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Abstract-In  order  to  investigate a mechanism  which causes 
a velocity  difference  between  the  longitudinal  wave and leaky 
surface  skimming  compressional  wave  (LSSCW)  observed in a 
line-focus-beam acoustic microscope,  the analytic property of an 
acoustic reflection  coefficient  and  its effect on a 1,'(2) analysis 
were studied. A pole  hidden  in  the  unphysical  Riemann  sheet  close 
to the  longitudinal  branch  point  is found to be responsible for 
the abrupt phase  change  at  the  longitudinal  critical angle. This, 
together  with  an effect of a dominant  Rayleigh  wave pole, affects 
the V (  2 )  measurement  of  the  LSSCW. A method to estimate the 
longitudinal  and  shear  wave  velocities  is discussed. 

T 
I. INTRODUCTION 

HE V ( z )  METHOD in reflection acoustic microscopy 
offers a useful tool for the analysis of elastic  properties 

of solid materials. Oscillations in the electrical output from 
an acoustical lens as it moves  toward a solid surface were 
first reported by  Weglein [ l ]  several years after  the acoustic 
microscope was invented [2]. The oscillations are  quoted  as 
an acoustic materials signature or a V ( z )  curve [3]. It  was 
clarified [4], [5]  that an excitation of a leaky Rayleigh wave 
plays a central role  in  the formation of the V ( z )  curves. 

For quantitative measurement  of elastic properties, a line- 
focus-beam  (LFB) acoustic microscope was developed [6],  and 
thanks  to its superb stability, excitations of  many other modes 
than the leaky Rayleigh wave were identified in the T/(z) 
curves [7]. One of the  modes  had a phase velocity close  to that 
of a longitudinal wave  in the  solid, which  had  been named [X] 
as a leaky surface  skimming  compressional wave, or LSSCW 
in short. But, when  we closely examine the measured data,  it 
turns  out that the velocity, V L S S C ~ ~ ,  is  more or less slower 
than the longitudinal velocity, VL. It  is especially obvious, 
roughly 100 m/s difference, for hard materials such as hard 
metals and glasses. For soft materials such as polymers, the 
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difference seems  to be small, although unavoidable variation 
in the velocity and attenuation depending on the production 
condition of such materials obscures the conclusion. 

Chan  and Bertoni [9] presented a theory of the LSSCW 
in the acoustic microscope,  extending a ray-optical method 
originally developed  for the leaky Rayleigh wave [lo]. They 
found that the  LSSCW  can be explained as an  excitation of 
a longitudinal lateral wave, under a condition that a working 
distance of the acoustical  lens, z ,  is large enough. And the 
velocity of the lateral wave should be equal  to V,. The 
condition  seems  to be satisfied in soft materials, but not in 
hard materials such as fused quartz [9]. Therefore, theory of 
the LSSCW for  hard materials has not been complete  up  to 
now,  and it has not been clear whether the difference  between 
V'L/LSSCW and V, is inherent to the material properties or to the 
measurement  method. 

Because a knowledge of the longitudinal velocity is a 
valuable source of information for the material evaluation of 
solids [ 1 l], it is  desired  to clarify the physics of the LSSCW in 
the LFB acoustic microscope.  This paper attempts to answer 
the question by investigating singularities of the acoustical 
reflection coefficient at a liquid-solid interface and  their effect 
to the V ( z )  curves. 

In the acoustic microscope, an acoustic wave transmitted 
from a piezoelectric transducer is  coupled  into a liquid, nor- 
mally water,  through  an acoustic lens with a high  angle of 
convergence.  The acoustic wave  is then reflected  by a solid 
surface  and  propagated  back  to  the piezoelectric transducer. 
The convergent acoustic wave can be decomposed  into a set of 
plane waves, called an  angular  spectrum. The interaction of the 
plane wave with the solid surface is described by an acoustic 
reflection coefficient which bears the elastic information of the 
surface. All the reflected plane wave components integrated 
on the piezoelectric transducer give rise to a V ( z )  [ 121, [ 131. 
Hence, the paper is composed with two  major parts, one  for  the 
complex analysis of the reflection coefficient with an emphasis 
on  the longitudinal critical angle, and the  other  for  an  analysis 
of V ( z )  curves especially of  the LFB acoustic microscope. 

