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Abstract—Nanoscale linear servomotors with integrated po-
sition sensing are investigated from experimental, theoretical,
and design perspectives. Prismatic motion is realized using the
interlayer motion of telescoping multiwalled carbon nanotubes
(MWNTs). Position sensing can be achieved by monitoring field
emission or by measuring resistance change between an MWNT
and a gold substrate during sliding movement. Experimental
results demonstrate resolution in the nanometer range. Actuation
experiments demonstrate the feasibility of a linear nanoservo-
motor with integrated position sensing based on field emission.
A local “kink”-like fluctuation of emission current is observed,
which is caused by the change of the protruding length of the
nanotube core, thus demonstrating the potential of using emission
as a “linear encoder.” The complete extension of the inner core
is observed and the electrostatic force is calibrated to be tens of
nano-Newtons for individual nanotubes—16.5 nN under a 30-V
bias. These results demonstrate the possibility of fabricating
linear servomotors at the nanometer scale with integrated position
sensing.

Note to Practitioners—Nanometer scale actuators and sensors
that can provide motion and measurement with nanometer-order
resolution will enable new industrial applications in which only a
few atoms or molecules are measured, transported, or processed.
Linear servomotors will play a significant role in such applications
because they provide precision prismatic motion directly without
requiring a conversion from rotary to linear motion. Nano linear
servomotors are experimentally and theoretically investigated in
this paper. The devices take advantage of the ultra-low interlayer
friction of a multiwalled carbon nanotube (MWNT). Position
sensing feedback is achieved by monitoring field emission, which
depends on interelectrode distance, or by measuring resistance
change between an MWNT and a gold substrate during sliding
movement. Whereas this paper targets long-term nanotechnology
contributions, some intermediate results are ready for applications
in the near future. The interlayer sliding motion demonstrated
would enable the building of devices, such as Gigahertz oscillators
and attolitter nanosyringes, and the sensors used for position
feedback could find applications independently in a macro or
microscale machine for detecting proximity, touch, displacement,
or orientation.

Index Terms—Carbon nanotube, field emission, linear servo-
motor, position sensing, telescoping nanotube.
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I. INTRODUCTION

THE generation of linear motion is important in both the
technological world and in nature. Most machines are

powered by internal combustion engines operating on the
principle of linear alternating motion of a piston in a cylinder,
or by motors actuated by transforming electric energy into
mechanical motion. Among electric motors, linear servomotors
play a significant role because they provide precision prismatic
motion directly without requiring a conversion from rotary to
linear motion which generally decreases efficiency and results
in a larger and more complex mechanism.

In nature, prismatic motion related to intercellular exchanges,
cell division, and muscle contraction is produced by protein
linear motors [1]. Enzymes such as myosin, kinsin, and dynein
are linear motors that move along polymer substrates and con-
vert the energy liberated from adenosine triphosphate (ATP) hy-
drolysis into mechanical work; myosin moves along actin fila-
ments in muscle and other cells, and kinesin and dynein along
microtubules. Despite its ubiquity and versatility, protein has
shortcomings as an engineering material. Protein machines are
structurally flexible; they quit when dried, freeze when chilled,
and cook when heated [2].

In 1992, Drexler discussed the possibility of constructing
artificial nanomechanical rotary or linear motors with diamon-
doid covalent solids [3]. In the last decade, progress has been
made in artificial nanoscale actuators due to the discovery of
carbon nanotubes (CNTs) [4], nanowires [5], nanobelts [6],
and other nanomaterials. Nanotubes produced in bulk have
been used to fabricate actuators based on bond-length changes
induced by charge injection [7]. Single wall carbon nanotube
(SWNT)-Nafion composite actuators have been demonstrated
for 0.1–18(%wt CNTs) doping of purified SWNTs within the
polymer matrix. A mm mm m bimorph actuator
was reported to deflect 4 mm [8]. Electrostatic deflection has
also been shown for carbon nanotubes [9], [10]. Piezoelectric
and ferroelectric zinc–oxide nanobelt-based structures have
been synthesized and have potential as nanoscale actuator com-
ponents [11]. While solid actuators can output relatively large
forces, their stroke is generally proportional to their volume,
which does not scale favorably for these dimensions. Another
family of nano actuators resembling macroscale motors can
be constructed by taking advantage of the ultra-low interlayer
friction of a multiwalled nanotube (MWNT). Recently, a micro
rotary actuator with a nanotube as a rotation bearing has been
demonstrated [12].

