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Tunneling Through Ultrathin GaAs n -p -n
Barrier Grown by Molecular Layer Epitaxy

Yong-Xun Liu, Piotr Plotka, Ken Suto,
Yutaka Oyama, and Jun-ichi Nishizawa

Abstract—The III–VVV characteristics of ultrathin GaAs n++++++-p++++++-n++++++

barrier structures with a 45 Å thick p++++++ layer grown by molecular layer
epitaxy (MLE) have been measured at room temperature and 77 K. The
tunneling probability for this structure has been calculated as a function
of effective tunneling width. It was found that good agreement between
experiment and calculation is obtained when the effective tunneling width
is assumed to be 75̊A, which is much smaller than the depletion width
about 190 Å measured by C-V method. This fact indicates that the
depletion width approximation cannot be used to measure the exact
tunneling width for ultrathin barrier devices.

Index Terms—Effective tunnelling width, molecular layer epitaxy, ul-
trathin barrier.

I. INTRODUCTION

Molecular layer epitaxy (MLE) [1] is a crystal growth method that
is able to produce thin crystal films controlled with a single molecular
layer precision. This method has been applied to preparation of ideal
static induction transistor (ISIT) in which electrons transport in the
crystal without collision [2]–[4]. The operation of the ISIT with tun-
neling has been reported [5]. TheI–V characteristics of planar doped
barrier (PDB) n+-i-p+-i-n+ structures with source-drain distances
larger than 460Å have been explained with thermionic emission
theory at and above room temperature [6]–[8] and by tunneling theory
at 77 K [9]. In the calculation of tunneling probability for PDB
structures, the design source-drain distance was used as an effective
tunneling width at zero bias because the depletion width measured
by C–V method is almost equal to the design source-drain distance.
However, discrepancies occur between the measured depletion width
and the design source-drain distance with thinning of the source-
drain distance. For example, the depletion width measured byC–V
method for a PDB structure with design source-drain distance 110Å
was about 320Å [9].

In this work, we compare the measured and calculatedI–V
characteristics of the ultrathin n++-p++-n++ structure with a 45
Å thick p++ layer grown by MLE. The tunneling probability and
current for this structure are calculated by using triangular barrier
model. The differences between the effective tunneling width and the
depletion width measured byC–V method are simply discussed by
considering the electron distribution tails from the n++ source and
drain regions into the depleted channel region.

II. EXPERIMENTAL RESULTS AND DISCUSSION

The ultrathin GaAs n++-p++-n++ barrier structure with a design
metallurgical p++ layer thickness of 45Å was grown by MLE,
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TABLE I
DESIGNED LAYER PARAMETERS IN MLE

using selenium and zinc as n++ and p++ dopants, respectively.
After growth of the structure, the device mesa was etched with
H2SO4 : H2O2 : H2O = 4 : 1 : 90 solution. About 40 diodes with an
areaS = 100� 100 �m2 were formed on a wafer. A lift-off Ti/Au
metallization was used for nonalloyed contact to the top layer and
Au/Ge was used for back contact. The design parameters in MLE are
listed in Table I. The doping concentrations of both n++ layers are
the same,ND = 5 � 1019 cm�3. The thicknessWp0 = 45 Å and
doping levelNA = 9� 1019 cm�3 of the p++ layer are designed so
that the thin p++ layer is completely depleted. The doping levels of
each layer have been determined by Hall effect with about 1500Å
thick layers and the thicknesses for each layer have been determined
by the growth rate (̊A/cycle) in the MLE [1]. The p++ and n++

doping profiles have been found to be nearly abrupt, by a dynamic
SIMS instrument with depth resolution of 30̊A.

At thermal equilibrium, the relation of space charge neutrality
NA � Wp0 = 2ND � Wn0 should be valid, whereWn0 is the
depletion width on one side n++ region. The value ofWn0 can be
calculated to be 40.5̊A. Thus, the total depletion width is obtained
as W0 = Wp0 + 2Wn0 = 126 Å. The measured depletion width
by C–V method is about 190̊A. The potential distribution at the
thermal equilibrium can be calculated from Poisson equation, and the
barrier height is obtained as	00 = 0:88 V. This analysis is based
on the depletion width approximation, which neglects the electron
distribution tails from n++ regions into the depleted channel region.

The schematic diagram of the ultrathin n++-p++-n++ barrier
structure is presented in Fig. 1(a), where the black circles illustrate
the electron distribution tails from both n++ regions into the depleted
channel region. The potential distribution taking into account the
electron distribution tails is calculated, and the zero bias barrier
height is obtained as�00 = 0:91 V. In this calculation, the electron
distribution tails are expressed asn(x) = ND exp[�q�(x)=kBT ],
where�(x) is potential,q is elementary charge,kB is Boltzmann
constant,T is absolute temperature. Two dashed lines in Fig. 1(b)
correspond to the calculated potential distributions at zero bias and
VDS = 0:5 V. It can be seen from these profiles that the position of
potential maximum moves to the source direction with increasing
bias (the substrate biased positively with respective to the top).
Considering these factors, the triangular barrier model is adopted to
simplify the calculation of tunneling probability for our structure. Two
solid lines in Fig. 1(b) represent the triangular potential distribution
at zero bias andVDS = 0:5 V, whereWgs andWgd are the effective
source-gate and gate-drain distances,We� 0 is the effective tunneling
width at zero bias,a andb are the effective classical turning points,
�0 and�1 are the effective barrier heights with respect to the source
Fermi levelEFS at zero andVDS biases,EC is the energy at the
bottom of conduction band,Vns = (EFS � EC)=q is degeneracy
which is small [10], [11].

