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Abstract-The cold-rolled and recrystallization textures of Fe- 
Cr-CO-Mo permanent magnet alloys are described. The stud- 
ied composition is Fe-30%Cr-lS%Co-3%Mo (in wt%). The 
cold-rolled texture can be considered as { 111) ( l lO) ,  
{111}(112), {100}(110), and {211}(110), while the recrys- 
tallization texture can be considered as { 111}(110), 
{110}(112), {211}(110), and {110}(110). The secondary re- 
crystallization is caused by heat-treating the alloys in the se- 
quence of a,  a + y, a + y + 0 ,  a phase region (HTSR). This 
results in a favorable texture of { 110) (110) and ( 100) direc- 
tion, aligning along the transverse direction (TD) of the strips. 
The best magnetic properties obtained in this study are Er = 
1.2 T (12.0 kG), iHc = 82.0 kAm-' (1025 Oe), and (BH)max 
= 60.8 kJm-3 (7.6 MGOe) with TD alloys. 

INTRODUCTION 
e-Cr-Co permanent magnets exhibit excellent mag- F netic properties comparable to those of the Alnico 

family, with good ductility [1]-[3]. The magnetic hard- 
ening of the alloys is induced by heat-treating within the 
miscibility gap, which produces a modulated structure 
consisting of two phases, an Fe-Co rich phase ( a l )  and 
a Cr rich phase ( a 2 )  [4]. A uniaxial magnetic anisotropy 
is usually induced by magnetic aging, which elongates the 
a I  phase parallel to the applied field direction. In order to 
expand their applications, the enhancement of coercivity 
of the alloys is strongly demanded. 

It is noted that the addition of MO to these alloys in- 
creases the coercive force because of the anisotropic de- 
composition along the (100) directions [l] ,  [ 5 ] .  Good 
magnetic properties can be expected by utilizing the an- 
isotropic decomposition to elongate more efficiently and 
aligning the al  phase along the applied field direction in 
(100) textured samples. This was done with an Fe- 
24%Cr-15%Co-3%Mo (in wtX) alloy in developing the 
( 100) columnar structure [6] or with a ridge single-crys- 
tal Fe-22XCr-18.5XCo-3XMo alloy [7]. But it is very 
expensive to produce a columnar or single crystal. 
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It is known that the (110)[001] or (001)[100] texture in 
silicon steel is well developed by using a mixture of cold- 
rolling and annealing [8]. Since Fe-Cr-CO-Mo alloys 
have good ductilities, it can be expected to form a favor- 
able texture by the same method. But few reports have 
been published conceming the cold-rolled and recrystal- 
lization texture of Fe-Cr-CO-Mo alloys. The purposes of 
this work are 1) to investigate the cold-rolled and recrys- 
tallization textures of Fe-Cr-CO-Mo alloys and 2) to ob- 
tain the favorable texture including the (100) direction 
and to obtain good magnetic properties also. 

Experimental Procedures 
The experimental procedure for the preparation of the 

alloys is shown in Fig. 1. The Fe-30%Cr-15%Co-3%Mo 
(in wt%) alloys were chosen for this investigation. The 
alloys were induction-melted in Ar atmosphere and cast 
into cylindrical specimens in a mold with an inside di- 
ameter of 25 mm. Chemical composition analysis of these 
alloys was made using the chemical wet method, and the 
results are shown in Fig. 1. The ingots were hot-forged 
to a bar of approximately 18 x 18 mm2 in cross section. 
The bars were solution-treated at 1300°C for 30 min and 
then underwent hot-rolling eight or nine times at 1200°C 
at a thickness of 2 mm. The strips were reheated to 
1200°C after each hot-rolling in order to prevent precip- 
itation of the brittle U phase. 

The hot-rolled strips were cold-worked to strips in 1) 
one-step or 2) two-step methods after the heat treatment 
at 1250°C for 10 min. When the two-step cold-rolling 
method was adopted, the strips were annealed at 1100°C 
for 10 min after the first cold-rolling. The specimens were 
cut along the rolling direction (RD) and transverse direc- 
tion (TD), respectively, from the final cold-rolled strips. 
After the final cold-rolling, the alloys were annealed for 
primary recrystallization at 1200°C or 1000°C for 10 min. 
These temperatures correspond to the a phase region of 
the alloy composition used. Some specimens were an- 
nealed for secondary recrystallization after primary re- 
crystallization. 