11. SINGULARITIES OF REFLECTION COEFFICIENT 

A.  Branch Point  Singularities  and Riemann Sheets 

The reflection coefficient of an acoustic plane wave incident 
upon an interface between a liquid and  an isotropic solid half 
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space  is written as [l41 

where k ,  is a wave vector  component  parallel to the interface, 
pw and ps are  densities of  the liquid and  solid,  respectively, 
kl = W/VL and k ,  = w f V, are  wavenumbers of longitudinal 
and shear waves in the solid  respectively. V, and V, are  lon- 
gitudinal and shear wave velocities in the  solid,  respectively, 
and W is  the  angular  frequency. Wave vector  components 
perpendicular to the interface  are 

/c2, = J ,  k ' -  k2 3'  ( j  = 1 .  S and U!) (2) 

where kW = w/Vw and V, is  a  sound velocity in the 
liquid.  Thus,  each IC;, has branch points at k, = fk, in 
a  complex IC, plane, and we take branch cuts  emanating 
from the branch points to keep ICj, single  valued. Although 
materials are assumed to be lossless in this paper, they may 
be lossy in general. Then the wavenumbers  become  complex, 
e.g., k j  -+ kj + icr, where a is  a  positive real number and 
i = ,,/ - 1. To avoid the real axis from being  crossed by the 
branch  cuts in such  cases,  a cut must be taken from k; to 
k; + zoo, and the other from -kj  to -kj - 2%. We analyze 
the branch point singularities of the reflection coefficient at 
k ,  = kj in the  following, but the same  argument is also  applied 
to the singularities at k, = -kJ. 

When k ,  is  sufficiently  close to k; , k,, can be approximated 
by 

k j ,  z a d - .  (3) 

Because we choose  a principal value for  the  square root on  the 
real axis of k,, points 1, 2, 3,  and 3' on the complex IC, plane 
shown in Fig. 1 are mapped into corresponding  points, (l), Q), 
(3) and (3') in the complex k;, plane. We call this Riemann 
sheet of complex k,  a  physical  plane, because any poles of the 
reflection coefficient on this  plane  readily  affect its values on 
the  real  axis, and k,, satisfies the physical condition  for leaky 
waves [15]. If k ,  goes  from  the point 3 into  the  clockwise 
direction, or from  the point 3' into the counter  clockwise 
direction,  crossing the branch cut,  it  is  on the other  Riemann 
sheet of k,, which is  called an unphysical  plane in this paper. 
Conventionally, poles on  this  sheet  are  discarded  because they 
do not satisfy  the physical condition  for  leaky  surface waves 
[16].  However, these poles sometimes  affect  the  experimental 
observation [ 171-(191, and it is  really  the  case  for the LSSCW 
of the hard materials as shown below. 

B. Poles and Zeros of the Rejection Coefjicient 

Zeros of the  numerator and denominator of ( 1 )  give  zeros 
and poles,  respectively, of the reflection coefficient. We cal- 
culated taking water and fused quartz  for the liquid and solid, 
respectively. Material constants used in the  calculation  are 
shown in Table I .  These  values were chosen as representative 
ones  for  theoretical  calculation. Fig. 2 shows  the  position of the 
poles  and  zeros on the  complex kz plane with numbers  from 

Re 

(a) (b) 

Fig. I .  Complex  planes of wave  vector  components  around a branch  point. 
(a)  complex k, plane  with  a  branch  cut fromk, = k ,  to k ,  +m, (b) complex 
k , ,  plane.  Points 1, 2, 3 and 3' on k ,  plane  correspond  to ( l ) ,  (2), (3). and 
(3') on  plane. 