Compared to protein linear motors, nanotube linear servomo-
tors have potentially better controllability and can work in solid
state, in a broader environment, such as in air or vacuum rather
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Fig. 1. Telescoping MWNTs. (a) Bridged telescoping MWNT (none
opened end). (b) Cantilevered telescoping MWNT (one opened end).
(c) Middle-supported telescoping MWNT (two opened ends).

than only in liquid, with changeable step sizes, and with poten-
tially higher resolution. Protein linear motors may find appli-
cations in biotechnology and nanomedicines for molecule han-
dling, drug delivery, and so on, whereas nanotube linear motors
are designed for solid-state nanomachine actuation for such ap-
plications as atom/molecule manipulation and assembly.

To improve the precision of nanomotors, position sensing
feedback is necessary. Although tunneling current and laser-de-
flection techniques can provide extremely high resolution feed-
back [13], [14], the effective distance of the former is less than
1 nm and the latter generally involves a complex laser appa-
ratus. The dependence of field emission currents on interelec-
trode distance is another technique that may be used for position
sensing. Recent results with nanotube emitters and telescoping
nanotubes have shown the feasibility of this method [15], [16].
Another possible feedback mechanism is to use the interlayer
resistance of a telescoping nanotube for position sensing [17].
The potential for quantized interlayer conductance can result in
resolutions at atomic lattice-levels [18].

In the following, telescoping nanotubes are introduced in Sec-
tion II. Actuation and position sensing are then presented in Sec-
tions III and IV, respectively. In Section V, an experiment with
a linear nanomotor with integrated field emission current-based
position sensing is described.

II. TELESCOPING CARBON NANOTUBES

A. Overview

Telescoping structures obtained from MWNTs (Fig. 1) have
evoked interest because of the possibility of their application
in nanomechanical systems, such as ultra-low friction bearings
[19]; gigahertz nanooscillators [20], [21]; and nanometer scale
actuators. Based on their geometries, telescoping nanotubes can
have zero, one, or two open ends as shown in Fig. 1. In-situ
manipulation of the nanotube core allows controlled reversible
telescoping and, furthermore, allows the associated forces to be
quantified [22]. The steady-state resistance to interlayer sliding
motion has been measured to be 0.08–0.3 MPa [23]. Robust
ultralow-friction linear nanobearings and rotary microactuators

Fig. 2. Fabricated telescoping MWNTs. (a) Bridged telescoping MWNT.
(b) Cantilevered telescoping MWNT. (c) Middle-supported telescoping MWNT.

have been demonstrated on the basis of an interlayer rotation of
an MWNT [12].

B. Fabrication

Open-ended CNTs have been created by removing the com-
monly capped ends of MWNTs with acid etching [24], saturated
current [25], electronic pulse [26], or mechanical strain [22],
[27], thus providing access to inner-core nanotube cylinders.
Acid etching is effective for opening nanotube caps but does not
expose inner layers in a controlled way. Controlled fabrication
with saturated current is potentially a large-scale manufacturing
method, whereas electric pulse and mechanical strain are con-
venient in-situ processes.

C. Experimental Results

Here, we use mechanical pulling [27] to fabricate telescoping
CNTs using nanorobotic manipulation techniques [28]. Typical
examples are shown in Fig. 2 as bridged, cantilevered, and
middle supported (with one open end) telescoping MWNTs.
Fig. 2(a) shows a bridged telescoping MWNT with two ends
fixed on a substrate (left end) and an atomic force microscope

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 04,2010 at 21:13:29 EST from IEEE Xplore.  Restrictions apply. 



230 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 3, NO. 3, JULY 2006

Fig. 3. Telescoping MWNT linear nanomotors. (a) Bridged telescoping
MWNT prismatic nanomotor. (b) Cantilevered telescoping MWNT prismatic
nanomotor. (c) Middle-supported telescoping MWNT linear nanomotor.

