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Error Rate Performance of Digital FM Mobile 
Radio with Postdetection Diversity 

Abstract-An analysis of bit error rate (BER) in a binary digital FM 
system with postdetection diversity is presented. Expressions for the 
average BER due to additive white Gaussian noise (AWGN), random FM 
noise and delay-spread in the multipath channel are derived for reception 
using differential demodulation (DD), and frequency demodulation (FD) 
assuming independent fading signals. Calculated results for MSK show 
that the BER performance is strongly dependent on the rms-delay to bit 
duration ratio and that the delay-spectrum shape is of no importance 
when the receiver predetection filter BT product is optimized for the 
effect of AWGN. 

The effect of fading correlation on the diversity improvement is also 
analyzed for a two-branch case with multiplicative Rayleigh fading 
signals. Expressions for the average BER due to AWGN and random FM 
noise are derived. Calculated results are shown for the average BER due 
to random FM noise assuming a horizontally spaced antenna system at a 
mobile station. It is shown that the use of small antenna spacings leads to 
a diversity improvement greater than that obtainable for the case of 
independent AWGN. 

I .  INTRODUCTION 
IGTTAL FM transmissions are a growing interest in the D field of mobile radio [I], [ 2 ] .  Since the radio channel is 

characterized by many different propagation paths with 
different time delays [3], [4], the frequency response of the 
channel over a bandwidth of the order of 100 kHz may not be 
constant and may vary according to the vehicle movement. 
Hence, for high-speed digital signal transmissions (higher than 
say, 64 kbitds), the received signal suffers from frequency- 
selective fading; errors are caused by time-varying intersym- 
bo1 interference (ISI) from delay-spread in the multipath 
channel [5], [6]. On the other hand, if a relatively low bit rate 
signal is transmitted, the received signal is subject to multipli- 
cative fading, the major causes of errors then being additive 
white Gaussian noise (AWGN) and random FM noise pro- 
duced by the variation in the received signal phase. 

There are many possible implementations of diversity 
reception systems [7, ch. 61 but for mobile radio, postdetec- 
tion diversity is attractive because the demodulated baseband 
signals can be used and the cophasing function, necessary in 
predetection combiners, is not required. Many previous 
investigations of postdetection diversity in digital FM signal 
transmissions have assumed multiplicative Rayleigh fading 
[8], [9]. For frequency-selective fading, however, the analysis 
available is limited to digital FM with differential demodula- 
tion (DD) using postdetection selection combining (SC) [IO]. 
Only a double-spike delay-spectrum was treated and the effect 
of delay-spectrum shape was therefore not presented [lo]. 
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Furthermore, none of the previous references, [8]-[ IO], took 
into account IS1 from the receiver predetection filter. 

This paper contains an analysis of the bit error rate (BER) 
performance of a digital FM receiver with DD and frequency 
demodulation (FD) using either M branch postdetection 
maximal-ratio combining (MRC) , equal-gain combining 
(EGC), or SC assuming independent fading signals. The 
analysis takes into account IS1 effects produced by both the 
receiver predetection filter and delay-spread in the multipath 
channel. General expressions for average BER are derived in 
Section 111. In practical diversity systems, the fading signals 
received at the different antennas may be partially correlated 
and, therefore, Section IV investigates how the diversity 
improvement is affected by the correlation, assuming multipli- 
cative Rayleigh fading signals. Finally, Section V illustrates 
the calculated results for MSK transmissions. 

11. POSTDETECTION DIVERSITY 
A. Description of Received Signal 

frequency w, can be represented as 
The transmitted binary digital FM signal at an angular 

u ( t )  = Re {s(t)eJwc'} (1) 
where 

Eb is the signal energy per bit, Tthe bit duration, and +,(t) the 
modulating phase, the time derivative of which is expressed as 
+( t )  = 27rA f a ,  for IT < t 5 (I + 1) T. a, is the lth binary data 
symbol (+ 1 for mark, - 1 for space) and A f the frequency 
deviation. 