TABLE I 
MATERIAL CONSTANTS USED IN  THE CALCULATION OF REFLECTION COEFFICIENT 

density longitudinal 
material 

[kg/m3 
shear velocity 

lm/sl LmPl 
fused quartz 2200 5968  3764 

gold 19320  3240  1220 
water l o o 0  1500 

2300 1000 polycarbonate 1190 
- 

TABLE 11 
LOCATION OF POLES AND ZEROS ON RIEMANN SHEETS OF COMPLEX k r / k u ,  

PLANE OF A REFXECUON COEFFICIENT AT A WATER/FUSED QUARTZ INTERFACE 

Location in Complex k, / k W  Plane 

No. k r l k , ,  (PPP)  (UPPI  (PUP) (PPU)** 
Pole or Zero on Riemann  sheet 

1 0.17200 pole zero 
2  0.19716 
3 

zero 
0.25080 

pole 
zero 

4 0.25 106 pole  zero 
pole 

0.43749+ i pole 
0.01699 zero 

0.43749- i 
0.01699 pole 

7  1.00236 pole  zero 
* k , /k , ,  of branch longitudinal  shear 
points 

water 
0.25134  0.3985 1 1.O0000 

* * ( o l a s n a . )  is a choice of Riemann  sheets for each of longitudinal,  shear, 
and  water  branch  points. p and U for physical and unphysical  plane, 
respectively.  Other choices of sheets are equivalent to one of those shown 
here: ( ~ 7 1 7 1 )  = @pp),  @ ( m )  = ( u p p ) ,  and (uup)  = (pp). 

1 to 7 depicted  for  their  identification. Numerical values of 
k,fk,  and  a  distinction of pole and zero on a  particular  choice 
of the Riemann  sheets  are  listed in  Table 11. On the  physical 
plane, No. 5 and No. 6 are  a pole and a  zero,  respectively, 
corresponding to the leaky Rayleigh wave [20], [21]. No. 7 
close to the water branch point is  a pole on the physical plane 
and known as  a  Scholte wave which is  a  special  case of a 
Stonely wave for  a  liquid/solid  interface 122). Others  are all 
on unphysical  planes. No. 3 and No. 4 are very close  to  the 
longitudinal  branch  point, and the  particular  plane they are  on 
is connected  to  the  physical plane at the longitudinal  branch 
cut.  Therefore,  their  effect  cannot be neglected  even  though 
they are  on  the  unphysical  plane.  This  is the reason why the 
phase of the reflection coefficient  changes so abruptly  at the 
longitudinal  critical  angle  (thick  lines in Fig. 3). 
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Im(kx] L S W 

6 

Fig. 2. Location of poles  and  zeros on the  complex k ,  plane of a  reflection 
coefficient at an  interface  between  water  and  fused  quartz.  Filled  and  open 
circles are to  show  that  they  are  poles and zeros,  respectively, on a  physical 
or an adjacent  unphysical  planes. Numbers are for identification  and  used  also 
in Fig. 4 and  Table 11. Dashed  lines,  depicted  with L ,  Sand TV, are  for  branch 
cuts  at IC, = 11, k, = k, and k, = k W ,  respectively. 

The reflection coefficient is  conveniently  expressed  around 
the  longitudinal branch point as 

&(/c,) is  a slowly varying  function, and k,o and k,, are 
introduced by kl0 = d n  and k,, = ,,/W, 
respectively, where ko and k,  are of the zero and pole (No. 3 
and No. 4) close to the branch  point,  respectively.  Because 
R(k,) = 1 at k ,  = kl,Ro(k,) M k Z p / k , ~  around the 
longitudinal  branch  point,  and 

The reflection coefficient  calculated  from (5) is plotted in Fig. 
3 with thin lines.  The  approximation  is  fairly  good. 

It  should be noted that  the  approximation in (5) correctly re- 
flects the analytic  property of the reflection coefficient  around 
the branch point. On the physical  plane it has  neither pole 
nor zero  around  the  branch  point,  but on the unphysical  plane 
where kl, + -klz it has a pole and a  zero at k ,  = k,, and 
k ,  = k , ~ ,  respectively.  This  explains why the approximation 
in 191 met the difficulty for  the hard materials  such  as  fused 
quartz. 