(AFM) cantilever (right end). The thinner neck of the bridged
MWNT is formed by mechanical pulling (i.e., by moving the
cantilever to the right so as to break the outer layer(s) and
expose the inner ones as schematically shown in the inset).
Fig. 2(b) shows a bridged telescoping MWNT formed with
a similar process but moving the cantilever until the core is
completely exposed. Similarly, if the nanotube is not fixed at
the end but at the middle part on the cantilever, stress will occur
only on a partial section. Fig. 2(c) shows a middle-supported
telescoping MWNT being formed in this way. One end is kept
capped, but can be opened if the process is repeated as shown
in Fig. 2(b).

III. ACTUATION USING MWNTS

The configuration and mechanical models of linear nanomo-
tors are shown in Fig. 3 based on (a) bridged, (b) cantilevered,
and (c) middle-supported telescoping MWNTs. , , and

Fig. 4. Actuation experiments. Total protruding length of tube before
actuation is 2126.3 nm and 467.5 nm after actuation. (a) Before actuation. (b)
After actuation.

denote electrostatic force, van der Waals interaction, and the
total intershell sliding resistance force, respectively. The motion
of the core section can be controlled by controlling the elec-
trostatic force. Atomic scale mechanisms, such as interatomic
locking, provide resistance to sliding the core in the outer tube,
but experiments indicate that the intershell sliding resistance
force between two neighboring shells of perfect or nearly per-
fect molecular structure is substantially smaller than the van der
Waals restoring force. An experimental observation has shown
an extruded core of a multiwalled carbon nanotube retract into
the outer shells [19]. It has also been realized that the restoring
force resulting from excess van der Waals interaction energies
due to the core extrusion drives the core to oscillate with re-
spect to its fully retracted position because of the small inter-
shell sliding resistance force. The oscillation frequency can be
in the gigahertz range [20], [29].

Actuation experiments also show that under lower bias volt-
ages, it is possible to generate electrostatic forces that surpass
the sum of the van der Waals interaction and atomic scale sliding
resistance. Experimental results on a cantilevered telescoping
nanotube (Fig. 4) verify this. As the core section is pulled out,
the voltage increases from 20 to 30 V. This suggests that a rela-
tive low bias can generate an actuation force larger than the sum
of the interlayer friction and van der Waals forces on the core
of the telescoping MWNT. The electrostatic force can be esti-
mated by monitoring the deflection of an AFM cantilever in an
electron microscope. By resembling the system shown in Fig. 4,
a nontelescoping MWNT is placed against an AFM cantilever
by a manipulator installed in a transmission electron microscope
(TEM) as shown in Fig. 5. The electrostatic force on the AFM
cantilever has been detected to be 16.5 nN under a 30-V bias ac-
cording to the deflection of the cantilever (550.4 nm), suggesting
the upper limit of the interlayer friction and van der Waals forces
of the telescoping nanotube shown in Fig. 4 to be smaller than
this value.

IV. POSITION SENSING USING MWNTS

To realize controlled motion and to achieve high precision
sliding of the core section, the position must be determined in
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Fig. 5. Estimation of electrostatic forces (stiffness constant of AFM cantilever:
0.03 N/m). (a) Original state. (b) Bias voltage: 30 V.

real time. However, the applied actuating voltage makes it diffi-
cult, if not impossible, for electron microscopes to obtain real-
time imaging because of spontaneous emission of electrons.
Furthermore, electron-beam-induced contamination can cause
interlayer locking, and the low bandwidth nature of electron mi-
croscopes is problematic. Here, two promising methods of po-
sition sensing for nanomotors are discussed: noncontact posi-
tion sensing for cantilevered and middle-supported nanomotors
using field emission, and contact position sensing for bridged
nanomotors using interlayer resistance.