The tunneling current at zero absolute temperature is easily cal-
culated by using this triangular potential barrier model, and can be
expressed as [9]

I � S � A0 � qVDS � (2qVns � qVDS)

� exp �� �
p
�1 �We� VDS � Vns (1)

(a)

(b)

Fig. 1. (a) Schematic diagram of the ultrathin n++-p++-n++ barrier struc-
ture. Black circles illustrate the electron distribution tails from both the n++

regions into the depleted channel region. (b) Potential distributions from
calculation (dashed lines) and triangular barrier model (solid lines) at zero
bias andVDS = 0:5 V. The parameters are assumed as�0 = 1:15 V,
Wgs = 25 Å, Wgd = 50 Å, and ��F = 3.

I � S � A0 � (qVns)2

� exp �� �
p
�1 �We� VDS > Vns (2)

whereS is device area,A0 � 2�m�q=h3 � 5:5 � 108 [A cm�2

(eV)�2], � � 8�(2m�q)0:5=3h � 0:178 [Å�1 V�0:5], m� is
effective mass of an electron,h is Planck constant.�1 can be
expressed as�1 � �0�VDS=��F , where��F (� 1+Wgd=Wgs) is the
intrinsic voltage amplification factor [2], [8].We� can be expressed
asWe� � Wgs +Wgd=(1 + VDS=�1) [9].

Fig. 2 shows the calculated tunneling current from (1) and (2) with
the effective tunneling widthWe� 0 at zero bias as a single parameter.
The other parametersqVns; ��F and�0 are fixed to 75 meV, 3 and
1.15 V, respectively. As mentioned before, the design metallurgical
thickness of p++ layer is 45Å, the depletion width from the space
charge neutrality is 126̊A, and is about 190̊A by C–V measurement.
It is clear from Fig. 2 that the tunneling current magnitude and shape
is very different asWe� 0 changes from 45 to 195̊A.

Fig. 3 shows the calculated tunneling current from (1) and (2) with
the zero bias barrier height�0 as a parameter. The other parameters
qVns; �

�

F andWe� 0 are fixed to 75 meV, 3 and 75̊A, respectively.
�0 = 0:9 V corresponds to the calculated barrier height at thermal
equilibrium. The tunneling current does not strongly depend on the
�0, as compared withWe� 0.

We have also calculated the tunneling current with��F ranging from
2–4, andqVns; �0, andWe� 0 are fixed to 75 meV, 1.15 V, and 75
Å, respectively. There are no pronounced changes in the calculated
I–V characteristics.

Fig. 4 compares the calculated tunneling current from (1) and (2)
and the experimental data at room temperature and 77 K. It is found
that the best fit between the experimental data and calculated one
is obtained when the parameters are assumed asWe� 0 = 75 Å,
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Fig. 2. Calculated tunneling current with the effective tunneling width at
zero bias as a single parameter.

Fig. 3. Calculated tunneling current with the zero bias potential barrier
height as a single parameter.

�0 = 1:15 V, qVns = 75 meV, and��F = 3. Although there are
some differences in the potential distributions between the triangular
barrier model and the calculated one, as solid lines and dashed lines in
Fig. 1(b), the triangular barrier model explains our experimental data.
The insert in Fig. 4 shows a logarithmic plot of the experimental and
calculatedI–V characteristics. The current in the vicinity of zero bias
is approximately ohmic. This result is reasonable because the product
of the �0:5

1 �We� � �0:5
0 �We� 0 is almost a constant for small

bias(VDS < Vns), and the current should be determined by (1) with
a nearly linear dependence on the bias voltageVDS .

The parallel capacitanceCp and resistanceRp of our sample were
measured at different frequencies usinghp-impedance/gain-phase
analyzer, and obtained asCp � 60 pF andRp � 140 
. These values
are independent of frequency up to 10 MHz. The estimated series
resistance is about 1
. The depletion width from the capacitance, 190
Å, is much larger than the effective tunneling width, 75Å. Because
of the electron distribution tails shown as black circles in Fig. 1(a),
the classical abrupt space-charge edge approximation is not adequate

Fig. 4. Comparison between experiment and calculation at forward and
reverse biases. The insert is a logarithmicI–V characteristics.

[12], [13], and the depletion width from theC–V data can not be
referred to the blocking distance of electrons. Moreover, because the
main contribution to the tunneling current is due to electrons with
the energy near EFS, the effective tunneling width should be smaller
than the depletion width. However, for the PDB structures with a
few hundred Angstrom long channels, this effect is not important and
the design source-drain distance can be used as a tunneling barrier
width [9]. The more precise expression of tunneling current with
exact potential distribution requires further study.

III. CONCLUSION

The I–V characteristics for ultrathin GaAs n++-p++-n++ barrier
structures with a 45̊A thick p++ layer grown by molecular layer
epitaxy (MLE) have been measured at room temperature and 77
K. The tunneling current for this structure has been calculated as
a function of effective tunneling width. Good agreement between the
experimental and calculatedI–V characteristics is obtained when
the effective tunneling width is assumed 75Å, much smaller than
the depletion width of about 190̊A measured byC–V method. The
depletion width approximation can not be used to measure the exact
tunneling width for ultrathin barrier devices. When the metallurgical
source-drain distance is about 45Å, the diode current is tunneling
current even at room temperature.
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