C. Dependence  on  Material  Constants 

If the material  constants  change, the location of the  poles 
and zeros  changes  accordingly.  For  an  illustration of this, we 
change the values of the density, and longitudinal and shear 
wave velocities  simultaneously from those of fused  quartz 
to polycarbonate  (a  typical  polymer). Fig. 4 shows  the  loci 
of  the poles and zeros, No. l-No. 4, on the complex k ,  
plane. They are at positions  depicted with their  numbers in 
the  figures when the material constants  are of fused quartz. 
They remain on the real axis of the unphysical plane for 
a  while, then rapidly depart from it. When it occurs, the 
Poison's  ratio is 0.33  for poles (No. 1 and No. 4), and 0.23 
for  zeros (No. 2 and No. 3). It  was pointed  out [l71 that the 
poles for  a solid without liquid  loading  behave  like this at the 
Poison's  ratio  equal to 0.264.  Thus,  soft  materials with a  large 
Poison's  ratio will  not exhibit  a very rapid phase change of the 

0.5 Oa6 14.0 L-------l 14.2  14.4  14.6  14.8 15.0 

Incident angle Cdwl  

- 0 . 2 4 . ' . ' . ' . ' . I  
14.0  14.2  14.4  14.6  14.8 15.0 

Fig. 3. Incident  angular  dependence of a  reflection  coefficient  around  a 
longitudinal  critical  angle of water  loaded  fused quartz. (a)  amplitude, (b) 
phase.  Thick and thin  lines  are  calculated with  an exact  formula in (1) and 
an approximation  in ( 5 ) .  respectively. 

reflection coefficient  around the longitudinal  critical  angle, and 
the LSSCW analysis of [9] can be applied without difficulty. 
Finally,  the  poles  and  zeros reach to positions  depicted with 
their primed numbers in the figure when the material  constants 
become those of polycarbonate. Dashed lines in the figures 
indicate  the  positions of the  longitudinal  branch cut: one 
depicted with kl is  for  fused  quartz and the other with for 
polycarbonate. It should be noted that the  zero, No. 3,  comes 
out to the  physical  plane  crossing  the  branch  cut, but the other 
zero and both poles  remain  on  the unphysical plane. 

The  material  constants of the coupling  liquid  also  affect the 
analytic property of the reflection coefficient.  Although most of 
the acoustic  microscopes adopt the distilled water as a  coupling 
liquid,  several  other  materials  are used for specific purposes. 
How the density of the coupling liquid affects  the V ( z )  curve 
was studied with the  experiment and numerical  calculation by 
Doghmane et al. [23],  and  several  anomalous  features in the 
V ( z )  curves were observed when the  density  became  larger. 
The  present  scheme might be applied  to such problems. 

D. Connection to the Pseudo-Sezawa  Wave 

If we deposit  a  layer on the  solid half space,  there  appear 
many other  modes  guided  along the surface [24], and if the 
shear wave velocity in the layer is  slower  than that in the 

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 05,2010 at 01:50:30 EST from IEEE Xplore.  Restrictions apply. 



TSUKAHARA et al.: LONGITUDINAL  CRITICAL  ANGLE  SINGULARITIES 46 1 

0.10 

g 0.05 
v 

Y > 
0.00 a 0.0 
U 

0.2 0.4 0.6 0.8 

Kx/Kw (Real) 

- 
0.2 0.4 0.8 0.8 

Kx/Kw (Real) 

(a?  (b) 

T v E ~ o . o o ~ l  o.om 
5 -0.05 

> 
2 -0.1 

2' 
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Fig. 4. Loci of poles and zeros on a  complex  plane k ,  as  a  function of 
material  constants  when they are  changed  from  those of fused  quartz  (number 
without  prime) to polycarbonate  (with  prime). Sumbering of the  poles and 
zeros is also  used  in  Fig. 2 and Table I1 for identification.  Dashed  lines with 
IC( and k! are  positions of the  longitudinal  branch  cuts  for  fused  quartz and 
polycarbonate,  respectively. 

substrate, a Sezawa  wave [25]  is included in them. With a 
frequency  lower than a cutoff frequency, the Sezawa  wave 
becomes leaky towards the solid substrate, and  is  called a 
pseudo-Sezawa wave [26]. 

A pole and zero associated with the pseudo-Sezawa wave 
were obtained by a Newton-Raphson's  method using a re- 
flection coefficient calculated with a matrix method [27]. A 
gold  layer  was  assumed on a fused  quartz half space. Fig. 
5(a) and (b)  shows loci of the pole and zero  near the shear 
and longitudinal branch cuts  for the substrate  as a normalized 
frequency ( f d :  f is frequency  and d is  layer  thickness)  is 
varied. When f d  becomes  smaller the pole  and  zero  get  closer 
to the longitudinal branch point, and  in Fig.  5(b) at f d  around 
4.5 Hzm they submerge  into the unphysical plane. At f d  = 0 
Hzm, they reach to the real axis.  Therefore, the pole  and zero, 
No. 4 and No. 3 ,  near the longitudinal branch point for the 
solid half space we discussed above  are, in fact,  those  for  the 
pseudo-Sezawa wave  in the limit of f d  = 0 Hzm. 

