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Abstract-A time diversity automatic repeat-request (ARQ) scheme 
with the finite number of transmissions is investigated for a digital FM 
mobile radio with frequency demodulation (FD). It processes all the 
retransmissions of a single data block using postdetection diversity 
combining. The analysis of the signal energy per bit required for a given 
bit error rate (BER) and the spectral efficiency in a cellular mobile radio 
system are presented. The results obtained from the numerical ealcula- 
tions show that this ARQ scheme offers a performance superior to both 
the basic ARQ scheme and the time diversity scheme. 

I. INTRODUCTION 
Digital transmission is of growing interest in the field of 

mobile radio where the channels are characterized by rapid 
multipath Rayleigh fading superimposed on slow shadow 
fading [l]-[3, ch. 21. Rayleigh fading is caused by interfer- 
ence between multipath waves from scatterers surrounding the 
mobile station, while shadowing is introduced by gross 
variation in the terrain between the base and mobile stations. 
Since signal transmission performance is severely degraded 
due to fading, some auxiliary techniques are required. There 
are two promising techniques: diversity reception and error 
control. Among the various diversity schemes [3, chs. 5 and 
61, time diversity is most attractive, because it does not require 
multiple antennas at the receiver. However, its main drawback 
is that it transmits the same data blocks even in the absence of 
errors. As an error control technique, the automatic repeat- 
request (ARQ) scheme [4] is currently being studied for 
mobile radio use [5]. The simplest implementation of ARQ 
schemes (referred to as the basic ARQ scheme) uses only error 
detection, and detection errors lead to a repeat request and 
discarding of information in erroneous blocks. Benelli [6] has 
described an efficient ARQ scheme with memory and soft 
error detectors, which makes use of all the retransmissions, 
even those that contain errors. The main drawback with ARQ 
schemes when applied to mobile radio is an increase, due to 
fading, in the number of transmissions needed before receiv- 
ing a block correctly [5]. 

Recently, Adachi and Itoh [7] have proposed a time 
diversity ARQ scheme achieved by combining the basic ARQ 
and time diversity schemes. It makes use of all retransmissions 
to obtain a new reliable block by postdetection diversity 
combining to enhance performance in mobile radio channels 
with fading. This scheme can be viewed as a modified time 
diversity scheme using an adaptive number of diversity 
branches. A considerable reduction in the average number of 
transmissions has been shown in comparison to the basic ARQ 
scheme in a Rayleigh fading environment. However, when the 
average signal-to-noise ratio (SNR) is reduced due to shadow- 
ing, a large number of transmissions may occur. This can be 
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avoided by employing a finite number of transmissions for the 
sake of transmission performance. 

In this paper, a performance analysis of the time diversity 
ARQ scheme with a finite number of transmissions is 
presented for a binary digital FM mobile radio using fre- 
quency demodulation (FD). The performance of radio com- 
munications systems can be compared based on signal energy 
per bit required to achieve a given reliability (bit error rate 
(BER) is often used for this purpose). In this paper, the 
required signal energy per bit taking into account multiple 
retransmission is considered for performance comparison. 
After describing the time diversity ARQ scheme in Section 11, 
how a finite number of transmissions affects the signal energy 
per bit required for a given BER in a Rayleigh fading 
environment is investigated in Section 111 to find the minimum 
required signal energy per bit. Section IV presents spectral 
efficiency in a cellular mobile radio system. The performance 
of this ARQ scheme is compared to the basic ARQ and time 
diversity schemes. 

II. TIME DIVERSITY ARQ SCHEME 
A block diagram of a time diversity ARQ communication 

system is shown in Fig. 1. At the transmitter, a message is 
split into groups of length k bits. Each group coming out of the 
source is then coded into an n bit block through a code of type 
(n, k). Suppose that the block to be transmitted is denoted by x 
= ( X I ,  xz x,,) where x, = 0, 1 (rn = 1 , 2  - * n ) .  Then the 
input to the binary digital FM modulator is a = (al, a2 - a,) 
where a, = 1/ - 1 for x, = 1/0. The transmitted binary 
digital FM signal at the angular frequency w, can be 
represented as Re [A exp j ( w , t  + aS(t))] where A is the 
amplitude and +.,(t) is the modulating phase, the time 
derivative of which is expressed as as' (t) = d / d t a s ( t )  = (27r 
Af )a, for (rn - 0.5) T 5 t < (rn + 0.5) T,  with Tbeing the 
bit duration and A f the frequency deviation. Signal transmis- 
sion between mobile and base stations takes place over the 
Rayleigh fading channel. Assuming that the receiver predetec- 
tion filter bandlimits the additive white Gaussian noise 
(AWGN) but is wide enough not to cause intersymbol 
interference, the input to the demodulator can be written as Re 
[ z ( t )  exp ( jw , t ) l  where z ( t )  = zs(t )  exp { j @ , ( t ) }  + zn(t) 
where z,(t) and z,(t)  are the independent zero-mean complex 
Gaussian processes for the signal and the bandlimited AWGN, 
respectively. 

