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Abstract—This note discusses a relationship between the Hankel singular
values and reflected zeros of linear systems. Our main result proves that
the Hankel singular values of a linear continuous-time system increase (de-
crease) pointwise when one or more zeros of the transfer function are re-
flected with respect to the imaginary axis, that is, move from the left-(right-
)half to the right-(left-)half of the complex plane. We also derive a similar
result for linear discrete-time systems.

Index Terms—Hankel singular values, linear continuous-time system,
linear discrete-time system, reflected zeros.

I. INTRODUCTION

The study of the Hankel singular values of linear dynamical sys-
tems is an important subject since they play crucial roles in many fields
of linear system theory. One of the well-known examples is approxi-
mation of dynamical systems such as balanced model reduction and
Hankel norm approximation [1]–[4], where the Hankel singular values
give a priori theoretical upper bound of the infinity norm of approxi-
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mation error. Other practically important issues can be seen in the field
of signal processing theory, where the Hankel singular values are re-
ferred to as the second-order modes. They provide the optimal dynamic
range of analog filters [5], [6], i.e. the highest ratio of the maximal and
minimal signal levels that can be processed in the filters. Also, in the
literature on digital signal processing, it is well known that the Hankel
singular values characterize the minimum attainable value of roundoff
noise [7], [8] and statistical coefficient sensitivity [9], [10] of digital
filters.

Our main result is to derive a pointwise inequality that relates the
Hankel singular values to reflection of the zeros of the transfer function.
For linear continuous-time systems we establish the fact that, when one
or more zeros of the transfer function are reflected with respect to the
imaginary axis, the Hankel singular values increase or decrease point-
wise. We also derive a similar result for linear discrete-time systems:
we show that, the Hankel singular values of a discrete-time system in-
crease or decrease pointwise when one or more zeros of the transfer
function are relfected with respect to the unit circle. Although a part of
these topics is also mentioned in [11], our result to be presented in this
note will offer further significant insights into the linear system theory.
Details on the contribution of this note with respect to [11] will be dis-
cussed in Section IV.

Throughout this note, we will use the following notations. � �

denote the sets of real numbers, complex numbers and integers, re-
spectively. ��� and ��� respectively denote the sets of � � �

real matrices and � � � complex matrices. ���� and ���
� respectively

stand for the transpose and the complex conjugate transpose of a ma-
trix ���. The symbol ������� for � � �� �� � � � � � denotes the eigenvalues
of ��� � ���. When the eigenvalues are all real, they are always ar-
ranged in decreasing order, i.e. ������� � ������� � � � � � �������.

II. HANKEL SINGULAR VALUES

We consider an � -th order single-input/single-output linear contin-
uous-time or discrete-time system described by

�����	� � �������	� � 


��	�� ��	� � ����	� � ���	�� 	 � � (1)
or����	� �� � �������	� � 


��	�� ��	� � ����	� � ���	�� 	 � � (2)
In both cases, ��	� � ��� is the input, ��	� � ��� is the output,
����	� � ��� is the state, and��� � ��� , 


 � ���,  � ��� and
� � ��� are real coefficients. The transfer function is represented as

���� � �� ����� �������


 (3)

where � � � (Laplace transform) for continuous-time systems and � �
� (�-transform) for discrete-time systems. Throughout this note, the
system ����� 


� � �� is assumed to be asymptotically stable, controllable,
and observable.

For continuous-time systems, the solutions��� and��� to the following
Lyapunov equations are called the controllability Gramian and the ob-
servability Gramian, respectively:

������ � ������
� � �







�
� ���

�
���������� � �

�
� (4)

In the discrete-time case, the controllability and observability Gramians
are given from the following Lyapunov equations:

��� ����������
� � 







�
� �������

�
������ � 

�
� (5)

In both cases, ��� and ��� are symmetric and positive definite, i.e. ��� �
���
�
� � and��� � ���

�
� �, because the system ����� 


� � �� is assumed

to be asymptotically stable, controllable and observable.
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The Hankel singular values of ����, which are denoted by
��� ��� � � � � �� , are defined as the positive square roots of the eigen-
values of the matrix product ������, i.e.