Fig. 6(a) and (b) shows the amplitude  and  phase,  respec- 
tively, of the reflection coefficient of the  gold  layered  fused 
quartz with different layer thicknesses. It  is noticed that the 
reflection coefficient resembles to that for the layerless case 
(Fig. 3) when f d  is smaller than 10  Hzm.  This  means that the 
effects of the pole and branch point are mixed  when they are 
close together regardless whether  the pole is on the physical 
or unphysical plane. 

111. V ( z )  CURVES OF LFB ACOUSTIC MICROSCOPE. 

A .  Analysis Procedure of V(z)  Curves 

An elaborate description of V ( z )  analysis  for LFB acoustic 
microscope is found in [7]. Hence,  only a brief summary is 
presented here. 

0.010 

n 
0.006 

X 
\ 

0.000 

bb 
(d 

U 
-0.006 

-0.010 
0.26 0.80 0.36 0.40 0.46 0.60 0.65 

Real (Kx/Kw) 
(a) 

0.0015- 

Y 

1 

0.2505  0.2510  0.2515  0.2520 
Re [ k x / k w I  

(b) 

Fig. 5. Loci of pole and zero of a  pseudo-Sezawa  wave  on  a  complex  plane 
k , / k , .  as  a  function of normalized  frequency, fd. (a) An overall  view,  and 
(b) a close up view at the  longitudinal  branch  point of fused  quartz  substrate. 
Longitudinal  and  shear  branch  points of the  substrate,  depicted  with L and S, 
are  at k x / k u .  = 0.2513 and 0.3985, respectively. 

In the LFB acoustic microscope, the amplitude IVI is a 
measurand. The influence of the measurement  system,  namely 
the  acoustical  lens, is eliminated by subtracting a lV~(z)l 
curve  from a measured IV(z)  1 curve  to  give a normalized 
curve, VI ( z ) .  The I VL ( z )  I is obtained by taking a specimen of 
lead or Teflon  which has an almost flat reflection coefficient 
over the incident angles  covered by the acoustical lens. A 
signal processing, including the digital filtering, is incorporated 
here to obtain a stable result. VI(.) then undergoes a spectral 
analysis  to  extract  an oscillation interval Az. Fig.  7(a)  and  (b) 
shows a i V ( z ) (  and a Fourier transform F ( k ) ,  respectively, 
measured of a fused  quartz  specimen (Toshiba Ceramics 
Co., T-4040 [ 2 8 ] ) .  Here, the variable k is  chosen  to be 
dimensionless, with  which Az is calculated as Az = n / ( k w k ) .  
To obtain Az with a sufficient accuracy, care must be taken 
in choosing  an  appropriate  range and a sampling interval of z 
to be used in the spectral analysis [7]. 

B.  Theoretical  Analysis of VI(.) Curves 

Liang,  Kino, and  Khuri-Yakub gave a simple  expression  for 
V ( z )  curves [29]. That is, with a slight change of definition, 

r l  
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"-L. I 

-0.6! . 1 . I . I I . 4 
U 14 E l6 17 la 

Incident angle [degl 
(b) 

Fig. 6. Incident  angular  dependence  of  a  reflection  coefficient  for  a  gold 
layered  fused  quartz  loaded with water.  (a)  Amplitude  and (b) phase. fd = 20, 
10 and 5 Hzm  for  solid,  dotted,  and  dashed  lines,  respectively. 