Suppose that the ith transmission of a has been made. Let 
the demodulator output vector, i.e., the instantaneous angular 
frequency, corresponding to the ith reception of a be denoted 
by 9'; = (*;,, *;2 - * - *&). The *,C, can be represented as 

where zim and zi:, are the values of z ( t )  and of its time 
derivative at the sampling instant ti,. If there is no AWGN and 
no fading, *& = (2rAf )a,. The time diversity ARQ 
scheme combines all the successive i vectors, * {, *;, a ,  

and *I, using postdetection diversity combining [SI to form a 
new reliable received vector. Let us first consider postdetec- 
tion maximal-ratio combining (MRC). The *& . * ,  and *; are weighted in proportion to the demodulator input 
envelopes squared; is multiplied with RZi,( = 1 zim 1 2, to 
obtain wim = *,C, x Rf,. Then, the MRC combiner updates 
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Fig. 1. Block diagram of a time diversity ARQ communication system. 

the combiner output vector = ( u ( ~ - ~ ) ~ ,  u ( ; - ~ ) ~ ,  * * u ( ; - ~ ) ~ )  
that has been obtained at the ( i  - 1)th reception using w; = 

(wil ,  wi2, * * w;,,), i.e., 

UOm = 0 

to obtain 

(3) 

Therefore, the time diversity ARQ scheme using MRC makes 
the contribution of \k I:, (I = 1, 2 * * i )  to the combiner output 
U;,,, small for a small RI,,,, since *I:, is noisy and unreliable. 

Another combining method easy to implement and hence 
attractive for mobile radio use may be selection combining 
(SC). Now the envelope vector rj-1 = ( ~ ( ; - I ) I ,  r(i-1)2 . * * 

r(i-I)n) that has been obtained at the ( i  - 1)th reception is 
introduced. The SC combiner compares Rim with r(i-l)m to 
update both the envelope vector and the combiner output 
vector as follows: 

rom = 0 

rim = Rim if Rim 2 rei- and rei- if Rim< rei- l )m 

UOm = 0 

This shows that after the ith reception, the time diversity ARQ 
scheme using SC simply selects the demodulator output having 
the maximum demodulator input envelope. 

Then, a vector U; is constructed, the rnth element of which is 
uim = 1 if uim 2 0, or 0 if uim < 0. The decoder determines 
whether U; is a codeword. If it is a codeword, it is accepted as 
the transmitted codeword x; otherwise, the ( i  + 1)th 
transmission is requested. 

111. REQUIRED SIGNAL ENERGY PER BIT 
For simplicity, we assume that no error correcting code is 

used and that error detection code used will detect all errors. 
Furthermore, the feedback channel is assumed to be noise 
free. When the errors are detected in the resultant vector U; 
after the ith reception, then ( i  + 1)th transmission is 

'This is a reasonable assumption in practice because the undetected error 
probability can be made very small. 

requested. With M finite number of transmissions, the block 
(word) error rate (BKER) is equal to the repeat-request 
probability (RRP) of the (M + 1)th transmission; the 
resultant bit error rate (BER) can then be determined from 
BKER = 1 - (1 - BER)" since we are assuming random bit 
errors. The average number of transmissions is the sum of the 
RRP's from the first transmission to the Mth transmission. 
The required signal energy per bit-to-noise ratio EJN0 is 
defined as 

EJN0 = r0 x Average number of transmissions x BT (6) 

where I'o is the average SNR required for a given BER, No the 
one-sided noise power spectral density and BT the bandwidth- 
time product of the receiver predetection filter. 

We first investigate the average number of transmissions 
and BER performance. Then, the required signal energy per 
bit is calculated. 

A .  Bound Estimation for  Average Number of 
Transmissions and BER Performance 

The RRP of the ( i  + 1)th transmission is given by Pr {ulr 
u2, * . . , and U; are all incorrect}. Vector U/ is constructed from 
combiner output vector U/ which is formed by the time 
diversity combiner after Ith reception (I = 1, 2 . . . i ) .  The 
vector U/ is incorrect if one or more bit errors are produced. In 
a Rayleigh fading channel, bit errors in U/ are not random 
because of burst errors that are produced when the signal 
fades. To calculate the probability of getting at least one bit 
error, the distribution of the number of bit errors in U/ must be 
known. Computer simulations can be used to obtain this 
distribution [9]. However, the assumption of random bit errors 
in IC/ is made throughout this paper because time diversity 
combining can reduce signal variations and tends to make the 
occurrence of bit errors random.2 However, it can be 
understood from (2) and (4) the rnth elements of vectors u1, u2, 
... , and U; are not independent variables and hence bit errors 
in ulm, uzm, * .  e ,  and uim are not random. Therefore, the 
events {uI is incorrect}, {u2 is incorrect}, - . . , and {U; is 
incorrect} are not independent. Because of this, obtaining the 
RRP is rather difficult. However, it is possible to derive the 
upper and lower bounds. Realizing that Pr {u1, u2, * * , and U; 
are all incorrect} = Pr {u1, u2, e ,  and U;- are all incorrect 
I U; is incorrect} x Pr {U; is incorrect}, the upper bound is 
given by Pr {U; is incorrect} = P;. The lower bound can be 
obtained by assuming that {ul is incorrect}, { u2 is incorrect}, 
. * , and {U; is incorrect} are all independent events and is 
given by PI  * P2 - * 

Using the upper and lower bounds for the RRP, the average 
number N ( M )  of transmissions and the BKER P s ( M )  can be 

Pi. 

2For the first transmission, no diversity combining processing is involved 
and bit errors may occur in burst. However, in a fast Rayleigh fading 
environment, signals vary within a single block received and occurence of bit 
errors even in U, can be assumed random for the calculation of the probability 
that U, is incorrect. 
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Fig. 2. Average number of transmissions (upper bound) for n = 256 in 

bounded by 

M- 1 M-l  i 1+c P ; h N ( M ) 1 _  ' + E  ITPI  
i= 1 i = l  / = I  

(7) 

for the time diversity ARQ scheme. For the conventional ARQ 
scheme, Pr {U, is incorrect} = Pr {U, is incorrect} = PI 
because the vector U/ is obtained simply from the Ith reception. 
Hence, the RRP of the ( i  + 1)th transmission is simply given 
by Pi. Therefore, when the basic ARQ scheme is used, N(M ) 
= (1 - P r ) / ( l  - P l ) a n d P B ( M )  = Pr. 