�� � ����������� � � � � 	
 (6)

Throughout this note, we assume that the Hankel singular values are
arranged in decreasing order, i.e. �� � �� � � � ��� . It is well known
that the Hankel singular values are invariant under similarity transfor-
mations of the state. This means that the Hankel singular values depend
only on the transfer function.

III. PROBLEM STATEMENT

The purpose of this note is to reveal a relationship between the
Hankel singular values and reflected zeros of the transfer function in
an explicit form. To this end, we first consider the following minimum
phase transfer function

���� ���� � �
�� � ����� � ��� � � � �� � �� �

�� � ���� � �� � � � �� � ��
� � � 	 (7)

where � is a real nonzero constant, � and �� for � � � � 	 and
� � � � � are respectively the poles and zeros of ����. Since
���� ���� is a stable and minumum phase system,�����,������ � �
for continuous-time case and ���, ���� � � for discrete-time case. From
(7), we define non-minimum phase transfer functions as

������ ����� ��������� ����	� �

��	
��
	�� ���� ����� (8)

������ ����� ��������� ������ ��

���������� ���� ����� (9)

for some �. In the continuous-time case, the replacement �� � ��� �
�� � ��� � means that ��’s of ���� ���� are reflected with respect to
the imaginary axis. In the discrete-time case, the replacement �� �
��� � �� � ��� �� means that ��’s of ���� ���� are reflected with re-
spect to the unit circle.1 If this replacement is carried out for all �, the
resultant system becomes the maximum phase system, which is de-
noted by ��
� ����. Throughout this note, it is assumed that no pole-
zero cancellations occur in the family of ���� ����, ��
� ���� and
������ and the family of���� ����,��
� ���� and������. Also, it is
easy to see that these two families have identical magnitude responses:
����� ������ � ���
� ������ � ��������� holds in the contin-
uous-time case, and ����� ���

�	�� � ���
� ���
�	�� � ������

�	��
holds in the discrete-time case.

Our contribution in this note is to derive a pointwise inequality of
the Hankel singular values of ���� ����, ��
� ���� and ������. This
result will be presented in the next two sections.

IV. HANKEL SINGULAR VALUES AND REFLECTED ZEROS

Our main result will be derived from a description of the Gramians
of spectral factors using the bounded-real Riccati equations. Although
this approach can be applied to limited classes of transfer functions,
the same conclusion can be derived for the other classes of transfer
functions by making use of bilinear transformation or frequency trans-
formation.

Before showing our main result, we first need to give some mathe-
matical preliminaries on these concepts.

1Letting � � � � with � � � � �, we know that the roots of ��� � are
given as � �� , i.e. the reciprocal conjugate of � . Hence the roots of ��� �
can be interpreted as the zeros that are reflected from � with respect to the unit
circle.

A. Preliminaries

We first discuss state-space description of spectral factors using the
bounded-real Riccati equation for continuous-time systems. This is
summarized in the following two lemmas.

Lemma 1 ([12]–[14]): Let a continuous-time system ���� � � �
�������� � ��������� be bounded-real, i.e. let �������� � �� for all � and
some real constant �. Also, define �� � ��� �� and assume �� � �.
Then, there exists a positive definite symmetric matrix ��� satisfying the
following bounded-real Riccati equation:

���


��� � � �� �� �� ���



���� �� �� �� �� ���



���������
��� � ����� � �
 (10)

Any solution ��� to (10) lies between two external solutions, i.e. � �

��� ��� � ��� � ��� �
�. The matrix ��� ��� is the unique solution to (10)
such that the eigenvalues of��������������
��� ������ are all in the left-half
plane. The matrix ��� �
� is the unique solution to (10) such that the
eigenvalues of ���� ����������
��� � ����� are all in the right-half plane.