We introduced U = 2zk, and t = k,,/k, E cos 0 where 0 
is an incident angle. L( t )  contains  a  square of a  lens pupil 
function and  any other  factors due to the system response, 
and has  a feature schematically illustrated in Fig. 8. For a 
broad range of specimens, we can assume that R(t) is almost 
constant but has  a rapid variation, R,(t), in several  narrow 
regions of t which correspond to  singularities. An example is 
schematically illustrated in Fig. 8. Then, 

v(u) x 1' dtL(t1he-i"' + dtL(t)R,(t)e-iut. (7) 

The integrand in the first term diminishes  more  or less 
smoothly when t decreases  to 0, and  has  a  discontinuity 
at t = 1 as shown in Fig. 8. Therefore,  the  integral  can be 
approximated by 

I' 

The first term x 2- 
.RoL -iu 

e ,  
U 

where L1 L(t  = 1). The second term can be modified to 
+m 

The second term x L,  dtR,(t)e-aUt, (9) 

where L ,  G L(t = t,), because the integrand has significant 
values only around t = t,. Thus, 

0 

6 
S -5 

-10 
c 
3 

3 
0 
W -15 

E 5 -20 

K 
W 

-25 
-600 -500 -400 -300 -200 -100 0 100 

DISTANCE z ( pm ) 

(a) 

0 . 2 , .  . . , , . . . . , . . . . , . . . . ,  

0.15 
c: 
? = 0.1 
5 
n 

U 

0.05 

0 
0 0.05 0.1 0.15 0.2 

k 
(b) 

Fig. 7. Experimental L'( z )  analysis of fused  quartz by LFB acoustic  micro- 
scope.  (a) IV(z)l curve, and (b) amplitude of a  Fourier  transform, F(k). The 
range of z for FFT is from -40 p m  to -154 pm. 

Fig. 8. Schematic  illustrations of L ( t )  and R , ( t ) .  L ( t )  includes a lens  pupil 
function  and  other  system  responses.  Examples of actual  measurements  are 
found in [29]. R,(t) is a  rapid  varying  part of a  reflection  coefficient. 

It can be shown [30] that  the second term  in the square 
bracket is  much  smaller than unity  in the LFB acoustic 
microscope, so that the amplitude of V ( u )  can be expanded  as 
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where C.C. is for complex conjugate. Because VL(U) is V(u j  200 
with R, = 0, 

- 

VI(.) E IV(u)l - I b ( u j l  

M $[I: 1 dt R,(t)e-i"(t-l) - C.C. . (12 ) Id 100- 

h 

In the V(zj analysis, we calculate a Fourier spectrum of VI x 
in a negative region of z .  The spectrum is defined as pc 

v 

J U0 

where 210 'U1 < 0. A substitution of (12) into gives an Fig. 9. Amplitude of F ( k )  theoretically  calculated by (15). Exact  formula 

to -550 pm. ( R )  Rayleigh wave, ( S )  shear wave, and ( L )  longitudinal  wave 
critical  phenomena. 

explicit expression, in (1) was  used  for a reflection coefficient. The range of z is from -50 p m  

F ( k j  M L,hu,iC(k+l) 
a 

+m 

x L 
x L 

dt e-iZltR, (t)sinc[Au(t - 1 - k ) ]  

_ _ _ _  L , h u e i ? i ( k - l )  
,i 
+x 

d t  e""t;(t)sinc[Au(t - 1 + k ) ] ,  (14) 

where ii = ( u 1  + u 0 ) / 2  and hu  = (u1 - u0) /2 .Rs ( t )  differs 
from zero only when t M t ,  where 0 < t ,  < 1, and the 
sinc functions have significant values only when k M t - 1 
and k M 1 - t  for the first and second term, respectively. 
Therefore, for positive k ,  the major contribution comes to the 
spectrum from the second term, and we obtain, 

F ( k )  M i l , A ~ e ~ " ( ~ - ~ )  
+W 

x L dt eiCtR;(t)sinc[hu(t - 1 + k)]. (15) 

Fig. 9 shows an amplitude of F ( k j  calculated by (15) for 
a fused  quartz specimen. R, was calculated by R, = R - 1 
where R is an exact formula in (1). zo = -500 pm and z1 = 
0 pm were used. The good agreement with  the experimental 
curve shown in Fig. 7 proves the  validity  of the theoretical 
formula. It should be noticed that every singularity in R 
exhibits itself  in F ( k )  as expected from (15). The Rayleigh 
wave peak is dominant, and a small peak in the left is of the 
longitudinal singularity. A slight asymmetry in the Rayleigh 
wave peak is  due to the shear wave singularity which is  more 
clearly seen in  the experimental curve in  Fig. 7. 