The alloys were heat treated for magnetic hardening 
after the annealing for recrystallization. The heat treat- 
ment for magnetic hardening is as follows: after the so- 
lution treatment at 1200°C for l h, the alloys were aged 
at 635°C for 20 min (TMT-1) and then at 615°C for 4 h 
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Fig. 2 .  Typical etching pits reported by Hayakawa P! U / .  [ I  11. (a) Crystal structure. (b) Micro-~dcet pits with low indices. (c) 
Polyhedrons composed of low indices crystallographic plane. 

(TMT-2) in a magnetic field of 160 kAm-l (2 kOe). The 
alloys were then held at 610°C for 2 h, followed by con- 
trolled cooling at a rate of 4"C/h and held at 500°C for 
10 h. The details are described in another work [9]. 

The magnetic properties were measured with an auto- 
matic fluxmeter. Texture was at first judged by the rela- 
tive intensity (Z/Zo) of each X-ray peak diffracted by the 
surface of the cold-rolled and annealed strips, where lo  
exhibits the X-ray intensity of each diffracted peak from 
equiaxed alloys. If the Z/Zo value of a certain peak is over 
one, it means that the crystallographic plane corresponded 
the peak is one of the main crystallographic components 

for the strips. But when the grain size of the strips is large, 
this method cannot determine the texture. In order to de- 
termine the orientation of the grains, the shape of etching 
pits formed on the surface of the strips was observed. 
These etching pits consist of some crystallographic facets 
with low indices [lo]. By measuring the normals to the 
facet of etching pits, the crystallographic orientation of 
the small region where the etching pits were embedded 
could be determined within the accuracy of 1 O [IO]. Typ- 
ical etching pits reported by Hayakawa er al.  [ I l l  are 
shown in Fig. 2. In this study electrolytic and chemical 
etchings were used in order to produce distributed micro- 
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Fig. 3. Variation of relative X-ray diffracted intensity taken from (a) one-step cold-rolled and (b) annealed strips versus cold- 
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Fig. 4. Variation of relative X-ray diffracted intensity taken from (a) two-step cold-rolled and (b) annealed strips versus cold 
rolling reduction in thickness. 

pits uniformly. The reagent for these etchings are oxalic 
acid and aqua regia, respectively. 

RESULTS AND DISCUSSION 

Cold-rolled and Recrystallization Texture 
Fig. 3 shows the variation of relative X-ray diffracted 

intensity taken from a) one-step cold-rolled and b) an- 
nealed strips versus cold-rolling reduction in thickness. 
The intensity of (200) and (222) diffractions increases 
with the increasing rate of cold-rolling reduction and that 

of (21 l }  diffraction is over one for all of cold-rolling re- 
duction in thickness. It can be considered that {211}, 
{ loo}, and { 11 1 } planes are dominant on the surface of 
cold-rolling strips and that the volume of grains, which 
have { loo} and { 11 1 } components, increase in the rolling 
plane with increasing cold-rolling reduction in thickness. 
But after the annealing for recrystallization, all diffrac- 
tions are not so strong as those observed after cold-roll- 
ing. It can be said that strong texture is not developed 
after annealing. 

Fig. 4 shows the variation of relative X-ray diffracted 
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Fig. 5. Optical micrographs with etching pits taken from the rolling plane of (70%. 34%) two-step cold-rolled alloys 

intensity taken from a) two-step cold-rolled and b) an- 
nealed stips versus cold-rolled reduction in thickness. The 
variations of relative X-ray diffracted intensity versus re- 
duction in thickness tend to follow the same manner as 
that for one-step cold-rolling shown in Fig. 3.  Comparing 
Fig. 4(a) with Fig. 3(a), the relative X-ray diffracted in- 
tensity taken from two-step cold-rolled strips is not as 
strong as those taken from one-step cold-rolled strips be- 
cause of the annealing after the first cold-rolling. But the 
intensity of {222}, {200}, and (211) diffractions are 
strong for all of the strips, which are two-step cold-rolled 
with various combinations of first and second cold-roll- 
ing. It can be said that the volume of the grains with 
{ 1 1 1 } , { loo}, and { 2 1 1 } components is large in the roll- 
ing plane after cold-rolling. But it is found that the an- 
nealed strips do not have the strong texture as shown in 
Fig. 4(b). 