Lemma 2 ([13], [14]): Let ���� � �������������������� be bounded-
real and let��� be a solution to (10). Also, define ��� � �����
��� ���������.
Then, the system���� � �������������������� is a spectral factor of����,
i.e. ����������������� � �� holds for all�. The system ����� ���� ���� ��
in ���� is asymptotically stable and controllable because ����� ���� ���� ��
in ���� is assumed to be asymptotically stable and controllable.

Spectral factors for discrete-time systems can be also described in
state-space form in a similar manner to the continuous-time case. Such
a description is provided by the following lemma, which is obtained as
a consequence of [15], [16].

Lemma 3: Let ���� � � � �������� � ��������� be bounded-real, i.e.
�����	��� � �� for all �. Then, there exists a positive definite sym-
metric matrix ��� satisfying the following discrete-time bounded-real
Riccati equation:

��� ����


� �� �� � � ���



���� ����


� �� �� �� ���


���������
� �� �� �� ����� � � (11)

where ��� � �� � �� � ���


� �� �� �. Any solution ��� to (11) satisfies

� � ��� ��� � ��� � ��� �
�, where ��� ��� and ��� �
� are the external
solutions such that the eigenvalues of ��� � ����������
� �� �� �� ����� are all
inside the unit circle and all outside the unit circle, respectively. Also,
let ��� � �����
� �� �� � � �������� and consider the system ���� � � �
������������������. Then,���� is a spectral factor of����, i.e. �����	����
�����	��� � �� holds for all �, and ����� ���� ���� �� is asymptotically
stable and controllable.

In addition to the above well-known theory, we give the following
lemma that offers a simple description of the Gramians of spectral fac-
tors.

Lemma 4: Let ���� ����� be the controllability and observability
Gramians of a bounded-real system ����� ���� ���� �� with the transfer func-
tion ����. Also, let ���� ����� be the controllability and observability
Gramians of ����� ���� ���� �� with the transfer function ����. Then, the
following equations hold:

��� ���� (12)

������� ���� (13)

where ��� is a solution to (10) or (11).
Proof: Here we give the proof for continuous-time systems. The

proof in the discrete-time case can be derived in a similar way and is
omitted for brevity.

Eq. (12) is trivial from the state-space representations of ���� and
����.

Eq. (13) is proved as follows. Since ����� ���� ���� �� is assumed to be
asymptotically stable, a solution ��� � ��� 
 � � to (10) can be repre-
sented as

��� � ��� �    (14)
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where ��� � ���� � � and ��� � ��� � � � are given as the solutions to
the following Lyapunov equations:

������� ������� � � ���� ��� (15)

������� � � �� �� � � � �� �� �� �� ���� ��	���������� � �����
 (16)

From (4) and (15), it is obvious that ��� � ���. Moreover, from (16) and
��� � ��������� � �����	��, it follows that ��� � ���. These relationships
show (13).

Before leaving this subsection, we introduce some well-known prop-
erties of bilinear transformation and frequency transformation.

Lemma 5: Consider a continuous-time transfer funtion��� and the
discrete-time system���� given by the bilinear transformation

���� � 
� � �

� � �

 (17)

Then, the followings hold:
1) The poles and zeros at ����� � �, ����� � �, and ����� � �

are respectively mapped into ��� � �, ��� � �, and ��� � �.
2) Let a pair of reflected zeros of ��� be �� and ����, and let ��

and ��� be respectively the zeros mapped from �� and ���� by
the bilinear transformation. Then, ��� � ����� holds, i.e. ��� is
given by reflecting �� with respect to the unit circle.