C. Estimation of Critical  Angles From F(k) 

resolution in k as discussed by  Liang et al. in their inversion 
of V ( z )  [29]. The resolution At is about 

where f is  the frequency. In terms of  the incident angle 8 ,  it is 
T T  

Therefore, the estimation of critical angles  from F ( k )  may 
suffer an error of A0 in the worst case. For a typical example 
as in the case of Fig. 7, f = 225 MHz, V, = 1493 m/s, 
6' x 20", and 1x1 - zo j = 500 km, then  the angular resolution 

Fortunately, a good approximation of R, was already de- 
ne M 1.10. 

rived [20]  for the Rayleigh wave, 

where k,  = k~ + i a ~  and ko = k~ - ~ C Y R .  Then the integral 
in (15) is readily carried out, and the Rayleigh critical angle 
can be estimated very accurately. 

F ( k j  M 2 L , A u a , i u ( r o s B ~ - i n / k ~ - l + k )  1. 

n-W 

sinc[Au(cos BR - i a / k W  - 1 + k ) ] ,  (20) 

where a (YR tanBR and 6 ' ~  is a Rayleigh wave critical 
angle. In fact, this formula  has been  used  in  the LFB acoustic 
microscope [7] with  an acoustic absorption in liquid also 
taken into account. The relative accuracy of kO.Ol% and the 

Equation (15) means that the Fourier spectrum of VI is a absolute accuracy of 0.3% were achieved in  the Rayleigh wave 
convolution OfR:(t) and sinc[Au(l-t)]  exp(iu(1-tj}. If flu velocity measurement [28]. To obtain such an accuracy, care 
is large enough (nu -+ m ) ,  (15) yields a complex conjugate must be taken in  the mechanical stability of the apparatus and 
of the reflection  coefficient, in the signal processing [7]. 

F ( k )  -+ "R,'(l - k ) ,  
i L  
7T (l6) D. LSSCW 

which contains a full extent of the elastic information of the R, varies gradually, and its variation is symmetric around 
specimen. However, in reality, the working distance of the lens the Rayleigh critical angle. Thus, the convolution with a sinc 
is limited, so that the sinc function imposes a limitation of the function hardly alters the value of the critical angle. This 

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 05,2010 at 01:50:30 EST from IEEE Xplore.  Restrictions apply. 



464 IEEE TRANSACTIONS ON ULTRASONICS,  FERROELECTRICS, AND FREQUENCY  CONTROL, VOL. 41,  NO.  4. JULY 1994 

is another interpretation of the successful estimation of the 
Rayleigh critical angle. However, this does not hold  for the 
longitudinal critical angle of hard materials as seen in Fig. 3. 
The reflection coefficient changes abruptly without symmetry 
because the pole hidden in the unphysical plane is very close  to 
the  branch point. And the influence of the dominant  Rayleigh 
wave peak  might be another  source of difficulty. 

In order  to  eliminate the influence of the Rayleigh wave 
pole from the LSSCW measurement, a following strategy was 
implemented into an  experiment. A specimen of fused  quartz, 
T-4040 (Toshiba Ceramics Co.), was  prepared.  The  Rayleigh 
wave velocity and the normalized attenuation factor were 
measured  by using the standard technique [7], r/R = 3427.0 
m/s and a = 3.95 x lo-'. The  parameters were used to 
synthesize a V&(z)  curve which simulated the V ( z )  curve 
due selectively to the Rayleigh wave excitation [Fig. 10(a)]. 
The VRI(Z) was  then subtracted from the measured VI(.). 
The remainder, T/ ; ( z )  = VI(.) - V R ~ ( Z ) ,  was subjected to 
the  Fourier analysis to obtain the  spectrum, F ( k ) ,  as shown 
in Fig. 10(b). There are two  major peaks corresponding  to 
the longitudinal and  shear critical angles. The longitudinal 
wave velocity estimated from the left peak was 5899 m/s.  A 
comparison with a bulk wave  measurement of 5953 m/s [28] 
shows that there still remains a difference of 54 m/s (-0.9%). 
The shear wave velocity estimated  from the other peak  was 
3797 m/s  which  is 40 m/s (+ 1.1%) different from a bulk wave 
measurement of  3757  m/s [28]. 