Since we have assumed random bit errors in the vector U;, Pi 
= 1 - (1 - Pei)" where Pei is the BER after successive i 

transmissions. The bit errors are produced when amuim < 0. 
Equations (3) and (5) are the same expressions for the i branch 
postdetection diversity combiner output using MRC and SC, 
respectively [8]. We obtain [see Appendix] 

31f there are burst errors, P, tends to be smaller than 1 - (1 - PCi)". 
Hence, this expression gives an upper bound. 

r is the average SNR and ts(7) is the autocorrelation function 
of zAt) and L(7 )  that of z,(t). 

We assume that many multipath waves having the same 
amplitude and independent random phases arrive at the 
receiving antenna from all directions with uniform probability 
and that a rectangular bandpass filter with bandwidth B is used 
for the receiver predetection filter, &(7) = .&(27r f D 7 )  where 

f D  is the maximum Doppler frequency given by vehicle speed/ 
carrier wavelength [l] and tn(7) = sin (7rB7)/(7rB7). 
Equation (9) becomes 

where fl  = 2A f T is the modulation index. Substituting (10) 
into (8) and averaging with respect to a, = 1, Pei can be 
obtained and then Pi is calculated. For the following calcula- 
tions, we assume MSK transmission ( p  = 0.5) with BT = 1. 
For a 16 kbit/s transmission with a 900 MHz carrier frequency 
and a 1 0 0  km/h vehicle speed, the maximum Doppler 
frequency-bit duration product f D T  = 5.2 X lo-'. In such a 
case, the effect of the random FM noise [3, ch. 11 is 
negligible. Hence, we assume f D T  -+ 0. Fig. 2 presents the 
calculated upper bound for the average number of transmis- 
sions because the bound estimation is found to be very tight 
(e.g., N ( w )  of time diversity ARQ scheme using MRC is 
found to be between 3.1 and 3.2 at r = 10 dB). The calculated 
upper and lower bounds for BER performance are shown in 
Fig. 3. As A4 increases, the average SNR required for a given 
BER decreases for both ARQ schemes. However, the advan- 
tage of the time diversity ARQ scheme over the basic scheme 
is evident. When the SC is used instead of the MRC for 
diversity combining, the required value is somewhat larger. 

It is worthwhile to compare the BER performance to that 
achievable by the M branch time diversity scheme. The BER 
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Fig. 3. BER performance for n = 256 in Rayleigh fading. Right and left 

edges of the shaded region show the upper and lower bounds for the time 
diversity ARQ scheme using (a) MRC and (b) SC. 

achieved by the time diversity scheme is given by (8)  by 
replacing i with M. Hence, it is identical with the upper bound 
for the BER of the time diversity ARQ scheme with M finite 
number of transmissions. It can, therefore, be seen from Figs. 
2 and 3 that the time diversity ARQ scheme requires a smaller 

average SNR with a lower average number of transmissions 
than the time diversity scheme. 

B. Calculated Signal Energy Per Bit 
The calculated results are shown in Fig. 4. The results for 

the time diversity ARQ scheme are presented by the shaded 
area, the upper (lower) curves of which are obtained using the 
upper bounds (lower bounds) for the average number of 
transmissions and the BER performance. The time diversity 
ARQ scheme using MRC offers the best performance; the 
minimum required EJNo is achieved around M = 18 and is 
about 12 dB for BER = and n = 256, while the basic 
ARQ scheme requires a much larger value (26 dB achieved at 
M = 8). As the BER becomes smaller or the block length 
becomes larger, larger minimum EJN0 is required. However, 
the minimum for the time diversity ARQ scheme is relatively 
insensitive to those variations (note that the performance of the 
time diversity scheme is independent from the block length 
because no error detection and no repeat request are used). 
The optimum M yielding the minimum EJNo exists because 
s€ft!e following. Ox &e one had, €he increase in M decreases 
the required average SNR and thus reduces EJNo. On the 
other hand, for a too large M ,  a slow decrease in the required 
average SNR is approached while the average number of 
transmissions increases. Consequently, EJN0 becomes 
larger. The optimum M for the time diversity ARQ scheme 
using MRC is largest and tends to become larger. However, it 
is worthwhile noting that since an EJN0 close to the minimum 
can be attained with a small M ,  one never needs to realize 
these values of Es/No because of a large M. For example, for 
BER = and n = 256, the time diversity ARQ scheme 
with M = 5 requires a value only about 2 dB larger than the 
minimum when MRC is used. 

IV . SPECTRAL EFFICIENCY 
In a cellular land mobile radio system, the radio channels 

are divided into several channel sets and the same channel sets 
are reused in different cells, spatially separated from each 
other in order to realize efficient utilization of the limited radio 
spectrum. We consider the cell fringe to be where the worst 
cochannel interference is produced in order to simplify the 
calculation. Only one interferer is assumed since interference 
from other cells is less at the worst point than that from the 
nearest cell. 