3) The Hankel singular values of���� are the same as those of���.
Lemma 6: Consider a discrete-time transfer funtion ��� and an-

other discrete-time transfer function ���� that is given by the fol-
lowing first-order frequency transformation

���� � 
� � �

�� ��
(18)

where � � is an arbitrary constant satisfying � � ��� � �. Then,
the followings hold:

1) The poles and zeros of ��� at ��� � �, ��� � �, and ��� � � are
respectively mapped into ��� � �, ��� � �, and ��� � �.

2) Let a pair of reflected zeros of ��� be �� and �����, and let ��
and ��� be respectively the zeros mapped from �� and ����� by the
frequency transformation. Then, ��� � ����� holds. In particular,
� � � and � � � are respectively mapped into � � � and
� � ���.

3) The Hankel singular values of���� are the same as those of���.
Remark 1: The proof of the statement 3) of Lemma 6 is given in

[17].

B. Main Result

We now reveal the relationship between the Hankel singular values
and reflected zeros of the transfer function.

First, we consider the case where� � � holds in ���, i.e. ���
is non-strictly proper. For this transfer function, the Hankel singular
values and reflected zeros are related by the following proposition.

Proposition 1: Let ��� ����, ��� ���� and ����� be the
linear continuous-time or discrete-time transfer functions that are
respectively defined in Section III, and assume that � �� �. In the
discrete-time case, it is also assumed that these transfer functions
have no zeors at � � �. Now, let ������� , ������� and ����� for
� � � � � be the Hankel singular values of ��� ����, ��� ����
and �����, respectively. Then, the following pointwise inequality
holds for all �:

������� � ����� � �������
 (19)

Proof: Here we give the proof for linear continuous-time systems.
By Lemma 2, there exists an asymptotically stable system � ��� �
�� � ���� ����� � ���� �

������ such that �� ��	��� � ���� ���	��
� �

�� ��	���� ���� ���	��
�� �� ��	���� �����	��

� � �� for some

� and all 	. Using this relationship allows us to describe ��� ����,
��� ���� and ����� of the form

��� ���� �	� � ������� ������ ����� �
������

��� ���� �	� � ���� ��������� ����� �
������

����� �	� � ����������� ����� �
������ (20)

where
	� � � �� � ���

������� � � � �������� � ��� � ������ 	��
�

���� ��� � � � �������� � ��� � ������ 	��
�

������ � � �������� � � ������ 	��
� (21)

and ��� ����, ��� ����, and ��� � are the solutions to (10) for
����� � ���� � ���� � �� � such that ��� � ��� � ��� � � ��� � ���. Now, let
������� �������� ��, ������� ���������� and ���� ��������� be the con-
trollability and observability Gramians of ����� � ���� � ������� �� 	� �,
����� � ���� � ������� �� 	� � and ����� � ���� � ������� 	� �, respectively. Then,
from Lemma 4 and the fact that ��� � ��� � ��� � � ��� � ���, it imme-
diately follows that

������ � � ��� �� � ������ �� ������� � ����� � �������
 (22)

Hence ��������� ��������� � ������ �������� � ��������� ��������� is
derived for � � � � � and this shows ������� � ����� � ������� .

The proof for discrete-time systems can be derived in a similar way
with the help of Lemma 3 and is omitted here.

Remark 2: In the above proof, we have used the fact that for
   �!!!���� � �, the relationship !!! � ��� implies ��� ! ! !� �
��� � � ��, " � �� 	 	 	 � #. This fact can be easily shown by de-
riving    ���! ! ! ��� �    ���� � � ��� and using the facts that
���!!!� � ������� and ���$%$%$%� � ���%$%$%$� for$$$�%%% � �.

Remark 3: In the above proof, the assumption of � �� � is re-
quired because the family of transfer functions ��� ����, ��� ����
and ����� are given as spectral factors of � ���. If � � �, these
spectral factors cannot be obtained by the bounded-real Riccati equa-
tions. In the discrete-time case, we have imposed another restriction
that ��� has no zeros at � � � because reflecting a zero at � � �
with respect to the unit circle yields a zero at � ��, which results in
� � �.