During  the  experiment it  was experienced that the estimation 
of the longitudinal velocity was sensitive to the value of 
parameters used  in  the analysis. On the  contrary,  the  shear 
velocity estimation was rather insensitive to such parameters. 
For instance, when the starting position 20 of the window was 
changed in between 0 and -100 /im,  the  longitudinal veloc- 
ity estimation varied roughly f l00 m/s but  the  shear velocity 
estimation remained  within f 2 5  m/s. This is understood by the 
fact that the singularity at the shear critical angle  is  merely a 
branch point. 

Consequently, the method did not remove the effect of the 
hidden pole  in the LSSCW measurement of hard materials 
such  as fused quartz.  Therefore, the acoustic microscopist 
should keep in mind  that the LSSCW velocity is slightly 
slower than the longitudinal wave velocity. 

IV. CONCLUSION 

We have  shown that a pole hidden on the unphysical 
Riemann sheet is responsible for the very rapid phase change 
at the longitudinal critical angle of the reflection coefficient for 
hard materials. The  pole  comes out to the physical Riemann 
sheet  as a pseudo-Sezawa wave  if a surface layer with a slower 
material is deposited. For soft materials, the pole is located far 
from the longitudinal branch point so that it  is neglected and 
the previous approximation [9] might be valid. 

It  was also shown  that the  Fourier  spectrum F ( k )  of a 
normalized V ( z )  in the LFB acoustic microscope is approx- 
imately equal  to a varying part of the reflection coefficient, 
R, % R - 1, convolved with a sinc function which represents 
a finite  working distance of the lens movement. Therefore, 
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Fig. 10. (a) Synthesized l R r ( ; )  corresponding to the  Rayleigh  wave  exci- 
tation. (b) Amplitude of F ( k )  calculated from L j ( z )  - V R I ( Z ) .  Peaks at  left 
and  center  are of the longitudinal and shear  wave  critical  angles,  respectively. 

the reflection coefficient might  be  recovered, in principle, if a 
suitable technique of deconvolution is applied to F ( k ) .  This 
is left for a future study. 

For isotropic materials, the Rayleigh wave singularity is 
dominant, and variation of the reflection coefficient is smooth 
and  symmetric  around the Rayleigh critical angle.  Hence, 
the  Rayleigh  wave velocity and attenuation can be very 
accurately estimated as demonstrated in [7], [28]. However, at 
the longitudinal critical angle,  the variation is abrupt and not 
symmetric because of the presence of  the hidden pole. Then, 
the convolution with a sinc function causes a shift of the peak 
in the Fourier  spectrum F ( k ) .  The  dominant  Rayleigh wave 
pole also  induces the shift. These are cause of  the velocity 
difference between the LSSCW and the longitudinal wave. 

It was demonstrated that, by suitably subtracting a syn- 
thesized V ( z )  curve  corresponding  to  the Rayleigh wave 
excitation, the influence of the Rayleigh wave pole can  be 
removed  from the LSSCW measurement. In addition, we have 
identified and measured the shear critical angle in F ( k )  for 
the fused  quartz sample. After removing  the  Rayleigh  wave 
influence, it  was found that the estimation of the shear velocity 
is rather  stable than that  of the longitudinal velocity. This 
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suggests that the shear velocity estimation could be  useful for 
the elastic characterization of hard materials. 

However, this does not necessarily means the technique can 
be applied to all materials. If,  for  example, the specimen is 
anisotropic or with a lapxdstmcture,  then - singularities of 
the reflection coefficient have a more complicated analytic 
structure than  that  of  an isotropic half space. Therefore, to 
interpret the V ( z )  measurement, it is important to study the 
analytic structure of  the  reflection  coefficient. 

The LSSCW measurement of soft materials such as poly- 
mers  is hardly affected by  the hidden pole. However, it is 
subject to the influence of bulk wave attenuation. Therefore, to 
fully utilize the LSSCW measurement for soft materials, which 
is of engineering importance, the velocity and attenuation 
must be carefully calibrated by the LSSCW and bulk wave 
measurements. This must be undertaken in  the future study. 
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