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Abstract—A hybrid nanorobotic manipulation system inside a
scanning electron microscope (SEM) and a transmission electron
microscope (TEM) is presented. The SEM manipulators have been
constructed with 8 degrees of freedom (DOFs) with three units for
effective TEM sample preparation. The TEM manipulator consists
of a 3-DOF manipulator actuated with four multilayer piezoelec-
tric actuators and a 3-DOF passively driven sample stage. High
resolution and transmission image of TEM is readily used for mea-
surement and evaluation of samples. The stage is premanipulated
by the SEM manipulator for sample preparations inside the SEM.
This methodology is called the hybrid nanorobotic manipulation
so as to differentiate it from those with only an exchangeable spec-
imen holder. To show the effectiveness of the system, the Young’s
modulus of a carbon nanotube (CNT) was measured to be 1.23 TPa
inside a TEM after being premanipulated inside the SEM. With
this system, we can measure the inner diameter of a CNT and im-
prove the accuracy in measuring the Young’s modulus of a CNT.

Index Terms—Carbon nanotubes (CNTs), electron microscope,
nanorobotic manipulation, nanotechnology, Young’s modulus.

I. INTRODUCTION

NANOMANIPULATION has received much more atten-
tion than ever, because it is an effective strategy for the

property characterizations of individual nanoscale objects and
the construction of nanoscale devices to realize high-integra-
tion, multifunction, low-energy consumption, and so on. To ma-
nipulate nanoscale objects, they must be observed with a reso-
lution higher than nanoscale. Hence, a manipulation system and
an observation system, e.g., a microscope in general, are neces-
sary for nanomanipulations.

Scanning probe microscopes (SPMs), such as scanning
tunneling microscopes (STMs) or atomic force microscopes
(AFMs), have functions of both observation and manipula-
tion. The feasibility has been shown by the first practice on
nanomanipulation demonstrated by Eigler and Schweizer. An
STM is applied for positioning individual Xe atoms on a nickel
surface with atomic precision at low temperature [1]. Hertel
et al. applied an AFM to bend and translate carbon nanotubes
(CNTs) on a substrate [2]. Their high resolution makes them
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Fig. 1. Strategies of nanomanipulation with microscopes.

capable of atomic manipulation; however, their observation
space is too narrow and constrained in a plane.

Electron microscopes, such as scanning electron microscopes
(SEMs) and transmission electron microscopes (TEMs), show
their uniqueness in the capability to contain an independent
manipulator inside the specimen chamber for three-dimen-
sional (3-D) manipulation. High resolution and transmission
images of TEMs are useful for the measurement and evaluation
of nanoscale objects. Some groups have demonstrated ma-
nipulations using a piezotube-driven nanomanipulator inside
the specimen holder: Kizuka et al. constructed a manipulator
inside a high-resolution TEM (HRTEM) to investigate atomic
scale contact and noncontact scanning on gold surfaces [3].
Cumings and Zettl demonstrated a sliding motion between
different layers of multiwalled CNTs (MWCNTs) inside a
TEM [4]. However, the specimen chamber and observation
area of the TEM are too narrow to contain manipulators with
complex functions. Special sample preparation techniques are
also needed.

Our previous works have shown a nanorobotic manipulator
constructed inside a field-emission SEM (FE-SEM) that can be
applied for quite complex nanomanipulations [6]–[8]. However,
the resolution of an SEM is generally one order of magnitude
lower than that of a TEM. Fig. 1 shows the strategies of nanoma-
nipulations with different kinds of microscopes [8]. Before an
ideal microscope can be invented, it is a practical strategy to
combine different microscopes so as to take both the resolution
and complexities into account
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Fig. 2. Configuration of a hybrid nanorobotic manipulation system.

Fig. 3. Schematic diagram of the hybrid nanorobotic manipulation system.

In this paper, we propose an exchangeable manipulator be-
tween an FE-SEM and a TEM [9], [10]. The configuration is
as shown in Fig. 2. The strategy is called hybrid manipulation
so as to differentiate it from those with only an exchangeable
specimen holder. The most important feature is that it contains
several passive degrees of freedom (DOFs), which makes it pos-
sible to perform relatively complex manipulations while a com-
pact volume can be installed inside the narrow vacuum chamber
of a TEM.

II. HYBRID NANOROBOTIC MANIPULATION SYSTEM

The hybrid nanorobotic manipulation system integrates a
TEM nanorobotic manipulator (TEM manipulator) into an SEM
nanorobotic manipulator (SEM manipulator). Fig. 3 shows the
schematic diagram of the hybrid nanorobotic manipulations
system. The TEM manipulator can be set inside an SEM and
a TEM for sample preparation. It is also mounted a passively
driven sample stage. The stage is premanipulated by the SEM
manipulator for sample preparations inside the SEM. The
methodology is named the hybrid nanorobotic manipulation
so as to differentiate it from those with only an exchangeable
specimen holder. This system can realize an efficient sample
preparation with a sufficiently wide working space of SEM ma-
nipulators and sufficiently high resolution to identify nanoscale
objects with a TEM.