Signal transmission between mobile and base stations takes 
place over multipath channels. The input to the kth branch 
demodulator of an M branch postdetection diversity receiver 
can be written as 

ek(t)  = Re {zk(t)e"+'} (3) 
where 

+ 1 + N~ ( f )  ~ ( f )  eizxf' d f .  (4) 
- m  

S (  f) and Nk( f) are the spectra of s ( t )  and of the kth branch 
band-limited AWGN. N( f) (where N(0)  = 1)  presents the 
equivalent baseband characteristics of the receiver predetec- 
tion filter and Tk( f, t )  the frequency response of the multipath 
channel for kth branch at time t .  Introducing the complex 
impulse response gk(7, t )  measured from the instant of 
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Delay t d From other 
branches 

Fig. 1 .  Mathematical model of postdetection MRC combiner. Limiter is 
used for EGC. 

application of a unit impulse at the transmitter at t ,  Tk(f, t )  
can be represented as 

Assuming that the impulse response at 7 is due to the sum of 
many independent impulses with the same time delay T ,  each 
produced by a reflection from a different building, gk(7, t )  and 
Tk(f, t )  become zero-mean complex Gaussian processes of t 
(without loss of generality, the variance of Tk(f, t )  at any 
frequency is assumed to be unity). Furthermore, we can 
assume that the AWGN in the different branches are indepen- 
dent. Hence, we have the following correlation relationships: 

1 
2 - ( N k  (f) * N/ (g)) = NO 6 (f - g)  hk/ (6 )  

where No is the single-sided noise power spectral density and 
&/(T, p )  the delay-time cross-correlation function of the 
multipath channel, 6(.)  the delta function and 8k/ the Dirac 
delta. 

If the fading signals are independent, then &(T, p)  = &(7, 
j k ) 8 k / .  In particular, tS(7, 0)  is called the delay-spectrum. The 
mean-delay and rms-delay are defined as 

~ O = J ! + ~  - m  (7- T ~ ) ~ [ , ( T ,  0) dr /  - m  Es(7, 0) dr . (7) 

In this paper, we assume that T, = 0 without loss of 
generality. 

B. Diversity Combiner Output 
Fig. 1 shows a model of a postdetection diversity receiver 

for reception of binary digital FM signals, including both FD 
and DD functions. Each branch input signal is multiplied by its 
delayed replica for MRC (the input signal is amplitude-limited 
before multiplication in case of EGC) with the time delay td = 
T for DD, td 4 T for FD, and wctd = (2n - 1/2)7r. In each 
branch demodulator, weighting for both diversity combining 
and demodulation are performed simultaneously. Since the 
weighting factor of each branch is z,*(t - td) for MRC and 
z:(t - td)/lzk(t)l for EGC, postdetection MRC and EGC are 
analogous to the predetection case. I It has been shown [8] that 
for MSK transmissions, two branch postdetection MRC 
(EGC) requires an average SNR only about 0.9 dB larger than 

’ Assuming multiplicative fading, i.e.,  T k ( f ,  t) = Tk(0, t), and assuming 
that the AWGN in each branch has the same power, predetection MRC and 
EGC have the weighting factors T,*(O, t )  and T,*(O, t)/lTk(O, t ) l ,  
respectively [ l l ,  chs. 10-5 and 10-61. 

that for predetection MRC (EGC) in order to obtain the same 
average BER due to AWGN, with independent multiplicative 
Rayleigh fading signals and no IS1 from the receiver predetec- 
tion filter. Postdetection SC is the simplest system and selects 
the demodulator output associated with the branch having the 
largest input signal envelope. 