Assuming uniformly distributed traffic over the whole area 
of interest, spectral efficiency can be defined as 

tc 
q = -  ws 

t 

- -- a (erllHz.rn2) 
f ,KS 

where t is channel traffic capacity (erl/channel), c is the 
number of channels per cell, W is the whole radio bandwidth 
( H J ,  S is the area of a cell (m2) ,  fs is the radio channel 
spacing (Hz ) ,  and K is the number of channel sets. In the ARQ 
communications system, t is in proportion to the inverse of the 
average number of transmissions. Letting the distance between 
the two nearest cochannel cells be denoted by D and the cell 
radius by R,  K is given by K = ( D / R ) 2 / 3  for the hexagonal 
cell layout [3, ch. 71. First, we show how the reuse distance 
D / R  is determined and then calculate the spectral efficiency. 

A .  Reuse Distance 
We have assumed Rayleigh fading with constant average 

power in the previous analysis. However, the average signal 
and cochannel interference powers measured over a distance 
of several tens of carrier wavelengths are not constant, but 
slowly vary around their area average values due to shadow- 
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ing. Their variations can be assumed independent and if 
expressed on dB scale, follow a Gaussian distribution with the 
identical standard deviation u, typcially between 5 and 7 dB 
for 900 MHz band in urban areas [2], [3, ch. 21. Therefore, 
the resultant average signal-to-interference ratio (SIR) A, on 
dB scale, also varies around its area average value following a 
Gaussian distribution with a standard deviation of J2u. 

The quality of the channels is usually measured by the BER. 
The probability that the average SIR A will fade below a 
specific value A0 determined in the Rayleigh fading environ- 
ment (without shadowing) is called the outage probability due 
to shadowing. For a given outage probability Q, the required 
area average SIR A, can be determined from Q = 1/2 erfc 
[(lo loglo Am/A0)/2u]. Since the area average values of the 
received signal and cochannel powers are proportionate to an 
inverse ath power of the distance between the mobile and base 
stations where a is 3-4 for 900 MHz band [2], [3, ch. 21, the 
reuse distance D / R  can be obtained from 

D/R = 1 + A 2 .  (12) 

B. Calculated Spectral Efficiency 
We assume that interference is the predominant cause of 

errors. The cochannel interference is frequency-modulated 
with the same modulation index @ as for the signal. The fading 
on the interference is independent, but has identical statistical 
properties with that of signal fading and thus p is given by 

where bi = f 1 (with equal probability) is a binary data of 
cochannel interference. The average number N ( M )  of 
transmissions and the BER performance can be obtained as the 
upper and lower bounds in the same way described in Section 
III (@ = 0.5 and foT + 0). From the BER performance, the 
required average SIR A0 is obtained. Then, using the values of 
A, and N ( M ) ,  the spectral efficiency can be calculated from 

The spectral efficiency was calculated for Q = 10 percent 
under the condition u = 6 dJ3 and a = 3.5. The results are 
shown in Fig. 5 for BER = and n = 256. The results for 
the time diversity ARQ scheme are represented by the shaded 
region between the two curves, which are calculated using the 
uppedlower bounds of N ( M )  and the BER. The optimum 
value of M yielding the maximum spectral efficiency is 
relatively small in comparison to that minimizing Es/No. 
The time diversity ARQ scheme using MRC offers the largest 
efficiency; the maximum is achieved at M = 4 and is about 2 
times larger than the basic scheme if the optimum M is used 
for each scheme. The maximum efficiency decreases as the 
BER becomes smaller or the block length becomes larger. 
However, it was found that the maximum for the time 
diversity ARQ scheme is relatively insensitive to those 
variations (note that the performance of the time diversity 
scheme is independent of block length). 

V. CONCLUSION 
The performance of the time diversity ARQ scheme with M 

finite number of transmissions has been investigated. With the 
optimum M being used for each ARQ scheme, the time 
diversity ARQ scheme using MRC has about a 14 dB 
advantage in required signal energy per bit in a Rayleigh 
fading environment. It is about 2 times more spectral efficient 
than the basic ARQ scheme for BER = and n = 256 
when outage probability Q = 10 percent at the cell fringe if 
the standard deviation of shadowing U = 6 dB and the 
propagation exponent a = 3.5. It has also been proved 
superior to the time diversity scheme. 

0.05 

0.01 
0 r 

-------.- 

I MSK 
BT= 1 

f oT-0 

0.001 
2 3 4 5 6 7 8 9  

M 

Fig. 5 .  Spectral efficiency. n = 256, BER = 

This paper assumed random bit errors in the vector U/ for the 
calculation of repeat request probability. Analysis of the 
effects of burst errors is an area for further study. The 
application of the analysis presented in this paper to other 
modulatioddemodulation schemes, Le, digital FM with dif- 
ferential and coherent demodulations, is straightforward. 

APPENDIX 
Obtaining the expression (8) for the BER is summarized 

below. We have applied the analysis presented in [8] with 
some modification. In a Rayleigh fading environment, both zl, 
and zl:, are zero-mean complex Gaussian variables (I = 1 ,  2 
* - i ) .  Let us first consider the MRC case [see (3)]. With all 
21, being given, uim becomes a Gaussian variable with mean 
(uz/ul)p,R; and variance ui(l  - I P ( ~ ) R :  where U: = 1/2 
( I zl, I (average received signal power), U; = 1/2 ( I zl:, I z), 
andp = 1/2(zIm(-z~;,)*)/ulu~forallIandmandRf, = Rim 
+ Rim + + R 3 .  Bit error is produced when amuim < 0. 
Therefore, the conditional BER with given R, is obtained by 

- 

where 

and r is the average SNR and &(T) and En(7) are the 
autocorrelation functions of zs( t )  and z,, ( t ) ,  respectively. 
Next, consider the SC case [see (5)]. With all zrm being given, 
u h  is a Gaussian variable with mean (uz/ul)ps and variance 
uI(1 - I P ( ~ ) R :  where R, = max [RI,, RZm,  Rim]. 
Hence, the conditional BER can be represented by (Al) with 
R, = max [R1, ,  Rz,, - - .  R,]. 