A. Noncontact Position Sensing With MWNTs

The position sensing configurations are shown schematically
in Fig. 6. The field emission from a nanotube emitter is governed
by the Fowler–Nordheim theory [30]

(1)

Fig. 6. Position sensing using CNTs. (a) Noncontact position sensing. (b)
Contact position (sliding) sensing.

where is the emission current (A); is the applied voltage
(V); is the work function of nanotube tip (eV); is the tip
radius of curvature (i.e., the radius of the nanotube tip) (in cen-
timeters); is the protruding length of emitter (cm); (

, is the tip-anode distance) is the interelectrode distance
(cm); is the emission area , and

(2)

where is a parameter determined by the local geometric and
electronic factors .

From (1), the emission current changes with the interelec-
trode gap as

(3)

From (1) and (3) and for field emission in the
“near-field” (i.e., or and becomes max-
imum and is inversely proportional to so that better resolution
is obtained). In a Fowler–Nordheim plot, this means a large in-
clination (see (2) for the coefficient of ). On the other hand,
in a far field as or , the resolution becomes
worse. Experiments in [15] show that it is possible to obtain
100-nm resolution at room temperature in vacuum.
Higher resolution can be obtained by stabilizing the emission
current by baking the nanotube emitters and working at lower
temperatures and in a higher vacuum.

B. Contact Position Sensing With MWNTs

Another position sensing technique is to use the nested tubes
as sliding potentiometers or linear encoders. The interlayer re-
sistance of telescoping nanotubes is promising for this purpose
[18]. The outer layers can also be replaced with a plane. A nan-
otube sliding on an Au substrate (Fig. 7) yields an encouraging
result as shown in Fig. 8. Contact sliding ( as
shown in Fig. 6) is straightforward in principle. Under a con-
stant bias , the ohmic transport current will change with
the interelectrode distance or effective nanotube length as

( : resistivity). The resolution of the sliding
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Fig. 7. Two positions of the nanotube-Au substrate sliding position sensor.

Fig. 8. Relation between the tip position of a nanotube and the current under
10-V constant bias.

sensor is found to be 0.24 nA/nm or 715 nm. This is supe-
rior to the field emission mode. Excellent linearity also suggests
easier calibration.

V. INTEGRATED DEVICES AND POTENTIAL APPLICATIONS

From the view of fabrication, cantilevered telescoping
MWNTs are superior and, therefore, the simplest position
sensing method is field emission. Other possible linear servo-
motor designs include a bridged telescoping MWNT with a
sliding potential meter, and a middle-supported MWNT with
two field emission sensors.

The system configuration for a telescoping nanotube with
field emission position feedback is shown in Fig. 9. An opened
MWNT is fixed onto an AFM cantilever (acting as the cathode)
by electron-beam-induced deposition (EBID) [31] on the right
end of the structure. The tube is placed against a substrate
serving as an anode. The interelectrode distance between the
substrate and the AFM cantilever is indicated as . The pro-
truding length of the nanotube will change from its initial
length as the electrostatic force between the core and the
counter-electrode exceeds the sum of the interlayer friction and
van der Waals forces between the core and the cathode. Hence,

Fig. 9. Prismatic nanomotor with integrated field emission position sensing.

Fig. 10. Typical I–V curve of a telescoping nanotube as the interelectrode
gap G = 1000 nm. The inset shows the change of emission current with time
at 120 V.

the gap between the nanotube tip and the anode will change
whereas remains constant.

Field emission is measured using the configuration shown in
Fig. 9. Fig. 10 shows a typical I–V curve of a telescoping nan-
otube (see the inset micrograph of Fig. 10) when the interelec-
trode gap is 1000 nm. Each point represents an average of
100 samples within a 9-s interval. The inset shows the change
of emission current with time at a constant bias of 120 V. An ob-
vious feature of this I-V curve different from conventional ones
is the “kink” observed between 115 and 135 V.

Further investigation of the same tube under different gaps
shows that the width of the “kink” can be shortened to 115
V–125 V as shown in Fig. 11. The Fowler–Nordheim plot shown
in the inset of Fig. 11 is quite different from conventional linear
plots. The knee has been discussed by Collins and Zettl [32],
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Fig. 11. Typical I–V curve of a telescoping nanotube as the interelectrode gap
G = 500 nm.

whereas the “kink” with a large amplitude corresponding to that
in the I–V curve has never been reported.