The decision as to which data symbol was sent is based on 
the polarity of the combiner output at the sampling instant t, 
which is the end of the bit for DD and the center of the bit for 
FD. For simplicity in the BER analysis, the combiner output at 
ts can be represented in a unified complex form as 

Im { z k z ;  *} if I z k  I has the maximum value 

for SC i 
where 

111. AVERAGE BER WITH INDEPENDENT FADING SIGNALS 
A .  General BER Expression 

In this section, we assume that the multipath channel 
statistical properties of different branches are independent and 
tsk/(T, p )  = ts(7, p)bk/. Hence, z k  and z ;  of different branches 
are independent zero-mean complex Gaussian variables, as 
usually assumed in the case of multiplicative Rayleigh fading 
(no delay-spread). Therefore, we can apply the derivation 
technique [8] appropriate to average BER in multiplicative 
Rayleigh fading, assuming no IS1 produced by the receiver 
predetection filter, which uses the fact that if all z k  are given, 
Q becomes a Gaussian variable, hence making the analysis 
easy. 

With given zk, 2; becomes a complex Gaussian variable. If 
wele tp  = pc + j p ,  = 112 (z:z;)/ua’, u2 = 1/2(1zk)’)  and 

variance of z; are given by (a/o’)p*zk and ~ ’ ~ ( 1  - Ip12), 
respectively [8]. From this, the conditional BER with all z k  

given, is found to be 

a!2 - - 1/2( lz; I 2 ) ,  the conditional mean and the conditional 

where a. = f 1 is the data symbol in the transmitted binary 
data sequence a-2, a - , ,  ao, aI, a2 . . .  to be detected 
without loss of generality and 

[ max ( R I ,  R2, - * R M )  for SC 

I M  

R =  \TMZIRk 
for MRC, 

with Rk = l z k ( .  Since all Rk are independent Rayleigh 
envelopes, the probability density function (pdf) of R can be 
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expressed as 
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where pxp (-$)[l-eXP (-31"' 
P(R) = I for sc 

for MRC. 

(2M- I)!! 1 MM 
C, = for SC, - ~ for EGC, and 

2 2 M !  

1 (2M- l)!! 
- for MRC. (16) 
2 M !  

Equation (15) has been obtained using the approximate pdf of 
R for small R .  

Taking into account the IS1 effects produced by the delay- 
spread and by the receiver predetection filter; p can be 
obtained as For EGC, a good approximation can be obtained using the pdf 

P =  

of MRC, by replacing U' with a2/eM as shown [7] for the pdf of 
SNR with the predetection EGC where 

Therefore, the following general expression for the average 
BER can be obtained. 

Pe= S m  Pe(R)p(R) dR 

for SC 

where 

and ro = Eb/No is the average signal energy per bit-to-noise 
power density ratio. In the above, h ( t )  is the equivalent 
baseband impulse response of the receiver predetection filter, 
{,, ( t )  the autocorrelation function of the band-limited AWGN 
and B, the noise bandwidth. 
B. Approximations 

For a low bit rate transmission having a bandwidth narrower 
than the coherence bandwidth of the multipath channel, the 
received signal is subject to multiplicative Rayleigh fading. 
Errors are produced by the AWGN and by the random FM 
noise. As the transmission rate increases and the signal 
bandwidth approaches the coherence bandwidth, the received 
signal suffers from frequency-selective fading. The effect of 
random FM noise is negligible and most errors are produced 
by the AWGN and by the delay-spread. In the following, we 
derive simple approximate expressions, using ( 1 3 ,  for the 
individual average BER's due to AWGN, random FM noise 
and delay-spread, separately. Perfect timing recovery at the 
receiver is assumed. Thus, the sampling instant is ts = T for 
DD and T/2 for FD. 
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I )  Average BER’s Due to AWGN and Random FA4 
Noise: For multiplicative fading, the frequency response of 
the channel can be assumed to be constant over the bandwidth 
of interest, i.e., T k ( f ,  t) = Tk(O, t), and therefore, ts(7, p )  
= ts(p)S(7) where L ( p )  = (Tk(0, t - p)*Tk(O, t)) is the 
complex fading autocorrelation function. The average BER, 
Pel ,  due to AWGN can be obtained by letting Es(7, p)  - 8(7) 
in p (very slow fading assumption; &(p)  = 1) and substituting 
into (15). For FD, both is(7, 0) and Es(7, 0) 3 0. We have 