In this paper, an FE-SEM (JEOL, JSM-6500F) and a TEM
(Hitachi, H-800) are used. Their specifications are listed in
Table I. The resolution of H-800 is ten times higher than that

TABLE I
SPECIFICATIONS OF FE-SEM (JSM-6500F) AND TEM (H-800)

Fig. 4. Scale of manipulated objects through TEM and SEM manipulations.

of JSM-6500F; it is of subnano order. On the other hand, the
observation space of JSM-6500F is approximately 10 000 times
larger than that of H-800. Hence, TEM is well suited to measure
and evaluate nanoscale objects, and SEM is preferred for setting
manipulators and samples for efficient sample preparation.

A. Passively Driven TEM Sample Stage

The space of a TEM sample chamber is quite narrow and
strictly limited due to the principle of a TEM, which includes
a high vacuum environment, short distance between an upper
and a lower polepiece, short working distance, and so on. These
space limitations cause the difficulty of constructing multi-DOF
manipulation systems inside a TEM sample chamber. Fig. 4
shows the scale of manipulated objects through SEM and TEM
manipulations. The working space of a TEM manipulator is also
much smaller than that of an SEM manipulator with normally
used actuators. If the actuation mechanism is installed in the
outside of a sample chamber, it has a high cost and is limited
at the reconstruction of a TEM. On the other hand, manual ad-
justment can be reached only m from the positioning
resolution of a sample. Hence, it is difficult to adjust the po-
sition of a sample within the working area of the TEM ma-
nipulator manually. Here, we propose a sample stage passively
driven by SEM nanorobotic manipulators for coarse positioning
adjustment of TEM samples. Classification of the passive driven
mechanism is given here and shown in Fig. 5: (a) friction type,
(b) screw type, (c) plastic deformation type, (d) elastic defor-
mation type, (e) electrostatic type, and (f) magnetic force type.
Types (a)–(c) are relatively easy to be constructed and used as
disposable. Types (d)–(f) have relatively high endurance; how-
ever, their complex mechanisms are not easy to be constructed
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Fig. 5. Positioning mechanisms of passive sample stage. (a) Friction type.
(b) Screw type. (c) Plastic deformation type. (d) Elastic deformation type.
(e) Electrostatic force type. (f) Magnetic force type.

with a sufficiently high positioning resolution. In this paper,
type (c) is applied for the mechanism of the passively driven
stage. The hinge beams of a TEM sample stage are plastically
deformed by the SEM manipulator to be set within the working
area of the TEM manipulator.

Fig. 6 shows the schematic diagram of a constructed passively
driven sample stage. Samples are fixed at the tip of the sample
stage. The sample stage has two holes; one is used for driving by
SEM manipulators and the other is used for fixation on a TEM
sample holder. The two thin beams and a plate are driven in the

-, -, and -directions, for the -direction by bent of two
beams [see Fig. 6(b)], for the -direction by tensile and com-
pressive bent of two beams [see Fig. 6(b)], and for the -direc-
tions by twist bent of a plate and beams [see Fig. 6(c)]. Fig. 7
shows the configuration of a passively driven sample stage and
an end-effecter of the SEM manipulator.

To avoid the magnetic field produced by processing, a non-
magnetic metal is needed. We have always used aluminum [9],
[10]; however, a relatively large elastic deformation is not suit-
able for precise operation, and this causes the error of the stage
movement at plastic deformation. In this paper, indium and lead
are used as the low-strength material. Fig. 8 shows the plastic
deformation of an indium passively driven sample stage at each
movement. On the average of ten 20- m movements, the
positioning resolutions are 12 m in the -direction (po-
sitioning error: 6 m), and 15 m in the -direction (po-
sitioning error: 5 m). These values are 5 and 2 times

Fig. 6. Schematic diagram of a passively driven sample stage. (a) 3-D view.
(b) Top view. (c) Side view.

Fig. 7. Schematic diagram of a passively driven sample stage and an
end-effecter of the SEM manipulator.

higher positioning resolution and 14 and 3% low positioning
error compared with the aluminum stage.

B. TEM Nanorobotic Manipulation System

Fig. 9 shows the 3-D schematic diagram of the TEM nanoma-
nipulator. It consists of four multilayer piezoelectric devices,
two two-hinge beams, a plate for sample fixation, and a base.
All parts are made of aluminum to avoid the magnetic field
produced by processing. The two hinge beams are used for the
translational movements in the - and -directions, as shown
in Fig. 9(b) and (c).

Fig. 10 shows the overview of the constructed TEM nanoma-
nipulator. The TEM manipulator can be installed inside a
normal-type side-entry TEM sample holder, which has an
inner diameter of 7 mm, as shown in Fig. 11. It is set on the
side-entry-type TEM sample holder, as shown in Fig. 12. The
tip part is able to be removed for setting on the SEM manipu-
lator. The specifications of the TEM manipulator are listed in
Table II.
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Fig. 8. Plastic deformation of the passively driven sample stage.
(a) X-direction. (b) Y -direction.

