a wave vector expressed as

k=G,x+k,2 (1)

where G, = 27 /p is the norm of the reciprocal lattice vector
along the z-axis, k. is the z component of the wave vector,
and & and 2z are the unit vectors along each direction. The
amplitude of the mode “B” oscillates along the x-axis with
the same period as the space lattice. The C; and C, portions
in Fig. 2(a), which inherit the nature of B, are also vibrating
along the x-axis and therefore exhibit large frequency shift with
respect to the lattice constant along the z-axis.

On the other hand, modes D and E in Fig. 2(b) denote
the waves simply propagating in the z-direction. The electro-
magnetic fields of these modes are constant along the z-axis.
Therefore, the field modulations of modes F and G in Fig. 2(a),
which arise from D and E, are relatively small. This leads to the
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Fig. 2. Calculated dispersion relation of light. (a) TE waves (electric field
parallel to the grooves) in a 2-D autocloning-type PhC. Only even symmetric
modes are shown. (b) Waves in a vacant lattice (vanishing index difference).
A: Operating point. Upper edge of the second photonic band. B: Laterally
propagating mode. C1, Co: Modes with laterally vibrating fields. D and E:
Modes propagating in the z-direction. F and G: Almost vertically propagating
mode. H: Lower edge of the second band.
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Fig. 3. Calculated relation between wavelength and in-plane lattice constant
of the lower (H) and upper (A) edge of the second photonic band for the
typical autocloning-type PhC structure. Layer profile is NboOs (n = 2.28,
d =180 nm)/ SiO3 (n = 1.47, d = 180 nm).

small dependence of their frequency upon the in-plane lattice
constant.

Fig. 3 shows a calculated relation between p and the
wavelength of the upper and lower edge of the second band
(indicated by H and A in Fig. 2, respectively) for a typical
autocloning structure. As can be seen, the band edge “A”
(present design) is about four times more sensitive to p than
the band edge “H” (previous study [5]).

Fig. 4 shows an example of the calculation of the dispersion
relation around the upper edge of the second band for PhCs
with common layer thickness and different in-plane lattice con-
stant. The horizontal and vertical axes denote the wavelength
and wavenumber, respectively. The thickness of NbyOs and
SiO5 films are both 180 nm, and the slope of the wavy film
interfaces is 45°. According to this lattice design, multichannel
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Fig. 4. Calculated relation between the z component of the Bloch wave vector
and wavelength for various in-plane lattice constants. Layer profile is the same
as the calculation in Fig. 3.
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Fig. 5. Picture of the 12-channel PhC wavelength filter.

long-pass filters with cutoff wavelength spacing of about 7 nm
are possible.

Note that by appropriately selecting the film materials and
lattice constant, we can design a variety of filters with operation
wavelength ranging from blue to short-wave IR. However, in
this study, we begin with the demonstration of the filters for
near IR (700-900 nm), as such wavelengths have become
more important in various multispectral imaging purposes, as
mentioned in Section I.

III. FABRICATION AND EVALUATION

The photoresist for EB lithography (ZEP-520A, ZEON Co.
Ltd.) was spin coated on a silica substrate. The line and space
patterns of the period of about 400 nm are written on it by an EB
lithography system (type CABL-8000, CRESTEC Co., Ltd.).
Then, the substrate was dry etched through the photoresist
by reactive ion etching. Finally, an alternating multilayer of
20 periods (40 layers in total) consisting of NboO5 (n = 2.28,
d = 180 nm) and SiO3 (n = 1.47, d = 180 nm) was deposited
by RF bias sputtering. The plan view and cross section of the
PhC are shown in Figs. 5 and 6, respectively. In this experiment,
12 square filter regions of 2.3 x 2.3 mm were formed. In-
plane lattice constants ranged from 370 to 425 nm at intervals
of 5 nm.

............. surface

Nb,Oj (bright)
180nmt

SiO, (dark)
180nmt

substrate
(Si0,)

|1—|
p=390nm pHm

Fig. 6. Cross-sectional picture of a filter with p = 370 nm. Dark and bright
layers correspond to SiO2 and Nb2Os, respectively.
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Fig. 7. Measured transmission spectra for each channel of the filter. Long-
wave pass characteristics with almost equal spacing are obtained.