we assume the receiver predetection filter to have a suffi- 
ciently wide bandwidth so that the IS1 effect is negligible. 
Therefore, Zsk( t )  = Tk(O, t ) s ( t )  in (4) and E s k / ( ~ ,  p)  = 
tsk/(p)6(7) for k,  I = 1, 2 where Esk/(p) = (Tk(O, t, - 
p)* Tl(0, t , ) )  is the complex fading cross-correlation function 
(note that ( , kk (@)  is expressed as &(p)  in Section 111). 

A .  General BER Expression 
It is clear from (8) that, with given z1 and 22, Q still remains 

B, T Id( T /2 )  I - gn(0)Id( T/2)  1 ’} M 
for FD. 

(CM [ - *  2r0  Im2 { d * ( ~ / 2 ) d (  ~ / 2 ) }  1 
In the above, we assumed that N(f) is symmetrical with respect tof = 0, hence t n ( T )  is real and i,(O) = 0. On the other 
hand, by letting ro + 03 in p ,  the average BER, Pe2, due to random FM noise can be obtained as 

p e 2  = (20) 
{ $,(o) + I g,(~)l’} 1 d ( ~ / 2 ) 1  + 2 Im { $ s ( ~ ) }  Im { 8 * ( ~ / 2 ) d ( ~ / 2 ) }  1 d( T / ~ ) I  M 

for FD. 
2 Im2 { d * ( ~ / 2 ) d ( ~ / 2 ) }  1 

2) Average BER Due to Delay-Spread: For frequency-selective fading, the time variation in multipath channel impulse 
response can be assumed to be negligible over T seconds and thus ts(7, p )  3 ts(7, 0). Letting ro + 03 in P ,  the average BER, 
Pe3, due to delay-spread can be obtained as 

i+m t5(7,  0)Id(-7)12 dr i t a  &(7, O)Id(T-7)I2 d7-1 &(T, O ) d * ( - ~ ) d ( T - 7 )  d7 
for DD 

-a - m  

2 Im2 &(7, O)d*( - 7)d( T -  7) d7 !+- - m  

Expanding d ( . )  and a( * )  in a power series of 7, we obtain a 
further approximation for small delay-spread 

‘ 
Id(O)d( T )  - d(O)d( [ & Im {d*(O)d(T)} 

a Gaussian variable even with correlated fading signals. Let 
(Q) be the conditional mean and ut be the conditional 
variance of Q with z1 and z2 being given. The conditional BER 
can then be expressed as 

Pe3 3 
T/2)  - d( T/2);i( T/2)I 

b Jz Im { c i * ( ~ / 2 ) d ( ~ / 2 ) }  
(22) 

which shows that the shape of the delay-spectrum is not 
important for TO/ T 4 1. 

1 

Applying the matrix theory described in [ 1 1, pp. 495-4961, 
(Q) and U: are determined as follows. Let z’  and z be the 
column matrices of z ;  and z k ,  respectively, and be the 
partitioned column matrix of 2 ’  and z .  Then, the covariance 
matrix of Q can be represented as Iv. AVERAGE BER WITH CORRELATED MULTIPLICATIVE 

RAYLEIGH FADING SIGNALS 
A two-branch case (M = 2) is considered. In order to see 

how the fading correlation affects the diversity improvements, 
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with AaS(p) = @s(ts) - iP,(t, - p). The conditional mean 
value K and the conditional covariance matrix A of z ’ ,  with 
given z ,  can be obtained from K = K * Z  = (cg-’)*z and A = 
a - cg- IC=*, respectively [ 1 13. Using the components K~~ and 
hkl of K and A and introducing the variable transformations in 
(8); lzll = R cos \k, lzzl = R sin \k, and arg (z:zz) = O I 2  
where R 2 0, a12 2 \k 2 0 and x 2 012 > - x ,  we have 