Fig. 5 shows the optical micrographs with the etching 
pits taken from the rolling plane of the two-step (70%, 
34%) cold-rolled alloy, where 70%,  34% exhibits the 
combination of the first and the second rolling reduction 
in thickness. The shape of the etching pits indicates that 
the cold-rolled texture can be considered as { 1 1 l }  ( 1 lo),  
(111}(112), {100}(110), and {211}(110). These tex- 
tures are classified into two types reported in pure iron by 
C.  S.  Barrett [12]. The first type is the crystallographic 
texture that occurs by rotating { 100) ( 110) along ( 110),  
which is aligned parallel to the rolling direction. The sec- 
ond one is the texture that occurs by rotating { 11 l }  ( 110) 
along ( 11 1 ), which exists normal to the rolling plane. It 
can be considered that the cold-rolled texture of Fe-Cr- 
CO-MO alloys is the same as that reported in other BCC 
metals. 

From Fig. 3(b) and Fig. 4(b), the Z/Zo values of var- 
ious planes of annealed sheets are nearly one. It can be 

considered that the recrystallization texture is not so strong 
in annealed sheets and cannot be determined by X-ray dif- 
fraction. The shape of etching pits were then observed. 
Fig. 6 shows the optical micrographs with etching pits 
taken from the rolling plane of annealed sheets after two- 
step (70%, 34%) cold-rolling. The recrystallization tex- 
ture can be considered as {110}(110), {111}(110), 
{ 11 1)  ( 112), and {loo} ( 110) from the shape of etching 
pits, which are similar to those of other reported BCC 
metals. For example, this crystallographic texture resem- 
bles the recrystallization texture of polycrystalline pure 
iron as reported by Kurjumov and Sachs [ 131. 

The variation of the magnetic properties of the alloys 
versus two-step cold-rolling reduction is shown in Fig. 7, 
where RD and TD exhibit the magnetic properties mea- 
sured along rolling direction and transverse direction, re- 
spectively. The difference of magnetic properties between 
RD and TD is small for all combinations of cold-rolling 
reduction, and the magnetic properties do not change 
drastically by changing the combination of rolling reduc- 
tion. This observation means that the strong recrystal- 
lization texture cannot be developed. It can be said that 
the (100) direction does not align along one direction 
when using a combination of cold-rolling and annealing 
in the CY phase region. 

( 100) Recrystallization Texture 
The grain that has { 110) ( 110) or { loo} ( 110) exists 

in the rolling plane after recrystallization. If the grain 
grows at the expense of the other grains by secondary re- 
crystallization, the (100) directions align along TD or 
RD + 45 O ,  respectively. In order to grow grains that have 
the favorable directions described previously, the heat 
treatment time was prolonged from 1 h to 40 h.  But the 
resulted average gain size after heat treatment at 1200°C 
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Fig. 6. Optical micrographs with etching pits taken from the rolling plane of  annealed sheets after two-step (70%. 34%) cold- 
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Fig. 7. Variation of magnetic properties of alloys versus four different 
combinations of two-step cold-rolling reduction in thickness. 

for 40 h is 180 pm. The size of the grain is not very dif- 
ferent from 140 pm, which is the average grain size after 
heat treatment for 1 h. It can be said that secondary re- 
crystallization does not occur and ( 100) directions do not 
align along one direction in this method. 

It is reported that the phase transformation among three 
different phase regions a + y + U, a + y, and a is uti- 
lized for secondary recrystallization in preparation of Fe- 
Cr-Co single crystals [7]. In order to cause secondary re- 

Fig. 8. Schematic diagram of the heat treatment for secondary recrystal- 
lization (HTSR).  

crystallization and give favorable texture, heat-treating the 
alloys in the sequence of a ,  CY + y, a + y + U ,  a ,  which 
is shown in Fig. 8, was adopted in this investigation. The 
heat treatment is as follows: after the annealing for the 
primary recrystallization at 1000°C for 10 min, the alloys 
are heat-treated first at 1250°C for 30 min, which is in  an 
CY phase region, followed by furnace cooling to 970°C and 
held there for 3 h ,  which is in  cy + y phase region. The 
alloys were then heat-treated at 900°C for 1 h, which is 
in a + y + U region, and finally heat-treated at 1150°C 
for 1 h in an a phase region. Hereafter, this heat treatment 
for secondary recrystallization is abbreviated as HTSR. 

