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Il. EXPERIMENTAL RESULTS AND DISCUSSION

The ultrathin GaAs Wt -p™-ntT barrier structure with a design
metallurgical g layer thickness of 45A was grown by MLE,
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TABLE |
DESIGNED LAYER PARAMETERS IN MLE

Source n" 300A 5%10" ¢m™ TOP
Gate p 45A 9x10" ¢m? ]
Drain n"* 180A 5x10' ¢m™

Buffer n 425A 5x10'"% cm

Substrate n' GaAs(100)  2x10"®cm?

SUB.

using selenium and zinc as™h and p" dopants, respectively.
After growth of the structure, the device mesa was etched with : source gate drain
H>SQ, :H20; :H20 = 4:1:90 solution. About 40 diodes with an N M
areaS = 100 x 100 pum? were formed on a wafer. A lift-off Ti/Au
metallization was used for nonalloyed contact to the top layer and
Au/Ge was used for back contact. The design parameters in MLE are
listed in Table I. The doping concentrations of both'nlayers are
the sameNp = 5 x 10'? cm™*. The thicknes$¥,, = 45 A and
doping levelN4 = 9 x 10'? cm™ of the p™* layer are designed so
that the thin p+ layer is completely depleted. The doping levels of
each layer have been determined by Hall effect with about 1500 -0.5 ~ T
thick layers and the thicknesses for each layer have been determined L, T e
by the growth rate A/cycle) in the MLE [1]. The g+ and n* -50 0 50 100
doping profiles have been found to be nearly abrupt, by a dynamic
SIMS instrument with depth resolution of 3 DISTANCE [A]

At thermal equilibrium, the relation of space charge neutrality (b)
Na x Wy = 2Np x Wy should be valid, wheréV,, is the Fig. 1. (a) Schematic diagram of the ultrathin-h-pt+-nt+ barrier struc-
depletion width on one side'rt region. The value of¥,.c can be ture. Black circles illustrate the electron distribution tails from both thé n
calculated to be 40.3. Thus, the total depletion width is obtainedregions into the depleted channel region. (b) Potential distributions from
asWy = Wyo + 2W,0 = 126 A. The measured depletion width cglculatior; (dashgd_lines) and triangular barrier model (solid Iine§) at zero
by C-V method is about 19@. The potential distribution at the %'?S a__“%”g w U"’: \{);OTAhea?]%rZTefrg are assumed ®s = 1.15 V,
thermal equilibrium can be calculated from Poisson equation, and thé” Pl ' e
barrier height is obtained a&,, = 0.88 V. This analysis is based

[ Ee L0

[ Va

POTENTIAL [V]

on the depletion width approximation, which neglects the electron TS A (qV,.)?
B . B . + . . . ~ < q ns
distribution tails from A" regions into the depleted channel region. i ) )
The schematic diagram of the ultrathinfp™t-n™ barrier © exp (—a" Ve, 'W"eﬂ') Vos > Vas 2

structure is presented in Fig. 1(a), where the black circles illustrat . . / % 113 - s —2
L . . . A =~ 27 h” ~ 5. 1 =
the electron distribution tails from both'f regions into the depleted Where 5 is device area wmq/h >3 x 107 [A cm

. J o PR > eV) 2], a =~ 8x(2m*¢)*%/3h =~ 0.178 [A~' V%], m* is

channel region. The potential distribution taking into account th ) .]’ o m(2m7q) " [3h . [ 1 m
SO o . effective mass of an electrorf, is Planck constant®; can be
electron distribution tails is calculated, and the zero bias barriér

height is obtained a®,, = 0.91 V. In this calculation, the electron ;ﬁﬁ;i?:i%??:aio Hf}cgic/)ﬁ?aggfr[g?ié;1+Ic1a;1d/bz/geb)z |;<,etshseed
distribution tails are expressed asz) = Np exp[—q®(z)/ksT], 9 P P el P

where &(z) is potential,q is elementary chargéss is Boltzmann 2> Weir & Wys +Wya/(1 4+ Vps/®1) [9]. ,
constant T is absolute ,tem erature. Two dashed lines in Fig. 1 Fig. 2 shows the calculated tunneling current from (1) and (2) with
' P y 9 ?918 effective tunneling widthV. o at zero bias as a single parameter.

correspond to the calculated potential distributions at zero bias and, other parameterg,., i} and®, are fixed to 75 meV, 3 and
‘nsy HF 0 3

Vos - 0.5 V. .It can be seen from these prof_lles _that the posmon_olf.w V, respectively. As mentioned before, the design metallurgical
potential maximum moves to the source direction with increasing. oo of B+ layer is 45A the depletion width from the space
bias (the substrate biased positively with respective to the to iarge neutrality is 128 and i’s about 196 by C—V" measurement.