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 3 ,  MARCH 1989 

where 

@=dl -sin ( 2 9 )  Re (412(0)*e’s12). (31) 

C. Approximations 
In order to see the fading correlation effects clearly, 

approximate expressions for the average BER’s due to AWGN 
and random FM noise are derived, separately. We assume that 
the power spectra of Tl(O, t) and T2(0, t )  are identical and are 
symmetrical with respect to the dc component. Furthermore, 
we assume the AWGN to have a symmetrical power spectrum. 

I) Average BER Due to AWGN: Under slow fading 
conditions, the complex envelope of the received signal is 
almost constant over one bit duration, i.e., &(p) = tSkl (O) .  It 
can be shown that when EsI2(0) is not close to unity 

for a large ro where I is the identity matrix, A+, (= AiPs(ts)) 

, for MRC 
1 1 

K~~ cos2 9 + K~~ sin2 9 +- sin ( 2 9 ) ( ~ ~ ~ e - j ~ 1 2  + ~ ~ ~ e j ~ l 2 )  
2 

JXI I  cos2 9 + Xz2 sin2 9 + sin ( 2 9 )  Re{ X12e-’s12} 

Im 
- R I 
Jz 
R Im { K ~ ~  cos 9 + K~~ sin 9 + ~~2 sin 9 e-Ja12 + K~~ cos 9ejs12} 

Jz , for EGC - 
Jhl l  + X2, + 2 Re { h12e-je12} 

R Im { K ~ ~  cos 9 + ~ ~ ~  sin 9e-je12} a 
’ 4- O Jz G 

R Im { K ~ ~  sin 9 + K~~ cos 9ejs12} 
- , - 2 - 9 2 -  Jz G 2 -  4 

- 

a a 

Since zI and z2 are Gaussian variables with cross-correlation 
E12(0), the joint pdf p ( R ,  \k, O I 2 )  can be obtained as 

Putting 

R 
a,  

(!a - -- 
&aQ h a d l  - I t12(0)l  

we can obtain the following general expression for BER: 

(a2+P2I2 (1 +UO 
a >’ 

for SC. 

(27) 

= ao2xA f T and 6, (= 6s(tA)) = ao2irA f. For DD, we have 
assumed that t , , ( T )  = 0. 

It can be shown using (32) that la1 %- p since p is always 
less than unity. Hence, the double integration in (30) can be 
performed. Using the fact that tI2(0) = E,lz(O) in (26), the 
approximate expression for Pel is 

for FD. 

(33) 

Since [s12(0) is the fading signal cross-correlation, the correla- 
tion effect is identical with that for predetection diversity. 

2) Average BER Due to Random FM Noise: When I’o - 
assuming a symmetrical fading power spectrum, t ,11(T) = 
Es22(T) = real and .$sll(0) = ,$s22(0) = 0. The maximum 
Doppler frequency of Rayleigh fading can be assumed to be 
much smaller than the bit rate, so that &,(T)  = E s k l ( 0 )  + 
T&&(O) + (T2/2)i&/(0) for DD. K and A can be obtained as 

00 in (26), t k / ( ~ )  = E s k / ( ~ )  exp [ j A @ s ( ~ ) l .  Since we are 
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1 E :12 is12 is12 

1 - I E s 1 2 I 2  1- 1ES12l2 
j&s - 

L J 

, for DD 

205 

(34) 

, for FD ( 3 5 )  

where t s 1 2  = t s l2 (0 ) ,  i s l 2  = islz(0), gsl l  = gsll(0) and gslz = gSl2(0). If tSl2 is not close to unity, the diagonal components of K 

are predominant. Using the fact that IctI s p, the integration in (30) can be performed. The approximate expression for Pe2 is 