To control the lattice constant of the final PhC with resolution
higher than that of EB scanning, we modulated the individual
groove spacing on the initial substrate. For example, to fabricate
a PhC region of p = 375 nm with minimum EB resolution of
10 nm, a line and space pattern of the period of 370 and 380 nm
are placed alternately. Such microscopic structural fluctuation
in the horizontal direction is smoothened as the bias sputtering
proceeds, and as a result, a PhC having average lattice constant
is produced. In this technique, we utilize the self-healing effect
of the autocloning process [9], which automatically restores
structural defects smaller than the lattice constant.

Fig. 7 shows the measured transmission spectra of each filter
region for TE waves (electric field parallel to the grooves). As
predicted by the dispersion calculation, cutoff wavelengths are
almost equally spaced by 7.1 nm. The spectra of the modulated
lattice regions (p = 375,385,395 nm, etc.) are as sharp as
those of the nonmodulated ones (p = 370, 380 nm, etc.), which
indicates that the former regions can be practically regarded
as uniform PhC. Note that the ripples around the right side
of the cutoff wavelength are caused by the multiple reflections
between the surfaces of the multilayer and can be suppressed
by inserting antireflection (AR) layers near the surfaces, as
described in the following section.

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 10,2010 at 20:22:19 EST from IEEE Xplore. Restrictions apply.



502

04 T ] T L]
0.3F . 1
S 50%
< 10% e
3 02F ’ —| |- §
u‘c_') AA10-50
<
<
0.1F b
0 1 1 1 1
5 10 15 20 25 30
Number of periods of the layers
Fig. 8. Calculated relation between the sharpness of the cutoff and the
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IV. DISCUSSION

In our filters, spectral selectivity (the sharpness of the spec-
tral cutoff characteristics) can be adjusted by changing the
number of multilayers. This is simply because the dependence
of the feature of the spectrum near the cutoff wavelength
of our 2-D structure upon the number of layers is basically
similar to that of conventional flat multilayer. Fig. 8 displays
the calculated relation between the number of periods and the
“sharpness” of the cutoff, i.e., the wavelength range between
10% and 50% of the maximum transmittance for a typical
lattice constant. On the other hand, the maximum transmittance
in the passband can be raised over 90% as the films have
almost no absorption. Therefore, if the number of layers is
increased, the cutoff becomes sharper, while the maximum
transmittance is almost kept constant. So, basically, the se-
lectivity can be designed independently from the maximum
transmittance.

Finally, we would like to discuss the possibility of AR
coatings to reduce the ripples near the cutoff wavelength. As the
ripples arise from the difference between the effective refractive
index of the air, substrate, and multilayer, it can be reduced by
properly inserting AR layers into the interface between the air
and the top surface of the multilayer and the interface between
the substrate and the bottom surface of the layer. The AR layers
may consist of the same film materials as the main multilayers.
Fig. 9 shows an example of the calculation for an AR coating.
This example design was found by repeating finite-difference
time-domain calculation and searching the optimum film thick-
ness of the AR layers that gives the most flat transmission in
the given wavelength range in the passband. Although it is
difficult to perfectly eliminate ripples from all the filter channels
as the effective index (slope of the dispersion curve) of each
2-D structure is not exactly the same, the improvement of the
flatness of the total transmission is possible, as can be seen in
the figure. It might be possible to establish designing rules for
AR coatings on our 2-D structures by utilizing conventional
theories such as impedance matching. It will be conducted in
our future work.
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Fig. 9. Example of the calculation for AR coatings. Upper figure: Without
AR layers. Lower figure: With AR layers consisting of two films on both air and
substrate sides. “H” and “L” denote Nb2Os (n = 2.28) and SiO2 (n = 1.47),
respectively.

V. CONCLUSION

We designed multichannel PhC wavelength filters for the
near-IR band (~ 800 nm) and verified their operation through
fabrication by the autocloning method. In the experiment,
12 long-pass-type filter regions with cutoff wavelength intervals
of about 7.1 nm were integrated on a common silica substrate.
To precisely control the effective in-plane lattice constant of
the final PhC, a modulated lattice structure on a substrate was
utilized. In a future study, we will reduce the reflection near the
cutoff wavelength and apply this component to multispectral
imaging.
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