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Magnetoelastic analysis and tensile testing of a soft ferromagnetic strip
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This article describes the results of an analytical and experimental study of the effect of magnetic
fields on the stress intensity factors in a soft ferromagnetic strip under uniaxial tension. The linear
magneto-elastic problem for a soft ferromagnetic strip with a single-edge crack is analyzed. Fourier
transform techniques are used to formulate the mixed boundary value problem as a singular integral
equation. The stress intensity factors are obtained for several values of material and geometrical
parameters, and magnetic field. Static experiments are also conducted on nickel–iron soft magnetic
materials with a single-edge cracked plate specimen geometry in the bore of a superconducting
magnet at room temperature. A strain gauge method is employed in experiments to determine the
stress intensity factor. A comparison of the stress intensity factor is made between theory and
experiment, and the agreement is good for the magnetic field considered. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2222068�
I. INTRODUCTION

In magnetomechanical devices such as fusion reactors,
magneto hydro dynamics structures, and magnetically levi-
tated vehicles, magnetic fields are automatically applied to
surrounding components. Design and development of such
structures require basic research on magnetic fracture me-
chanics. Fracture mechanics have long been concerned with
the fracture and deformation of elastic materials under
forces. Magnetic fields constitute an extremely powerful
natural force field when electromagnetic materials are
present. In the theory of brittle fracture in a strong magnetic
field, usually we consider linear magneto-elastic solutions of
crack problems.1 Recently, Shindo et al.2,3 confirmed theo-
retically and experimentally the fact that the applied mag-
netic field tends to intensify the stress intensity factor. Also,
the excellent agreement between calculations and measure-
ments of the stress intensity factor established the validity of
the linear theory for magnetoelastic interactions in a cracked
soft ferromagnetic material.

This article examines theoretically and experimentally
the effects of magnetic fields on the fracture mechanics pa-
rameters of a soft ferromagnetic strip with a single-edge
crack subjected to tensile load and uniform magnetic field.
The theoretical analysis is based on a linear theory for
magneto-elastic interactions in a soft ferromagnetic
material.4 Fourier transform method is used to formulate the
problem in terms of a singular integral equation. Numerical
results are obtained for the stress intensity factor with differ-
ent material properties, geometries and amplitudes of the
magnetic field. Tensile tests are also conducted in which
strain gauge techniques5 are used to obtain values of the
stress intensity factor. Single-edge cracked plate specimens
are fabricated from nickel–iron soft magnetic materials and a

a�Author to whom correspondence should be addressed; electronic mail:

shindo@material.tohoku.ac.jp

0021-8979/2006/100�3�/034513/9/$23.00 100, 0345

Downloaded 27 Nov 2008 to 130.34.135.83. Redistribution subject to
static magnetic field is applied perpendicular to the crack
surfaces. Comparison of the predictions with experimental
data is conducted.

II. PROBLEM STATEMENT AND BASIC EQUATIONS

Consider a soft ferromagnetic isotropic linear elastic
strip of width h which contains a single-edge crack of length
a aligned with its plane normal to the free edge as shown in
Fig. 1. Let x, y and z denote the Cartesian coordinates. The
soft ferromagnetic strip occupies the region �0�x�h, �y �
���. The strip is in the plane stress or plane strain state in
the z direction, and is subjected to a uniform normal stress
�yy =�0 and a uniform magnetic field of magnetic induction
B0y =B0. Because of symmetry, we need only to consider the
upper half space region.

We consider small perturbations characterized by the
displacement vector u produced in the strip. All magnetic
quantities are divided into two parts, those in the rigid body
state and those in the perturbation state as follows:
FIG. 1. A single-edge crack in a soft ferromagnetic elastic strip.

© 2006 American Institute of Physics13-1
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B = B0 + b

M = M0 + m

H = H0 + h ,

�1�

where B, M and H are the magnetic induction, magnetiza-
tion and magnetic intensity vectors, respectively. Those
quantities with the subscript 0 refer to the magnetic field in
the undeformed state. The remaining ones are the corrections
to account for the additional changes in magnetic field due to
deformations. The magnetoelastic solution for the rigid body
state can be written as

B0y = B0, H0y =
B0

�0�r
, M0y =

�B0

�0�r
;

0 � x � h,0 � y � � �2�

B0y
e =

B0

�r
, H0y

e =
B0

�0�r
, M0y

e = 0;

x � 0,h � x � � ,0 � y � � �3�

B0y
ec = B0, H0y

ec =
B0

�0
, M0y

ec = 0; 0 � x � a,y = 0, �4�

where B0y, H0y and M0y are, respectively, the y components
of B0, H0 and M0. The superscripts e�x�0,h�x� � ,0
�y� � � and ec�0�x�a ,y=0� stand for the components of
the field quantity outside the strip. Note that �0=4�
�10−7 N/A2 is the magnetic permeability of the vacuum,
�r=1+� is the specific magnetic permeability, and � is the
magnetic susceptibility.