Since each retransmission takes place after a sufficient time 
interval, RI, ,  Rz,, e.., and Rim can be assumed to be 
independent Rayleigh envelopes. The probability density 
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function (pdf) of R, is given by 

[bap ( - $ ) I i - l ,  sc. 

Averaging (Al) with (A3) leads to the expression given by (8). 

ACKNOWLEDGMENT 
The authors are grateful to the reviewers for their helpful 

criticism and comments. 

[31 

r41 

[91 

REFERENCES 
R. H. Clarke, “A statistical theory of mobile radio reception,” Bell 
Spf .  Tech. J . ,  vol. 47, pp. 957-1000, July 1968. 
Y. Okumura et al., “Field strength and its variability in UHF and VHF 
landmobile radio service,” Rev. Elec. Commun., vol. 16, pp. 825- 
873, Sept.-Oct. 1968. 
W. C. Jakes, Jr., Ed., Microwave Mobile Communications. New 
York: Wiley, 1974. 
S. Lin, D. J. Costello, and M. J. Miller, “Automatic-repeat request 
error control schemes,” IEEE Cornmun. Mag., vol. 22, pp. 5-17, 
Dec. 1984. 
R. A. Comroe and D. J. Costello, Jr., “ARQ schemes for data 
transmission in mobile radio systems,’’ IEEE Trans. Vehic. Technol., 

G .  Benelli, “An ARQ scheme with memory and soft error detection,” 
IEEE Trans, Commun., vol. COM-33, pp. 285-288, Mar. 1985. 
F. Adachi and S. Itoh, “Efficient ARQ with time diversity reception 
technique-A time diversity ARQ,” Electron. Left.,  vol. 22, pp. 
1257-1258, Nov. 1986. 
F. Adachi and J. D. Parsons, “Postdetection diversity using modified 
phase correction loop,” IEE Proc. F., Commun., Radar, Signal 
Process., vol. 134, pp. 27-34, Feb. 1987. 
C. S. K. h u n g  and A. Lam, “Forward error correction for an ARQ 
scheme,” IEEE Trans. Commun., vol. COM-29, pp. 1514-1519, 
Oct. 1981. 

vol. VT-33, pp. 88-97, Aug. 1984. 

Transmission Efficiency in Photon Counting Channels 

GIOVANNI CANCELLIERI 

Abstract-The ultimate theoretical limit of transmission efficiency over 
an ideal photon counting channel is investigated on the basis of Shannon 
theorem for discrete channels. A binary transmission, with different 
apriori symbol probabilities, is demonstrated to be more efficient than an 
Mary orthogonal PPM transmission. 

I. INTRODUCTION 
M-ary orthogonal PPM has been demonstrated to be a very 

efficient transmission technique over an ideal photon counting 
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channel [l]. As an ideal photon counting channel, we assume 
that based on the intensity modulation of the optical source, 
without background thermal noise and without dark current in 
the photodetector, which operates a direct detection of the 
incident light. This transmission obeys to pure Poisson 
statistics. Considering a two-level intensity modulation, with 
the low level at zero (on-off intensity modulation), like that we 
could obtain by means of an external shutter placed across the 
optical beam, subdivision of the symbol time duration into M 
equal adjacent time slots enables us to obtain an M-ary 
orthogonal set of symbols, each characterized by the high 
transmission level in only one time slot of the subdivision. In 
order to reach the maximum efficiency, it is convenient to set 
the receiver decision threshold between zero and one detected 
photon [ 11. This way, letting N the average number of photons 
carried by each M-ary symbol, we have only an erasure 
probability affecting any symbol, which coincides with the 
probability exp ( - N) that no photons are detected. 

The average information per symbol in a transmission 
of this type [2] tends to lg2M. This implies an efficiency, 
expressed in bitlphoton, which increases indefinitely with 
increasing M. As a drawback, we have an enormous spread of 
bandwidth, according to the factor Mllgz M. This can be 
reduced by the use of a suitable code. For instance, with a 
Reed-Solomon code, having n total M-ary symbol per word, 
k of which are significant and (n - k) redundant, we have the 
constraint n = M - I ,  and the code is able to correct any 
pattern of (n - k) erasures in a word, leading to a remarkable 
reduction in bandwidth spreading. The efficiency of 1 bit/ 
photon, affected by a bit error rate of about can be 
reached with M = 32 instead of 2” ,  which means a reduction 
in the bandwidth expansion factor /3 from 221/21= lo6  to 31/16 
3215 2: 12 [3]. 

This is probably one of the most efficient practical codes to 
be employed in a transmission of this type. However, it could 
be of some interest to investigate the theoretical maximum 
limit of efficiency, fixed a given bandwidth expansion, we can 
reach over an ideal photon counting channel. The purpose of 
the present paper is to evaluate such a limit on the basis of 
Shannon theorem for discrete channels [4]. In particular, 
instead of starting directly from an M-ary orthogonal PPM, 
we consider the transmission of binary symbols, associated to 
the low and to the high level of the optical source intensity 
modulation, with a priori probabilities Po and P I ,  which 
appears as a more general transmission technique. 