As stated in Remark 3, Proposition 1 is applicable to only non-
strictly proper transfer functions (with no zeros at � � � in the dis-
crete-time case). However, for strictly proper transfer functions (and
non-strictly proper transfer functions with some zeros at � � � in the
discrete-time case), we can derive the same pointwise inequality as in
Proposition 1. This fact can be easily shown by using bilinear transfor-
mation or discrete-time frequency transformation. A detailed discus-
sion now follows.

First, we consider the discrete-time case. From Lemma 6 it is ob-
vious that, given a strictly proper transfer function ���, the function
���� generated by (18) becomes non-strictly proper. In addition, we
can generate���� with no zeros at � � � by taking an appropriate �.
Furthermore, Lemma 6 shows that���� has the same Hankel singular
values and the same relationship with respect to reflected zeros as those
of���. Consequently, even when��� is strictly proper or��� has
some zeros at � � �, the pointwise inequality (19) can be derived for
��� by applying Proposition 1 to ����.

We next discuss the continuous-time case. Let ��� be strictly
proper and ���� be obtained by the bilinear transformation (17).
Then, as is well-known, ���� becomes non-strictly proper in most
cases. From this fact and Lemma 5, it immediately follows that
(19) holds for most of the strictly proper continuous-time transfer
functions. Even if ���� becomes strictly proper or ���� has some

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 08,2010 at 00:25:40 EST from IEEE Xplore.  Restrictions apply. 
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zeros at � � �, we can easily arrive at (19) by applying an appropriate
frequency transformation to such ����.

As a result of the above discussion, we finally present the following
theorem.

Theorem 1: Let ���� ����, ���� ���� and ������ be the linear
dynamical systems that are respectively defined in Section III. Also,
let ������� , ������� and ����� for � � � � � be the Hankel singular
values of ���� ����, ���� ���� and ������, respectively. Then, the
following pointwise inequality holds for all �:

������� � ����� � �������� (23)

Remark 4: In [11], it is stated that the minimum phase factors in
spectral factorization have the smallest Hankel singular values. Al-
though [11] does not give the proof of this fact, it is mentioned in [11]
that the use of Nehari’s theorem [18] will provide the proof of this
fact. Taking this into account, it seems that our result is considered as
an alternative proof of the fact mentioned in [11]. However, our result
provides another significant insight into the linear system theory in that
the relationship between reflected zeros and the Gramians of systems
has been described in simple and explicit form. Also, in [11] only the
strictly proper spectral factors are discussed, whereas our result given
by Theorem 1 clearly applies to both strictly proper and non-strictly
proper transfer functions. In particular, it should be stressed that The-
orem 1 includes the case of reflected zeros at � � � and � � � for
discrete-time systems, which is not discussed in [11]. Furthermore, the
discussion to be presented in the next section will give further insights
into the topic of this note, in that it explicitly describes a direct rela-
tionship of reflected zeros to the Hankel singular values.

V. HANKEL SINGULAR VALUES AND REFLECTED ZEROS: DETAILED

ANALYSIS FOR STRICTLY PROPER CONTINUOUS-TIME SYSTEMS

In this section, we restrict ourselves to strictly proper continuous-
time transfer functions with simple poles, and derive the pointwise in-
equality on the Hankel singular values and reflected zeros by a different
approach. Although the conclusion is the same as in the previous sec-
tion, the analysis to be presented here gives further insights into the
topic of this note, in that the analysis provides explicit formulation of
the Gramians of systems in terms of reflected zeros.

A. Preliminaries

Given a strictly proper transfer function ��	� � 


�	��� � ������,
let one of its zeros be denoted by � . Our main result will show that
if this zero is reflected with respect to the imaginary axis, i.e. becomes
���, depending on whether ����� � � or ����� � �, the �-th Hankel
singular value of the resulting system is bigger or smaller than or equal,
respectively, to the �-th singular value of the original system, for all �.