Considering these factors, the triangular barrier model is adopted, 10 . . .
simplify the calculation of tunneling probability for our structure TwoIt IS clear from Fig. 2 that the tunneling current moagnltude and shape
P gp v . Is very different ad¥.g o changes from 45 to 195.

solid lines in Fig. 1(b) represent the triangular potential distribution Fig. 3 shows the calculated tunneling current from (1) and (2) with

at zero bias and’ps = 0.5 V, whereW,, andW,, are the effective . : :
- 90 . .~ the zero bias barrier heighi, as a parameter. The other parameters
source-gate and gate-drain distand&s; o is the effective tunneling . M ; - o .
width at zero biasq andb are the effective classical tuming pointsL' "¢’ ## @NdWeiro are fixed to 75 meV, 3 and 78, respectively.
“ gp 'Dg = 0.9 V corresponds to the calculated barrier height at thermal

d, and®, are the effective barrier heights with respect to the SOUree. librium. The tunneling current does not stronalv depend on the
Fermi level Ers at zero andVps biases,Ec¢ is the energy at the g ) g gly dep

i it ) ) . ®o, as compared wittWero.
\?V?ltit:r?qisolr?’lc;rllldFlc(;l]orilli?nmm = (Ers — Ec)/q is degeneracy We have also calculated the tunneling current withranging from
’ ' 2-4, andqV,.s, o, andWe.g o are fixed to 75 meV, 1.15 V, and 75

The tunneling current at zero absolute temperature is easily cal- ) .
. L . . respectively. There are no pronounced changes in the calculated
culated by using this triangular potential barrier model, and can hé

expressed as [9] =V characteristics.
P Fig. 4 compares the calculated tunneling current from (1) and (2)

I=5S A qVps (2¢Vus — ¢Vbs) and the experimental data at room temperature and 77 K. It is found
, that the best fit between the experimental data and calculated one
. ex —a - P - W, ) Vs < Vs 1 h - h i
e)‘p( “« Pl ) P = (D) is obtained when the parameters are assumetVas, = 75 A,
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0 02 04 06 08 1 12 14 BIAS VOLTAGE [V]
BIAS VOLTAGE [V] Fig. 4. Comparison between experiment and calculation at forward and

reverse biases. The insert is a logarithmid” characteristics.

Fig. 2. Calculated tunneling current with the effective tunneling width at

zero bias as a single parameter. ) )
[12], [13], and the depletion width from th€—1” data can not be
referred to the blocking distance of electrons. Moreover, because the

10 i main contribution to the tunneling current is due to electrons with

the energy near s, the effective tunneling width should be smaller
than the depletion width. However, for the PDB structures with a
z 10° few hundred Angstrom long channels, this effect is not important and
= the design source-drain distance can be used as a tunneling barrier
& 107 width [9]. The more precise expression of tunneling current with
éﬂ exact potential distribution requires further study.
C 107
© I1l. CONCLUSION
% @ [V] The I-V characteristics for ultrathin GaAs i -p™-n™ barrier
10° 3 structures with a 45 thick p™t layer grown by molecular layer
Fixed parameters ] epitaxy (MLE) have been measured at room temperature and 77
=0t Wem =75 A K. The tunneling current for this structure has been calculated as
Mt =3 3 a function of effective tunneling width. Good agreement between the
o . “V"s:l” “‘e"‘ ‘ experimental and calculatef-V characteristics is obtained when

the effective tunneling width is assumed A‘S much smaller than

the depletion width of about 198 measured byC'-V method. The
BIAS VOLTAGE [V] depletion width approximation can not be used to measure the exact

Fig. 3. Calculated tunneling current with the zero bias potential barriiNn€ling width for ultrathin barrier devices. When the metallurgical

height as a single parameter. source-drain distance is about 45 the diode current is tunneling

current even at room temperature.

0 02 04 06 08 1 12 14

$y = 1.15 V, ¢V,s = 75 meV, andur = 3. Although there are ACKNOWLEDGMENT
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