Fluctuations of emission current of conventional nanotube
emitters have been found to be caused by headshaking, tem-
perature change, vacuum alteration, or adsorption and desorp-
tion of molecules. Such fluctuations are random, such as the
signal variation on the monotonic curve shown in the inset of
Fig. 10. The relatively slow, long-term, reversible, and repeat-
able change with large amplitude is not due to these factors. Un-
fortunately, the applied bias voltage inhibits direct observation
during the “kink” due to the side effect of the bias on the elec-
tron beam of the field emission scanning electron microscope
used in the experiment.

Among all parameters, only the change in length of the
nanotube or the gap between the CNT tip and the anode, and
the voltage can induce the reversible and repeatable change of
current if the interelectrode gap remains unchanged. These
changes can be expressed as

(4)

and

(5)

Fig. 12 shows a computed result of the resultant effect of these
changes on the emission current under experimental conditions
similar to those in Fig. 11. The similarity between Figs. 12 and
11 confirms that the length change (150 nm protruded at 120 V
in Fig. 12) of the nanotube emitter is responsible (i.e., the tele-
scoping motion of the tube causes the appearance of a “kink”).

Multiple “kinks” are also observed as shown in Fig. 13. Be-
cause there is no apparent length change before and after the
emission experiment, the appearance of the multiple fluctua-
tions might be caused by telescoping motions between different
layers (i.e., the peeling of the nanotube layer by layer from the
innermost cores).

It should be noted that the telescoping system shown in Fig. 9
is unstable from a control perspective because of its positive

Fig. 12. Influence of the gap between CNT tip and anode on the emission
current when bias voltage changes.

Fig. 13. Multiple “kinks” of the emission current.

feedback nature. As the nanotube tip approaches the anode,
a larger emission current results and, hence, a stronger field,
which will cause the core to continue extending until is zero. In
the process of extension, the current may become saturated and
cause the protruding core to be shortened as shown in Fig. 14, as
we have observed in nontelescoping nanotubes [28]. The unidi-
rectional pullout of inner tubes has also been observed as shown
in Fig. 15.

Of even more interest is that the core retracts from a stable po-
sition by either decreasing the bias voltage or from an external
disturbance. This is caused by van der Waals forces and/or di-
electrophoresis, depending on the conductivities of the layers
and the coupling between layers of nanotubes, because the core
offset induces axial van der Waals forces that can be several or-
ders of magnitude larger than the interlayer friction. Hence, by
controlling the applied voltage, it is possible to control the posi-
tion of the core, and the field emission current can be used to de-
tect the position, thus forming a closed-loop linear nanomotor.

VI. CONCLUSION

Nanoscale linear servomotors with integrated position
sensing have been investigated from experimental, theoretical,
and design perspectives. Prismatic motion has been realized by
the interlayer motion of telescoping multiwalled carbon nan-
otubes. Noncontact and contact position sensing methods have
been presented using both field emission and resistance change
between an MWNT and a gold substrate during contact sliding
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Fig. 14. Length change observed before and after field emission. (a) Before
field emission; (b) after field emission; (c) I–V curve of field emission.

Fig. 15. Length change observed before and after field emission. (a) Before
field emission, (b) after field emission, and (c) I–V curve of field emission.

movement. Experiments have shown the potential for high
resolution nanometer scale precision. Actuation experiments
have demonstrated the feasibility of a prismatic nanoservo-
motor with integrated position sensing based on field emission.
A local “kink”-like fluctuation of emission current has been
observed, which has been shown to be caused by the change
of the protruding length of the nanotube core. The complete
extension of the inner core has been observed and the necessary

electrostatic force is calibrated to be tens of nano-Newtons for
individual nanotubes—16.5 nN under a 30-V bias. Independent
position sensing from electron microscope imaging suggests
that the degradation of the motors by electron-beam-induced
interlayer fixation can be avoided, and that a lower actuation
voltage is sufficient to avoid shortening of the core by saturated
emission currents. While fully servoed linear motors remain
a challenge, these investigations demonstrate the possibility
of fabricating linear servomotors in the nanometer scale with
integrated position sensing.
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