Towards this goal we will make use of the partial fraction expansion
of the transfer function

��	� � 


�	��� ������� �

�

���

��
	� ��

� ������ � �� (24)

where we assume for simplicity that all poles are simple.
A state-space representation of this system is given by2

��� �	
������� � � � ���� ��  � �� � � � � ���




 � ��� � � � � �� �� (25)

2For analysis purpose, in this section we assume that state-space coefficients
may be complex, i.e. ��� � , ��� � and ��� � . Accordingly,
the Gramians��� and��� are assumed to be complex, and the associated Lyapunov
equations are respectively described as������������� � ������� and��� ���������� �

���� ���.

From (25), it follows that the controllability and observability
Gramians of this system are

��� �

�

� 	�
� � � �

� 	�

...
. . .

...
�

� 	�
� � � �

� 	�

� ��� � ���
�

������ (26)

where

��� � 	
������ � � � � �� �� ��� �

�

� 	�
� � � �

� 	�

...
. . .

...
�

� 	�
� � � �

� 	�

� (27)

B. Main Result

Here we discuss the relationship between the Hankel singular values
and reflected zeros. We first consider the case where a reflected zero is
real, and present the following proposition.

Proposition 2: Let ��	� be a strictly proper transfer function with
simple poles, and let one of its real zeros be denoted by �
. Also, con-
sider the new transfer function ��	� that is obtained from ��	� by
reflecting �
, i.e. by moving �
 to ��
 . Now, let the Hankel singular
values of ��	� and ��	� be respectively denoted by �� and �� for
� � � � � . Then, �� � �� holds for �
 � �, and �� � �� holds for
�
 � �.

Proof: We first consider state-space formulation of ��	�. From
(25), it is easy to see that ��	� has a realization ����� � 


� such that

��� � ����  � � 


 � ��� � � � � �� � (28)

where

�� �
��� � �

��� � �


���

�� � ����� � � � � �� (29)

The controllability and observability Gramians ���� ����� of this system
are related to ���� ����� as follows:

��� � ��� � ��� � ���������� (30)

where we let ��� � 	
������ � � � � �� �.
Now, consider ��� ����. This matrix is simplified by the above real-

tionships as follows:

������� �������������������������������

������������������������

� � ��
���
����������� (31)

where ��� � �������
�� � � � � �������
��. Eq. (31) shows that�������
is positive (negative) semidefinite (of rank one) depending on whether
�
 � ���
 � ��. Hence ���������� � ���������� holds for �
 � �, and
���������� � ���������� holds for �
 � �. This result shows the desired
inequality for the Hankel singular values.

Next we turn our attention to the case of reflecting a pair of complex
conjugate zeros. The result is given as the following proposition.

Proposition 3: Let ��	� be a strictly proper transfer function with
simple poles, and let a pair of its complex conjugate zeros be denoted
by �� and ��� , respectively. Also, let ��	� be the transfer fucntion that
is obtained from ��	� by reflecting these zeros, i.e. by moving �� and
��� to ���� and ���, respectively. Now, let the Hankel singular values
of ��	� and ��	� be respectively �� and �� . Then, �� � �� holds if
������ � �, and �� � �� holds if ������ � �.
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Proof: In this case, �� in (29) becomes

�� �
�� � ��

�� � ��
�
�� � ���

�� � ���
� (32)

Consequently, the ��� ��-th entry of �������������� becomes

�������������������

�
��� �� � �

��� � ��

� �	 ��� � �
�

� �

�
��� �� � �����

���� � ��� ���� � ��� � ��� � ��� ��� � ��� �
(33)

which leads to

������� � �	 ��� � �
�

� ����
�


��			�

			 � ���
�

����
�
�
� (34)

where




 ����
�

��� � ��� ��� � ��� �
� � � � �

�

��� � ��� ��� � ��� �

			 � ���� � � � � ���� ��� � ���� � � � � �� �� (35)

Thus, since 


��			�			 � ��������


 � �, it follows that ������� is positive
(negative) semidefinite provided that ������ 
 �������� � ��. This
shows ������� � ������� for ������ 
 � and ������� � �������
for ������ � �, which completes the proof.