The effect of the magnetization as induced by the defor-
mation becomes important for a cracked soft ferromagnetic
strip in a magnetic field normal to the crack surface. In this
case, the body force of the type �0M ·�H must be consid-
ered on account of the sharp gradient of magnetic field near
the crack. For the magnetic field in the strip, it is assumed
that

hx,x + hy,y = 0, �5�

hx,y − hy,x = 0, �6�

and

bx = �0�rhx

by = �0�rhy ,
�7�

mx = �hx

my = �hy ,
�8�

where the subscript comma implies a partial derivative with
respect to the coordinate, and �hx ,hy�, �bx ,by� and �mx ,my�
are the x and y components of h, b and m. Equations �5� and
�6� for the perturbed state are satisfied by introducing a mag-
netic potential 	 such that

hx = 	,x, hy = 	,y , �9�
	,xx + 	,yy = 0. �10�
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By using a dipole model for the magnetization, we ob-
tain the following equilibrium equations:

txx,x + tyx,y +
�B0	,xy

�r
= 0

txy,x + tyy,y +
�B0	,yy

�r
= 0 .

�11�

The components of magnetoelastic stresses txx, tyy, txy = tyx

and Maxwell stresses txx
M, tyy

M , txy
M = tyx

M are

txx = �xx

tyy = �yy +
�B0

2

�0�r
2 +

2�B0	,y

�r

txy = tyx = �xy +
�B0	,x

�r
,

�12�

�xx = 2�ux,x + 
�ux,x + uy,y�
�yy = 2�uy,y + 
�ux,x + uy,y�
�xy = �yx = ��ux,y + uy,x� ,

�13�

txx
M = −

B0	,y

�r
−

B0
2

2�0�r
2

tyy
M =

�1 + 2��B0	,y

�r
+

�1 + 2��B0
2

2�0�r
2

txy
M = tyx

M = B0	,x ,

�14�

where �xx, �yy, �xy =�yx are the elastic stress components, ux

and uy are the displacement components, 
=� for plane
strain, and 
=2�� / ��+2�� for plane stress, �=2G� / �1
−2�� and �=G are the Lamé constants, G=E /2�1+�� is the
modulus of rigidity, and E and � are the Young’s modulus
and Poisson’s ratio, respectively. By using Eqs. �12� and
�13�, Eqs. �11� can be written as

ux,xx + ux,yy + � 


�
+ 1��ux,x + uy,y�,x +

2�B0	,xy

��r
= 0, �15�

uy,xx + uy,yy + � 


�
+ 1��ux,x + uy,y�,y +

2�B0	,yy

��r
= 0. �16�

The boundary conditions in the perturbation state be-
come

hx
ec�x,0� − hx�x,0� = − ��B0/�0�r�uy,x�x,0� �0 � x � a�

	�x,0� = 0 �a � x � h�
,

�17�

by
ec�x,0� − by�x,0� = 0 �0 � x � a�

	ec�x,0� = 0 �0 � x � a�
, �18�
�yx�x,0� = − ��B0/�r�hx�x,0� �0 � x � h� , �19�
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�yy�x,0� = ���� − 2�B0/�r	�hy�x,0� + B0/2�0�r	 �0 � x � a�
uy�x,0� = 0 �a � x � h�

, �20�
hy
e�0,y� − hy�0,y� = 0 �0 � y � � � , �21�

hx
e�0,y� − �rhx�0,y� = − ��B0/�0�r�ux,y�0,y�

�0 � y � � � , �22�

�xx�0,y� = 0 �0 � y � � � , �23�

�xy�0,y� = − ��B0/�r�hx�0,y� �0 � y � � � , �24�

hy
e�h,y� − hy�h,y� = 0 �0 � y � � � , �25�

hx
e�h,y� − �rhx�h,y� = − ��B0/�0�r�ux,y�h,y�

�0 � y � � � , �26�

�xx�h,y� = 0 �0 � y � � � , �27�

�xy�h,y� = − ��B0/�r�hx�h,y� �0 � y � � � . �28�

III. SOLUTION PROCEDURE

Let the solutions of Eqs. �15� and �16� be of the form

ux =
2

�



0

� �A�
� + �y − �
 + 3�


 + �
� 1




B�
�

+
2�B0

�r�
 + ��
a�
��e−
ysin�
x�d
 −

2

�

�

0

� ��x cosh�
x� − �
 + 3�


 + �
� 1



sinh�
x�
D�
�

+ �x sinh�
x� − �
 + 3�


 + �
� 1



cosh�
x�
F�
�

+ sinh�
x�C�
� + cosh�
x�E�
� +
2�B0

�r�
 + ��

�sinh�
x�b�
� +
2�B0

�r�
 + ��
cosh�
x�c�
��

�cos�
y�d
 − a0x , �29�

uy =
2

�



0

�

�A�
� + B�
�y	e−
ycos�
x�d


+
2

�



0

�

�C�
�cosh�
x� + D�
�x sinh�
x�

+ E�
�sinh�
x� + F�
�x cosh�
x�	sin�
y�d
 + b0y ,
�30�
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	 =
2

�



0

�

a�
�e−
ycos�
x�d
 +
2

�



0

�

�b�
�cosh�
x�

+ c�
�sinh�
x�	sin�
y�d
 , �31�

where A�
�, B�
�, C�
�, D�
�, E�
�, F�
�, a�
�, b�
� and
c�
� are the unknown functions to be solved, and the real
constants a0, b0 are determined from the far-field loading
conditions. Application of Fourier transform to Eq. �10�
yields

	ec =
2

�



0

�

ae�
�sinh�
y�cos�
x�d
 �0 � x � a� ,

�32�

	e = �
2

�



0

�

be�
�e
xsin�
y�d
 �− � � x � 0�

2

�



0

�

ce�
�e−
xsin�
y�d
 �h � x � � �
,

�33�

where ae�
�, be�
� and ce�
� are also unknowns. The mag-
netic field can be obtained by making use of Eqs. �9� and
�31�. The magnetic field in the void inside the crack and
outside the strip can also be obtained from Eqs. �9�, �32�, and
�33�.

By applying the far-field loading conditions, the con-
stants a0 and b0 are obtained as

a0 =



4�
 + ����0

�
−

�bc
2

�r
2 �, b0 =


 + 2�

4�
 + ����0

�
−

�bc
2

�r
2 � ,

�34�

where

bc
2 =

B0
2

��0
. �35�

The boundary condition �19� gives the following equation in
A�
�, B�
� and a�
�:


A�
� =

 + 2�


 + �
B�
� − � �B0

2��r
��
 + 3�


 + 2�
�
a�
� . �36�

Making use of the two mixed boundary conditions �17� and
�20�, we have simultaneous dual integral equations:



0

�


�a�
� − � �B0

�0�r
�A�
�
sin�
x�d
 = 0 �0 � x � a�


�

a�
�cos�
x�d
 = 0 �a � x � h� , �37�

0
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0

�


�1 −
�2�
 + 2��bc

2

2�r
2�
 + ��

�� −
�


 + 2�
�
A�
�cos�
x�d


−

 + 2�

�
 + ��y0



0

�

�G1�
�cosh�
x�

+ G2�
�sinh�
x��e−
xd


=
�

4
�
 + 2�


 + �
���0

�
� �0 � x � a�



0

�

A�
�cos�
x�d
 = 0 �a � x � h� , �38�

where

G1�
� = 
C�
� +




 + �
D�
� + 
xF�
�

+ � �B0

2��r
��� −

4
 + 2�


 + �
�
b�
�

G2�
� = 
xD�
� + 
E�
� +




 + �
F�
�

+ � �B0

2��r
��� −

4
 + 2�


 + �
�
c�
� . �39�

The boundary conditions of Eqs. �21�–�28� lead to the fol-
lowing relations between unknown functions:

� �B0

�0�r
��
 sinh�
h�C�
� + �
h cosh�
h�

−

 + 3�


 + �
sinh�
h�
D�
� + 
 cosh�
h�E�
�

+ �
h sinh�
h� −

 + 3�


 + �
cosh�
h�
F�
��

+ � 2��2bc
2

�r
2�
 + ��

− �r
�
 sinh�
h�b�
�

+ 
 cosh�
h�c�
�	 − 
e−
hce�
� = f1�
� , �40�


�cosh�
h�b�
� + sinh�
h�c�
� − e−
hce�
�	 = f2�
� ,

�41�


 sinh�
h�C�
� + �
h cosh�
h� −
�


 + �
sinh�
h�
D�
�

+ 
 cosh�
h�E�
� + �
h sinh�
h�

−
�


 + �
cosh�
h�
F�
�

+ � �B0

2��r
��
 + 3�


 + �
��
 sinh�
h�b�
�

+ 
 cosh�
h�c�
�	
= f3�
� , �42�
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 cosh�
h�C�
� + �
h sinh�
h�

−

 + 2�


 + �
cosh�
h�
D�
� + 
 sinh�
h�E�
�

+ �
h cosh�
h� −

 + 2�


 + �
sinh�
h�
F�
� + � �B0

��r
�

��
 + 2�


 + �
��
 cosh�
h�b�
� + 
 sinh�
h�c�
�

= f4�
� , �43�


�be�
� − b�
�	 = f5�
� , �44�


be�
� + � �B0

�0�r
��
E�
� −


 + 3�


 + �
F�
�


+ � 2��2bc
2

�r
2�
 + ��

− �r

c�
� = f6�
� , �45�


C�
� −

 + 2�


 + �
�D�
� + � �B0

��r
�
b�
�
 = f7�
� , �46�


E�
� −
�


 + �
�F�
� + � �B0

��r
�
c�
�
 = f8�
� , �47�

where

f1�
� = 

0

�

F1�s,
��� �B0

�0�r
�sA�s�

− � �B0

�0�r
��2�
 + 2��


 + �
− sy
B�s�

− ��r −
2��2bc

2

�r
2�
 + ��
sa�s��ds

f2�
� = 

0

�

F2�s,
�sa�s�ds

f3�
� = 

0

�

F1�s,
��sA�s� − �
 + 2�


 + �
− sy�B�s�

+ � �B0

2��r
��
 + 3�


 + �
�sa�s�
ds

f4�
� = 

0

�

F2�s,
��sA�s� − �2
 + 3�


 + �
− sy�B�s�

+ � �B0

��r
��
 + 2�


 + �
�sa�s�
ds

�48�

f5�
� = − 

0

�

F3�s,
�sa�s�ds
f6�
� = 0
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f7�
� = 

0

�

F3�s,
��sA�s� − �2
 + 3�


 + �
− sy�B�s�

+ � �B0

��r
��
 + 2�


 + �
�sa�s�
ds

f8�
� = 0

and

F1�s,
� =
2

�
� 


s2 + 
2�sin�sh�

F2�s,
� =
2

�
� s

s2 + 
2�cos�sh� �49�

F3�s,
� =
2

�
� s

s2 + 
2� .

Now define the unknown function

a�
� = � �B0

�0�r
� 1






0

a

d���sin�
��d�

A�
� =
1






0

a

d���sin�
��d� . �50�

The two simultaneous dual integral Eqs. �37� and �38�, to-
gether with Eqs. �40�–�47�, lead to the following singular
integral equation:



0

a 1

� − x
d���d� + 


0

a � 1

� + x
+ K��,x�
d���d�

=
�

2
�
 + 2�


 + �
�� �0

�y0
� , �51�

where

K��,x� = −
2�
 + 2��


 + �



0

�

�M1�
,��cosh�
x�

+ M2�
,��sinh�
x�	d
 , �52�

y0 = 1 −

 + 2�

2�
 + ���� −
�


 + 2�
���bc

�r
�2

�53�

and

M1�
,�� =




 + �
L1�
,�� + 
xL2�
,��
 + L3�
,��

+ � �B0

2��r
��� −

4
 + 2�


 + �
�
L5�
,��

M2�
,�� = 
xL1�
,�� +




 + �
L2�
,��
 + L4�
,��

+ � �B0

2��r
��� −

4
 + 2�


 + �
�
L6�
,�� . �54�
The functions Li�
 ,���i=1, . . . ,6� are

Downloaded 27 Nov 2008 to 130.34.135.83. Redistribution subject to
Li�
,�� = �
j=1

8
Dj�
,��Qi,j�
�

�C�
, �55�

where C and D are given in Appendix A, and Qi,j�
� are the
cofactors of the elements in the square matrix C.