E:j2(is12)2 2 

, for EGC 
>’+; 1 - 1tSl2l2 

I is12 I 
1 - 1tSl2l2 

- ‘isII - 

1 - 1tSl2l2 

, for SC 
- E s l l -  

1 - ltS12l2 

where U = l/sin (27rAfT) for DD and 1 / ( 2 a A f T )  for FD. 

v. NUMERICAL RESULTS FOR MSK 
A .  Independent Fading Case 

We assume the receiver predetection filter to have a 
Gaussian bandpass characteristic with a 3 dB bandwidth of B.  
h ( t )  and E,(t) are given by 

where 

For a receiver BT product >0.5,  it is sufficient to take into 
account two adjacent bits (one on each side) for the calculation 
of d ( t )  [12 ] .  However, in this paper we use four adjacent bits 
(if the rms-delay to bit duration ratio is small, only two 
adjacent bits need be used). Thus, d ( t )  of MSK (2A f T = 0.5) 
is given by 

d ( t )  = - a - 2a- I CO (t  + 2 T )  + CO ( t )  - aoal CO (t  - 2 T )  

+ j {  - Q - ~ C ~ ( ~ +  T)+aoCo( t -  T)-aoala2Co(t-3T)} 

(39) 
where 

C o ( t ) = L  [ I  cos (i x) exp [ - p 2  (i-x)’] dx. di - l  
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y 
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Diversity Order 

N = l  

AVERAGE EblN,: 20 dB 

DD FD 

0.73 0.55 

MSK 
DD- FD _ _ _ _ _ _ _  

2 

0 0.5 1.0 1-5 10-l 

BT PRODUCT 

postdetection MRC. 
Fig. 2. The effect of BT product on the average BER due to AWGN with 

0.78 0.57 

TABLE I 
OPTIMUM BT PRODUCT FOR DD AND FD 

3 0.82 0.59 

I 4 I 0.85 I 0.61 I 

The overall average BER can be obtained by averaging the 
BER calculated using (14) or (19)-(22) over all equally likely 
data sequences (16 four-adjacent-bit patterns). In the follow- 
ing, the exact results calculated using (14) are presented for 
individual average BER's due to AWGN, random FM noise 
and delay-spread. 

I) Average BER Due to A WGN: For the evaluation of 
average BER due to AWGN, we let &(7, p )  = 6(7). The effect 
of the receiver BT product is shown in Fig. 2 for an average 
Eb/No = 20 dB. The BER performance with DD reception is 
much less sensitive to BT product than with FD reception. DD 
reception is superior to FD reception for BT products larger 
than about 0.7.2 For each demodulation scheme, an optimum 
value of BT product (the optimum BT product) will exist, 
which is a function of the diversity order and the average Eb/ 
NO. However, for average Eb/No larger than 20 dB, it is 
almost constant and is listed in Table I. Fig. 3 shows the 
average BER performances for DD and FD reception using the 
optimum BT product. Comparison of the three combiners 
shows that the MRC achieves the greatest improvement, and 
the BER's with EGC and SC are 4/3 and 2 times as large as 
that with MRC for M = 2. 

2) Average BER Due to Random FM Noise: For the 

* Simon and Wang [13] have shown that in the no fading condition the BER 
performance of MSK with FD reception is identical to that of DD reception for 
1 < BT < 3. However, their results are valid only when the demodulator 
input SNR is larger than about 3 dB since Rice's click model is used. Note that 
in the fading condition, almost all errors are produced for the instantaneous 
SNR less than about 3 dB [ 11, p. 4091. 

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 3,  MARCH 

MSK WITH OD 8 FO USING 
OPTIMUM BT PRODUCT 

AVERAGE Eb/N, I d E l  
Fig. 3. The average BER due to AWGN for DD and FD reception (the 

optimum BT product). 