Propositions 2 and 3 show that if one (real or complex) zero is moved
to a location which is symmertic with respect to the imaginary axis,
the Hankel singular increase (decrease) pointwise. Clearly this will be
even more the case if a greater number of zeros is moved (all in the
same direction). We conclude that if a minimum phase system becomes
maximum phase (i.e. all stable zeros are reflected with respect to the
imaginary axis), the Hankel singular values will increase pointwise.
Hence the pointwise inequality (23) is derived by this approach.

The significance of the above analysis is that description of the
Gramians are provided in terms of reflected zeros of the transfer
functions. Therefore, this description clearly tells us the influence
of reflecting zeros upon the Hankel singular values. It appears that
this analysis leads to characterization of the values of the shift of
the Hankel singular values in terms of the values of reflected zeros,
although this topic is currently an open question.

VI. NUMERICAL EXAMPLE

This section gives a numerical example to demonstrate our main
result. Consider the following family of 6th-order continuous-time
transfer functions:

���� �����
����������������������	�����
�

�����������������������	�����
�
(36)

��������
������� ����������������	�����
�

�����������������������	�����
�
(37)

��������
������� ������� ������� ����	�����
�

�����������������������	�����
�
(38)

���� �����
������� ������� ������� �����	� �����
�

�����������������������	�����
�
(39)

where ���� ��� ��� �	� �
� � �������� � ��������� � ��������� �
���	����� � ���	� and ���� ��� ��� �	� �
� � ���������	 �
��������	 � ������	 � ���	 � ��. Note that ���� ���� is the
minimum phase system, and the other systems �������, �������
and ���� ���� are obtained from ���� ���� by reflecting ���	,
���� ��� ��	 and ���� ��� ��� �	� �
	, respectively. The Hankel singular

TABLE I
RELATIONSHIP BETWEEN HANKEL SINGULAR VALUES AND REFLECTED ZEROS

values of these systems are given in Table I, which shows that these
sets of Hankel singular values satisfy the pointwise inequality.

VII. CONCLUSION

This note has derived a pointwise inequality that is concerned with
the Hankel singular values and reflected zeros of the transfer function.
It has been shown that the Hankel singular values increase (decrease)
pointwise when a zero is reflected with respect to the imaginary axis or
the unit circle. This leads to the fact that the minimum phase system has
the smallest Hankel singular values while the maximum phase system
has the largest ones, and that the Hankel singular values of the other
non-minimum phase systems lie in between. Our numerical example
has demonstrated this property.

Practical implications of our main result can be derived in the field
of signal processing theory. As stated in Section I, the Hankel singular
values characterize optimal values with respect to the dynamic range
of analog filters and the quantization effects of digital filters. There-
fore, from this fact and our main result, we immediately know that
analog or digital filters of minimum phase attain higher performance
with respect to the dynamic range and quantization effects than any
other non-minimum phase filter. This property also holds in the field of
balanced model reduction: it follows that the minimum phase transfer
function has the smallest value of the upper bound of the approxima-
tion error.3
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Likelihood Gradient Evaluation Using
Square-Root Covariance Filters

M. V. Kulikova

Abstract—Using the array form of numerically stable square-root im-
plementation methods for Kalman filtering formulas, we construct a new
square-root algorithm for the log-likelihood gradient (score) evaluation.
This avoids the use of the conventional Kalman filter with its inherent nu-
merical instabilities and improves the robustness of computations against
roundoff errors. The new algorithm is developed in terms of covariance
quantities and based on the “condensed form” of the array square-root
filter.