Although N, which represents the average number of 
received photons when the high level is transmitted, is in 
principle a continuous variable, we will restrict ourselves to 
assume only positive integer values for it. This choice is 
justified by the following considerations. When N is large (of 
the order of ten or even larger), discrete variations by one unit 
in its value are sufficiently dense to describe accurately the 
effects of such a parameter on the main transmission figures, 
e.g., the efficiency or the bandwidth expansion factor. When 
N is small (and the results of the present analysis will show 
that efficiency increases as N decreases), we have to keep well 
in mind that the model assumed tends to fail, in practical cases, 
as N tends to zero because of the possible presence of 
background thermal noise photons. These photons, even if 
extremely rare, would change completely the scheme of the 
channel, by introducing not negligible probabilities of wrong 
transitions from transmitted to received symbols [5] .  In this 
sense, the value N = 1 is to be considered as the minimum 
limit of N, for practical transmissions. 

11. EFFICIENCY AGAINST BANDWIDTH EXPANSION 
The amount of information per symbol carried on average in 

a binary channel (symbols 0 and l) ,  according to Shannon [4], 
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The transmission efficiency, expressed in bitlphoton, on the 
? PI' other hand, turns out to be 

(7) 
Z(N, PI)  p=- 

PIN ' 
in fact, at the denominator we would add another term, (1 - 
P I )  times the photons carried by symbol 0, which however are 
zero. In conclusion, letting Po the minimum of 8, combination e Pd of (6) and (7) yields 

Fig. 1 .  Scheme of a general binary channel. 1 
p(N'  P1)=Bn(N. P l ) P I N '  

can be written as 

I = N ( Y ) - H ( Y I X )  

where W( Y )  is the entropy 

". . _I  . 
The main objective of an optimized transmission system is 

to maximize p ,  maintaining Po as small as possible. In this 
respect, it is convenient to express PI as a function of PO and 
N, through inversion of the equation 

(1) 

and W( Y ( X )  is the conditional entropy 

In the above expressions Pi, Pi represent the input and output 
probabilities of the two symbols, and po their transition 
probabilities, according to the scheme of Fig. 1. 

For an ideal photon counting channel, with symbol 0 
transmitted when the shutter is closed (no photons in the 
channel), and symbol 1 transmitted when the shutter is open 
(N photons received on average), we have 

P I O = ~ X P  ( - N I ,  P I I =  1 -exp ( -W,  
P01=0, Poo=l. (4) 

Furthermore, we can write 

Po= 1 - P i ,  P,' = p 1 1 P I ,  Pi =Po+ploP1. 

Substitution into (l), considering (2) and (3), yields a simple 
function of the two variables N, PI, 

+[l-PI+PI exp ( - N ) ]  

1 1 

l-PI+P, exp ( - N )  k 2  [ 

ahich represents the maximum average information per 
symbol, according to Shannon theorem for discrete channels. 
This limit can be reached by means of an ideal code. In order 
to maintain a fixed information rate, we have to consider a 
bandwidth expansion factor P whose minimum value coincides 
with l / I (N,  PI ) ,  i.e. 

In Fig. 2 some curves of PO against PI are plotted with N as a 
parameter. Each curve exhibits a minimum. The branches on 
the left-hand side of such minimum are expected to be those 
associated with the higher efficiency. In fact the input 
probability of symbol 1, which is affected by possible errors, 
should be minimized. In order to obtain P1 = PI(@,, N), 
therefore, we will invert only these branches. Next, we can 
rewrite (8) as 

1 

Fig. 3 shows the efficiency p against the minimum 
bandwidth expansion factor Po, with N as a parameter, as 
obtained from (10). Each curve tends asymptotically to 00, as 
expected, on the analogy of the known property of M-ary 
orthogonal PPM. This increase is however very slow, 
therefore, the bandwidth expansion factor becomes rapidly too 
large. For very small values of Po, a higher N is more 
convenient, whereas for Po larger than about 3 the lower the N 
the better the efficiency. The most efficient transmission, 
characterized by integer N, is therefore that having N = 1. 

Each curve starts from an initial point, not exactly coinci- 
dent with Po = 1 .  These starting points can be calculated 
analytically, in correspondence with the values of PI which 
maximize I(P1, N) (minimize PO),  for a given N. So, 
differentiation of (5) with respect to PI yields an expression, 
which, equated to zero, enables us to state that such values 
turn out to be 

1 1 
1 -exp ( - N )  1 +2'((N) * 

PI(N)= 

where 

1 1 
a(N)  = 

1 -exp ( - N )  exp ( - N )  

For example, we obtain Pl(1) = 0.413, P1(2) _= 0.448, e ,  

= 0.493, while, for higher values of N, PI  is closer and 
closer to 0.5. Correspondingly, we have = 2.29, 
PO IN=^ = 1.42, * .  0 ,  PO IN=^ = 1-03, as starting points of the 
curves in Fig. 3. 

As regards the curve characterized by N = 1, we can 
observe how, in its first part, efficiency doubling is possible 
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Fig. 3. Transmission efficiency p against the bandwidth expansion factor bo, 
with N as a parameter. 

by means of bandwidth doubling, for instance passing from Po 
= 2.5 (p = 1.5 bit/photon) to Po = 5 (p = 3 bidphoton). 
This is a very effective use of bandwidth expansion. More on 
the right, even this curve tends to saturate, to the point where 
increasing Po over 10 appears useless. 