---- _ _  _ _  - -_ -_ '.._ 

0 5  1.0 1.5 ' I '  I '  I r r l i  
BT PRODUCT 

Fig. 4. The effect of BT product on the average BER due to random FM 
noise with postdetection MRC for fD T = 0.01. 

evaluation of average BER due to random FM noise, we let 
Es(7, p )  = Es(p)6(7). Assuming that multipath waves having 
the same amplitude and independent random phases arrive at 
the mobile station from all directions with equal probability, 
&(p) = &(27rfDp) [ 141 where .To( * )  is the Bessel function and 
fD is the maximum Doppler frequency (vehicle speedlcarrier 
wavelength). The effect of BT product is shown in Fig. 4 for 
fD T = 0.01. As the BT product decreases the average BER 
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MSK WITH DD a FD USING - OPTIMUM BT PRODUCT 

N 

1 I I I I  I 1 I ,  

0.01 0.1 
10-71 

0.001 
NORMALISED MAXIMUM DOPPLER FREQUENCY fDT 

Fig. 5. The average BER due to random FM noise for DD and FD reception 
(the optimum BT product). 

increases because of the IS1 from the receiver predetection 
filter. When the same BT product is used for both demodula- 
tion schemes, then FD reception exhibits superior perform- 
ance. However, when the optimum BT product is used for 
each demodulation scheme, FD reception is slightly more 
resistant to random FM noise than DD reception. The average 
BER using the optimum BT product versus fDT is shown in 
Fig. 5 .  

3) A verage BER Due to Delay-Spread: For the evaluation 
of average BER due to delay-spread, we let Es(7, p )  = &(7, 

0). According to measurements [3], [4], the delay-spectrum 
can be approximated by a one-sided exponential, sometimes 
with several spikes. In order to examine the effects of the 
spectrum shape, we assume a one-sided exponential spectrum 
and a double-spike spectrum, and treat them, separately. We 
also consider a Gaussian spectrum. Therefore, the delay- 
spectra used for calculation are 

7 2 - 70 (one-sided exponential) 

1 1 

2 2 
- 6(7-70)+-  6(7+70) 

(41) 
(double-spike), 

1 
exp [ - ~ ~ / 2 7 : ]  

6 70 

(Gaussian) 

L(7r Q= 

with Lcro  rnean-delay (7, = 0). 
The clfcct of BT product is shown in Fig. 6 for a double- 

\pihe dclay-spcctrurn with 70/T = 0.05. The BER perform- 

DOUBLE-SPIKE DELAY SPECTRUM 
To/T = 0.05 

N=l \\LS-.-. 
'\ 

'. -.., 

N = 2 .  

N = 3  

Fig. 6. The effect of BT product on the average BER due to random FM 
noise for a double-spike delay-spectrum with rO/T = 0.05. 

DOUBLE- SPIKE DELAY SPECTRUM 
MSK WITH OD & FD USIN3 
OPTIMUM BT PRODUCT 

- DD- FD ------ 
10-2: 

I 

I 1 , , I  1 I l l  
0.1 1.0 

NORMALISED RMS DELAY T o / T  

Fig. 7. The average BER due to delay-spread for a double-spike 
delay-spectrum (the optimum BT product). 

ance with DD reception depends loosely on BT product. FD 
reception can provide much better BER performance than DD 
reception for a large BT product. This is because IS1 caused by 
delay-spread is predominant at both ends of the bit and hence 
is smallest at the center of the bit. The average BER using the 
optimum BT product versus q / T  is shown in Fig. 7 for a 
double-spike delay-spectrum. The average BER's for two 
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001 0.1 1.0 

The effect of delay-spectrum for FD reception with postdetection 
MRC (the optimum BT product). 

other types of delay-spectrum are also calculated and com- 
pared in Fig. 8 to FD reception using MRC (for DD reception, 
similar results are obtained). It can be seen that when the 
optimum BT product is used, BER performance is strongly 
dependent on rO/T and the spectrum shape has a negligible 
impact on BER performance. However, the delay-spectrum 
shape has a profound influence on FD reception (not on DD 
reception) for BT products larger than the optimum as shown 
in Fig. 9. Of the three types of delay-spectrum considered, the 
double-spike has the least influence because the two other 
delay-spectra have components at delays larger than 70. The 
approximate BER performances calculated using (22) are also 
shown in Fig. 10 for FD reception, along with the exact results 
calculated using (14) assuming the double-spike delay-spec- 
trum. It can be seen that the approximate BER's agree quite 
well with the exact results for rO/T < 0.1. 