Index Terms—Gradient methods, identification, Kalman filtering, max-
imum likelihood estimation, numerical stability.

I. INTRODUCTION

Consider the discrete-time linear stochastic system

�� ������� ����� (1)

�� ����� � ��� 	 � �� � � � � 
 (2)

where �� � � and �� � � are, respectively, the state and the mea-
surement vectors; 	 is a discrete time, i.e. �� means �����. The noises
�� �

� , �� � � and the initial state �� � � �������� are taken
from mutually independent Gaussian distributions with zero mean and
covariance matrices �� and � , respectively, i.e. �� � � �	� ���,
�� � � �	���. Additionally, system (1), (2) is parameterized by a
vector of unknown system parameters � � �, which needs to be esti-
mated. This means that the entries of the matrices �� ,�� ,�� ,�� ,�
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and �� are functions of � � �. However, for the sake of simplicity we
will suppress the corresponding notations below, i.e instead of �����,
�����, �����, �����, ���� and ����� we will write �� , �� , �� ,
�� , � and ��.

Solving the parameter estimation problem by the method of max-
imum likelihood requires the maximization of the likelihood function
(LF) with respect to unknown system parameters. It is often done by
using a gradient approach where the computation of the likelihood gra-
dient (LG) is necessary. For the state-space system (1), (2) the negative
Log LF is given as [1]

�� ��
� �

�




�

���

�



���
�� � ������	�� � �
�

��
�	���

where ��
� � ���� � � � � �� � is 
 -step measurement history and �� are

the innovations, generated by the discrete-time Kalman filter (KF), with
zero mean and covariance matrix�	� . They are �� � ������������
and�	� � ���������



� �� , respectively. The KF defines the one-

step ahead predicted state estimate ������� and the one-step predicted
error covariance matrix ������.

Straight forward differentiation of the KF equations is a direct ap-
proach to the Log LG evaluation, known as a “score”. This leads to a
set of � vector equations, known as the filter sensitivity equations, for
computing �����������, and a set of � matrix equations, known as the
Riccati-type sensitivity equations, for computing ����������.

Consequently, the main disadvantage of the standard approach is the
problem of numerical instability of the conventional KF, i.e divergence
due to the lack of reliability of the numerical algorithm. Solution of the
matrix Riccati equation is a major cause of numerical difficulties in the
conventional KF implementation, from the standpoint of computational
load as well as from the standpoint of computational errors [2].

The alternative approach can be found in, so-called, square-root
filtering algorithms. It is well known that numerical solution of
the Riccati equation tends to be more robust against roundoff er-
rors if Cholesky factors or modified Cholesky factors (such as the
�
�� -algorithms [3]) of the covariance matrix are used as the
dependent variables. The resulting KF implementation methods are
called square-root filters (SRF). They are now generally preferred for
practical use [2], [4], [5]. For more insights about numerical properties
of different KF implementation methods we refer to the celebrated
paper of Verhaegen and Van Dooren [6].

Increasingly, the preferred form for algorithms in many fields is now
the array form [7]. Several useful SRF algorithms for KF formulas for-
mulated in the array form have been recently proposed by Park and
Kailath [8]. For this implementations the reliability of the filter esti-
mates is expected to be better because of the use of numerically stable
orthogonal transformations for each recursion step. Apart from numer-
ical advantages, array SRF algorithms appear to be better suited to par-
allel and to very large scale integration (VLSI) implementations [8],
[9].

The development of numerically stable implementation methods for
KF formulas has led to the hope that the Log LG (with respect to un-
known system parameters) might be computed more accurately. For
this problem, a number of questions arise:

• Is it possible to extend reliable array SRF algorithms to the case
of the Log LG evaluation?

• If such methods exist, will they inherit the advantages from the
source filtering implementations? In particular, will they improve
the robustness of the computations against roundoff errors com-
pared to the conventional KF technique? The question about suit-
ability for parallel implementation is beyond the scope of this
technical note.
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