111. COMPARISON TO AN M-ARY ORTHOGONAL PPM 
The transmission described in the previous section is based 

on simple binary symbols with different a priori probabilities 
PO and P I .  It can be compared to that based on an M-ary 
orthogonal PPM by setting 

1 M- 1 
P ,  =- Po=- 

M ’  M 
The maximum average information per binary symbol, in 

our transmission, from (5 ) ,  can be obtained simply by letting 
PI  = 1/M, i.e. 

z (N ;) 
1-exp ( - N )  

1 

M =- 11-exp ( - N ) ]  1g2 

M - l + e x p ( - N )  

M - l + e x p ( - N )  

M 
+ 

On the other hand, the maximum average information per M- 
ary symbol, in an orthogonal PPM, considering the erasures, 
turns out to be [3] 

so that each elementary time slot, in the PPM word, on 
average, carries the maximum information 

From (7), we can observe that the transmission efficiency in 
the two cases results in 

with Z and Z’ respectively given by (1 1) and (13). At the same 
time, the minimum bandwidth expansion factor becomes, 
respectively, 

1 1 

Z’ o o = j ,  P,’=-  

In this sense, a greater average information per binary symbol 
or per time slot implies a higher efficiency, and, at the same 
time, a smaller bandwidth expansion factor. Since Z(N, 1/M) 
is always greater than Z’(N, l / M ) ,  as (11) and (13) easily 
show, we can conclude that the binary transmission discussed 
in the previous section does exhibit a better performance than 
traditional PPM, at least in principle. 

This is due to the weaker constraints which characterize this 
binary transmission. In fact, the two techniques appear are 
very similar because they both are based on short pulses 
(transmission of the high level), separated by long time 
intervals in which no photons are sent on the channel, and the 
receiver has to detect the position and not the amplitude of 
pulses. Nevertheless, for example, in PPM we certainly have 
at least one pulse over a time interval whose duration is of the 
order of 2M time slots, whereas this constraint is not present 
in the binary transmission, although, on average, we have the 
same number of pulses per unit time, in the two situations. 
Weaker constraints entail a greater uncertainty in what is 
received, that is a larger amount of information transfer, and 
hence a better transmission efficiency. 

In order to evaluate quantitatively the advantage of the 
binary transmission over the M-ary PPM transmission, we can 
compare p and p ’  as functions of M ,  with N as a parameter. 
This comparison is reported in Fig. 4. Nevertheless, a more 
accurate evaluation can be performed on the basis of an equal 
bandwidth expansion factor. To this purpose, we have to 
express M a s  a function of 6,’ and N, for a PPM transmission. 
From (1 3) and the second of (15), we have 

In Fig. 5 some curves of P,’ against M, with N a s  a parameter, 
are shown. They are the same function of M ,  characterized by 
a minimum at M = 3, weighted by the factor 1/[1 - exp ( -  
N )] . The branches on the right-hand side are here expected to 
be those characterized by the higher efficiency because M 
should be maximized in order to reduce, on average, the 
effects of erasures. Inversion of these branches leads to M = 
M(@,’, N), finally substitution into (14) enables us to plot p ’ 
as a function of P i ,  with N as a parameter, for an M-ary 
transmission. Also in this case, when P,’ is larger than about 3, 
the choice N = 1 is that characterized by the maximum 
efficiency. 

In Fig. 6 the curves p ’ ( P i  ) with N = 1 and N = 2 (dashed 
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Fig. 4. Comparison between p (continuous lines) and p' (dashed lines) 
against M = l/PI with N = 1 and N = 2. 
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Fig. 5 .  Bandwidth expansion factor 0,' against M, with N as a parameter, 
for an M-ary orthogonal PPM. 

lines) are compared to the corresponding curves p(po) of the 
binary transmission (continuous line) already shown in Fig. 3 .  
For a given Po = p,' , larger than about 4, p exceeds p ' by a 
quantity practically constant, of the order of 0.5 bitlphoton. It 
is not easy to explain mathematically this net advantage of the 
binary transmission over the PPM transmission, (which, 
however, has been numerically verified up to rather high 
values of the bandwidth expansion factor), in fact, the limit M 
---t 00 yields correctly I = I' = 0. In this sense, the theoretical 
limit of maximum efficiency, independently of any practical 
constraint on bandwidth expansion, is to be fixed at M very 
large, but not infinite, for both the transmission techniques. 

Iv .  COMPARISON BASED ON ERROR PROBABILITIES 

The main results of Sections I1 and I11 can be summarized as 
follows. 

1 )  Except when the bandwidth expansion factor is very 
small, it is convenient to take the average number of photons 
per pulse N as low as possible (the best choice for an integer N 
is 1). 

2 )  Surprisingly, a simple binary transmission, with different 
a priori probabilities of the two transmitted symbols, appears 
to be more efficient than an orthogonal PPM transmission, 
whose M-ary symbols are equiprobable. 

The transmission efficiency here considered is that one 
could reach, without errors, by means of an ideal transmission 
system. A legitimate question is how the above conclusions 
can be extended to the case of real transmission systems, for 
which a finite probability of error always occurs. In this 

e . e *  
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3 -  

2 -  

1 -  

0 4 8 12 16 20 

Po I 8; 
Fig. 6. Comparison between p (continuous lines) and p' (dashed lines) 

against the bandwidth expansion factor for N = 1 and N = 2. 

situation, the transmission efficiency is to be calculated as 

p=' [Igz ( ; ) + p , l g *  1 -PI (L)] , p ' = N l g * M ,  1 
N 1 -P1 

respectively, for a binary and for a PPM M-ary transmission. 
Correspondingly, the average bit error probabilities are 

1 1 
PE=, P1 exp ( - N ) ,  P;=, exp ( - N ) .  