Fig. 9 shows the magnetic properties of Fe-30Cr- 
15Co-3Mo alloys obtained by annealing only in an a 
phase region and by HTSR. The magnetic properties ob- 
tained by HTSR with TD alloys are iHc = 82 kAm-’ 
(1025 Oe) and (BH)max = 56.8 kJmp3 (7.1 MGOe). 
They are higher than those of RD alloys and alloys an- 
nealed only in an a phase region. 

Fig. 10 shows the optical microstructures and the etch- 
ing pits taken from the alloys after the annealing only in 
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Fig. 9.  Magnetic properties of  Fe-30Cr-15Co-3Mo alloys obtained by annealing only in CY phase region and by HTSR 

Fig. I O .  Optical microstructures and etching pits taken from the alloys after the annealing only in 01 phase region [(a)  and (c)]  
and HTSR [(b)] and (d)]. 

the a phase region ((a) and (c)) and HTSR ((b) and (d)). 
Although the average grain size of the alloy annealed only 
in the a phase region is 120 pm, the one by the HTSR is 
2.6 mm. The grains obtained by HTSR are larger than 
those by the annealing in the a phase region. It can be 
considered that secondary recrystallization occurs effi- 
ciently in the alloys by the HTSR. From the shape of etch- 
ing pits shown in Fig. lO(c), the grains of the alloys an- 
nealed in the a phase region have the { 1 1  l }  and { 100) 
components. As a result the (100) directions exist ran- 
domly and do not align along one direction in the alloys. 

But the grains grown by HTSR have the { 1 lo} compo- 
nents with ( 1  10) directions along RD shown in Fig. 
10(d). It can be considered that the texture composed 
mainly of { 1 lo} ( 110) is obtained by the HTSR. In this 
texture, the (100) directions exist along TD, and good 
magnetic properties can be obtained with TD alloys. 

Fig. 11 shows the magnetic properties of the alloys an- 
nealed by the HTSR after one-step cold-rolling. Good 
magnetic properties can be obtained with TD alloys after 
nearly 70% of cold-rolling reduction in thickness. Fig. 12 
shows the magnetic properties of the alloys annealed by 
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Fig. 1 1 .  Magnetic properties of alloys annealed by HTSR after one-step 
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Fig. 12. Magnetic properties of alloys annealed by HTSR after two-step 
cold-rolling, whose first cold-rolling reduction is 70%,  versus secondary 
reduction in thickness. 

HTSR after two-step cold-rolling, whose first cold-rolling 
reduction rate is 70% versus secondary cold-rolling re- 
duction in thickness. The energy products above 53.6 
kJm-3 (6.3 MGOe) are obtained for almost all of the re- 
duction rates of secondary cold-rolling reduction. The best 
magnetic properties, iHc = 82 kAm-‘ (1025 Oe), 
(BH)max = 60.8 Jm-3 (7.6 MGOe), can be obtained by 
70%, 15%) two-step cold-rolling with TD alloys. 

( B H ) m a x /  kJm-’ 
60 50 40 30 

-H I kAm-’ 

Fig. 13. Demagnetization curves of Fe-30Cr-15C0-3Mo alloy measured 
along RD and TD with those of Alnico 6 and 8. 

The demagnetization curves of RD and TD alloys an- 
nealed by HTSR after two-step (70%, 17 %) cold-rolling 
are shown in Fig. 13 in comparison with those of Alnico 
6 and Alnico 8.  TD alloys have good magnetic properties 
higher than those of RD alloy and Alnico 6.  Although the 
coercivity of TD alloys is lower than that of Alnico 8,  the 
higher magnetic flux can be obtained above p = 3 (where 
p is the permeance) with the advantage of cold formabil- 
ity. It can be concluded that this presently developed 
method is useful for the mass production of ( 100) aligned 
Fe-Cr-CO-Mo with high energy products comparable to 
Alnico 8.  
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