B. Correlated Fading Case 
The effect of fading correlation on the average BER due to 

random FM noise is calculated assuming a space diversity 
system using two horizontally spaced antennas with omnidi- 
rectional radiation patterns at a mobile station. The antenna 
arrangement is shown in Fig. 11. In the figure, d is the antenna 
spacing, 7 is the angle between the antenna axis and the 
direction of vehicle motion. Since we are assuming that many 
incoming multipath waves having the same amplitude and 
independent random phases arrive from all directions with 

= JO(2*d(fDp)2 + (d/X)' - 2(fDp)(d/X) cos 7, respectively, 
where X is the carrier wavelength. The exact results for the 
average BER of MSK (2A f T = 0.5) due to random FM noise 
for f D  = 0.01 are obtained by using (34) and (35) for K and A 
and performing the double integration in (30). The BER 
performance of DD is shown in Fig. 12 for MRC. Dashed 
lines show the approximate results obtained using (36). Fairly 
good agreements are obtained if the antenna spacings are not 
too small. When d -+ 0, the two fading signal envelopes 

equal probability, &II(P)(=  L(cL)) = J o ( ~ ~ D P )  and L 1 2 ( ~ )  

- MSK WITH FD - POSTDETECTION MRC - 

SPECTRUM - 
APPROXIMATE 
RESULTS------ 

1.0 

I I I l l  I 

NORMALISED RMS DELAY % / T  

Approximate average BER due to delay-spread with postdetection 
MRC for FD reception. Exact results for a double-spike delay-spectrum are 
also shown for a comparison. 

I I 1  

0.1 1.0 10- ;ro1 
Fig. 10. 

become the same, and hence, from (S), the average BER value 
is found to approach that of no diversity reception, which is 
4.9 x for DD [15, eq. (59)]. It can be seen that the use of 
small antenna spacings leads to further improvements in the 
average BER due to random FM noise over that obtainable in 
the case of independent envelope fading (d + 00). The 
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Direction of 
Vehicle motlon t 

Fig. 11 .  Antenna arrangement at a mobile station 

M O B I L E  STATION 

f T =  0.01 

‘4% WITH DD 
POSTDETECTION MRC 

N O R M A L I Z E D  A N T E N N A  S P A C I N G  d / h  

Fig. 12. The effect of antenna spacing on the average BER due to random 
FM noise with postdetection MRC for DD reception. Dashed lines show 
approximate results. 

“tradeoff” of course is the corresponding increase in enve- 
lope correlation and the resultant effects on the receiving 
system. 

VI. CONCLUSIONS 

Expressions have been derived for the average BER of a 
binary digital FM system with DD and FD reception using 
postdetection SC, EGC, and MRC, taking into account IS1 
effects produced by the delay-spread of the multipath channel 
and by the receiver predetection filter. Calculated results have 
been presented for MSK transmission. FD reception has been 
found to be more resistant to both random FM noise and delay- 
spread than DD reception. When the optimum BT product is 
used for each demodulation scheme, the shape of the delay- 
spectrum is of no importance and BER performance is strongly 
dependent on the normalized rms-delay 70. 

The effects of fading correlation on the average BER have 
also been analyzed for the two branch case in a multiplicative 
Rayleigh fading signal environment. Calculated results have 
shown that a substantial reduction in the average BER due to 
random FM noise can be obtained if space diversity with two 
horizontally close-spaced antennas parallel with the direction 
of vehicle motion is employed at a mobile station. 
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