L L 

These approximate expressions tends to be exact with increas- 
ing l / P I  or M. Finally, the bandwidth expansion factors turn 
out to be 

1 M 
R =  

Also this comparison shows an advantage of the binary 
transmission. In fact, setting M = l / P l ,  we have p > p ', 
< p ' ,  and PE/PL = P I .  Thus, the higher the efficiency, 
which increases as P I  decreases, the lower the PE with respect 
to PL . Furthermore, as regards observation i listed above, a 
too small value of N cannot be accomplished by the PPM 
transmission, because PL becomes too large. On the contrary, 
when P I  is of the order of even N of few units can be 
supported by the binary transmission. 

Yet, as already stressed, very efficient practical codes can 
be applied to the PPM transmission, whereas this is not easy 
for the binary transmission, especially owing to the different a 
priori probabilities of its two symbols. Nevertheless, we can 
compare a coded PPM transmission, like that suggested in [3], 
with a binary uncoded transmission, like that here proposed. 
The residual average bit error probability of an M-ary PPM 
transmission, applying a Reed-Solomon code, with M = 32, 
n = 3 1 ,  k = 16, can be estimated as 

The bandwidth expansion factor of this transmission is p ' = 
31/16 3 2 / 5  = 12.4, whereas its efficiency turns out to be p' 
= 16/31 5 / N  = 2.5/N.  Approximately the same bandwidth 
expansion factor is obtained by a binary transmission charac- 
terized by P I  = 

In Fig. 7, PE and PL are compared in this situation, 
considering various integer values for N .  Interpolation curves 
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Fig. 7. Bit error probabilities against the transmission efficiency, for binary 
(continuous line) and PPM transmission (dashed line). The two techniques 
exhibit approximately the same bandwidth expansion factor (@ = 0’ = 
12.4). 

are depicted in continuous and in dashed lines, respectively. 
These curves exhibit an intersection at p = p’ = 1.55 bit/ 
photon. For higher values of the efficiency, the binary 
transmission appears, even in this case, to be preferable. On 
the other hand, for lower values of the efficiency, the PPM 
transmission achieves bit error probabilities extremely low. p 
and p‘ increase as N decreases, as expected. When N = 1, 
which is the smallest integer values for N, the PPM 
transmission gives p’ = 2.5 bit/photon, whereas the binary 
transmission approaches an efficiency p more than three times 
larger. 

V. CONCLUSIONS 
The objective of this paper was to investigate the maximum 

transmission efficiency one can reach over an ideal photon 
counting channel, having fixed the bandwidth expansion 
factor. First, the ideal situation, represented by Shannon 
theorem for discrete channels, has been analyzed. A low 
average number of photons per pulse is demonstrated to be 
preferable. A binary transmission, with different a priori 
probabilities of the two transmitted symbols, exhibits a higher 
efficiency than that of an orthogonal PPM transmission, whose 
M-ary symbols are equiprobable, for an equal bandwidth 
expansion. 

Then practical transmissions have been considered. The 
PPM technique can be very efficiently coded, and, in some 
situations, is characterized by a bit error probability lower 
than that of the uncoded binary technique. However, uncoded 
binary transmission remains extremely attractive for the 
achievement of ultra-high transmission efficiencies. 

REFERENCES 
[l] J. R. Pierce, “Optical channels: Practical limits with photon count- 

ing,” IEEE Trans. Commun., vol. COM-26, pp. 1819-1821, 1978. 
121 J. R. Pierce, E. C. Posner, and E. R. Rodemich, “The capacity of the 

photon counting channel,” IEEE Trans. Inform. Theory, vol. IT-27, 

R. J. McEIiece, “Practical codes for photon communication,” ZEEE 
Trans. Inform. Theory, vol. IT-27, pp. 393-398, 1981. 
C. E. Shannon and W. Weaver, The Mathematical Theory of 
Communication. 
M. Charbit and C. Benjaballah, “Probability of error and capacity of 
PPM photon counting channel,” IEEE Trans. Commun., vol. COM- 

pp. 61-77, 1981. 
[3] 

[4] 

151 
Urbana, IL: The Univ. Illinois Press, 1959. 

34, pp. 600-605, 1986. 

Comments on “Fundamental Conditions Governing 
TDM Switching Assignments in Terrestrial and 

Satellite Networks” 

SOUNG C. LIEW 

Abstract-The problem in the above paper’ is formulated in terms of a 
max-flow network problem. The main theorem in the paper can be 
proved quite simply using the max-flow-min-cut theorem once the proper 
way of looking at the problem is identified. 

An alternative, and perhaps simpler proof of Theorem I of 
the above paper’ is presented. This proof uses the max-flow 
network formulation. Since max-flow is a well-studied combi- 
natorial optimization problem, it may shed some light on 
designing good algorithms for the problem concerned. 

Unless otherwise defined, the notation here is adopted from 
the paper. The assumptions are listed here for reference 

M 
tijrc, i = l  t o M  

j =  I 

M z t , l C ,  j = 1  t o M  (4) 
i =  1 

n2k‘) 

5 tg=K;,c, g ’ = 1  to G‘.  (5)  
; = I  j = n ‘ @ ‘ )  

1. 

In addition, (2) and (4) are satisfied with equality only if Pi and 
P i  are equal to 1, respectively. 

As suggested, it suffices to show how to find a 0-1 matrix 
T‘ = (t i ’) 5 T = (tu) such that 
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