Fig. 9. 3-D schematic diagram of a TEM nanorobotic manipulator.
(a) Overview. (b) Top view. (c) Side view.

Fig. 10. TEM nanorobotic manipulator (top view).

C. SEM Nanorobotic Manipulation System

The SEM manipulators have been constructed with a max-
imum of 16 DOF with four units [6]–[8]. The characteristics of
SEM manipulators include a sufficiently wide working space
and multiprobes with multiunits for preparing samples. In

Fig. 11. TEM manipulator inserted inside a TEM sample holder.

Fig. 12. TEM sample holder installed the TEM manipulator.

TABLE II
SPECIFICATIONS OF A HYBRID NANOROBOTIC MANIPULATION SYSTEM

Fig. 13. SEM nanorobotic manipulators.

this paper, SEM manipulators are reconstructed to be 8 DOF
with three units for integration of the TEM manipulator. The
overview of SEM manipulator is shown in Fig. 13. A gas
introduction system is equipped on the SEM, and it can be
readily used for nanofabrication.

Unit 1 is used for driving the TEM manipulator and the fix-
ation of samples. Unit 2 is used for driving the passive sample
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Fig. 14. Schematic diagram of a buckled CNT for measurement of its bending
modulus.

stage of the TEM manipulator, which will be described in Sec-
tion II-A. Unit 3 is used for the fixation of samples. The speci-
fications of the SEM manipulators are listed in Table II.

III. IN SITU MEASUREMENT OF YOUNG’S MODULUS

OF A CNT INSIDE THE TEM

To demonstrate the effectiveness of the hybrid nanorobotic
manipulation system, the elasticity of an MWCNT is measured
inside a TEM with in situ force measurement using an AFM
cantilever.

A. Model of Measurement of Young’s Modulus of a Nanotube
by the Buckling Process

Fig. 14 shows the analytic model for the measurement of the
elastic modulus of a CNT by the buckling process. Fig. 14(a) and
(b) shows the continuous buckling process of a CNT. Assuming
that the CNT is a continuous model, from Euler’s formula and
force balance relations, the following equations can be obtained:

(1)

where and are the buckling forces applied to a CNT,
is the difference of reaction force by an AFM cantilever, is
the spring constant of an AFM cantilever, is the Young’s
modulus of a CNT, and are the distance between two ends
of the buckled CNT, and is the geometrical moment of
inertia of a CNT. In this equation, and are corrected by the
multiplication of : 0.8, which is recommend by the Structural
Stability Research Council (SSRC) [11]. From these equations,
the Young’s modulus of a CNT is as follows:

(2)

where and are the outer and inner diameters of a
CNT. The values of , , , , , , and are
measured from TEM images, and are calculated values
from , and .

Fig. 15. Sequential TEM photographs during buckling of a MWCNT. (a)
Before pushing. (b) After pushing.

B. In Situ Measurement of Young’s Modulus of a CNT Inside
a TEM

In this experiment, MWCNTs synthesized by the arc dis-
charge method are used [12]. First, a CNT is picked up on an
AFM cantilever (Olympus OMCL-TR400PB, : 0.03 N/m)
from bulk samples through electron-beam-induced deposition
(EBID) [13]. The AFM cantilever is set on a passive sample
stage and it is positioned within the working area of the TEM
manipulator, as presented in Section II-A.

Fig. 15 shows two sequential TEM photographs during the
buckling of an MWCNT ( : 14.3 nm, : 3.2 nm). One
end of a CNT is fixed on an AFM cantilever by EBID inside a
SEM the other end is adhered on a tungsten needle probe by van
der Waals forces. From these images, the parameters are mea-
sured as : 0.447 m, : 0.318 m, : 2.36 m, : 2.10 m,
and : 84.0 nm. The values of and are calculated as 2.41
and 2.12 m. Hence, the elastic modulus of this CNT is

calculated to be TPa. This value is same order with

TPa from theoretical analysis [14] and experimental results
[15]. Comparing with the in situ SEM measurement at same
experimental parameters (maximum image resolution: 1.5 nm,
JSM-6500F), relative error is caused by
the measurement error on the diameter of a CNT. It is not pos-
sible to measure the inner diameter of a CNT by SEM, hence
0.2% relative error is caused : 0 on (2). From the in situ
measurement inside a TEM, we can measure the inner diameter
of a CNT and improve the accuracy in measuring the Young’s
modulus of a CNT.

IV. CONCLUSION

A hybrid nanorobotic manipulation system, which is inte-
grated into a nanorobotic manipulator inside a TEM and an
SEM, has been proposed. The TEM nanomanipulator was
constructed with a 3-DOF unit activated with four multilayer
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piezoelectric devices and a passive sample stage driven by
SEM nanorobotic manipulators. The system is realized with
a sufficiently wide working space through the SEM nanoma-
nipulator and a sufficiently high resolution with a TEM for
identification of nanoscale objects with efficient and complex
nanomanipulations. To demonstrate the effectiveness of the
system, the elasticity of a CNT was measured to be 1.23 TPa
inside a TEM after premanipulation inside a SEM.
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