Prior to the numerical solution of Eq. �52�, it is normal-
ized by introducing

� =
a

2
�t + 1�, x =

a

2
�s + 1� , �56�

d��� = d*�t� . �57�

If we now substitute Eqs. �56� and �57� into Eq. �52�, we get



−1

1 1

t − s
d*�t�dt + 


−1

1 � 1

t + s + 2
+ K*�t,s�
d*�t�dt

=
�

2
�
 + 2�


 + �
�� �0

�y0
� , �58�

where

K*�t,s� = K��,x� . �59�

The solution of Eq. �58� is of the form

d*�t� =
G�t�

�1 − t2�1/2 . �60�

By using the method described Ref. 6, Eq. �58� may now be
reduced to the following system of equations:

�
k=1

N
1

2N
G�tk�� 2

tk − sr
+

2

�tk + 1� + �sr + 1�
+ K*�tk,sr�


=
�

2
�
 + 2�


 + �
�� �0

�y0
��r = 1, . . . ,N − 1� , �61�

where in the above tk and sr are, respectively, the roots of
Chebyshev polynomials of the first kind of order N and of
the second kind of order N−1. Equation �61� provides N
−1 linear algebraic equations for the unknowns
G�t1� , . . . ,G�tN�. The Nth unknown, G�tN�, is assumed to be
FIG. 2. Experimental setup.
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zero since tN is the closest of the tk to −1. This assumption is
in fact true as N→�.7 Eliminating this unknown yields N
−1 equations for the N−1 remaining unknowns. The linear
algebraic system given in Eq. �61�, where the sum is taken
only to N−1, is solved using Gaussian elimination for N−1
values of G�tk�.

The magnetic stress intensity factor is obtained as

kh1 = lim
x→a+

�2�x − a��1/2tyy
c �x,0� =

a1

y0
�0a1/2G�1� , �62�

where

a1 = 1 +
�

2�
 + ��
��
 + 2�� + ��2
 + 5���� bc

�r
�2

, �63�

tyy
c �x,0� = tyy�x,0� + tyy

M�x,0� . �64�

IV. EXPERIMENTAL PROCEDURE

Tensile tests were performed on nickel–iron TMC-V�E
=182 GPa,�=0.146,�r=27 900�, TMH-B�E=203 GPa,�
=0.279,�r=10 690� and TMB�E=146 GPa,�=0.228,�r

=9030�, soft magnetic materials �NEC/Tokin Co. Ltd.�. Fig-
ure 2 shows the specimen and setup for the experiment. The
specimen geometry was a plate specimen containing a
single-edge crack. The edge-cracked specimen has a length
of 140 mm, a thickness of 1 mm, a width, h, of 40 mm, and
a crack length, a, of 4, 10, 15 mm. An initial through-the-
thickness notch was machined using electro-discharge ma-
chining. The specimen was fatigue precracked and then an-
nealed to obtain the optimum magnetic properties.

FIG. 3. Stress intensity factor vs a /h ��=0.25,�=10 000�.
FIG. 4. Stress intensity factor vs a /h �TMC-V�.

Downloaded 27 Nov 2008 to 130.34.135.83. Redistribution subject to
A simple strain gauge method is very suitable to deter-
mine the magnetic stress intensity factor.2,8 A five element
strip gauge �KFG-1-120-D19-16N10C2 from Kyowa Elec-
tronic Instruments Co. Ltd.� was installed along the 90° line
and the center point of the element closest to the crack tip
was 2 mm. The strain sensors have an active length of 1 mm.

Tensile load and a magnetic field were simultaneous ap-
plied to the edge-cracked plate specimens at room tempera-
ture. A 10 T �T:Tesla� cryocooler-cooled superconducting
magnet with a 100-mm-diameter working bore was used to
create a static uniform magnetic field of magnetic induction
B0 normal to the crack surface. The specimen was loaded by
P=29.4 N load that consisted of weight. The strains near the
crack tip were recorded as a function of B0.

For the plane stress case, the strain �yy near the crack
becomes

E�yy =
kh1

�2r�1/2� �

2�1 + ��� + �2� + �5 − ���	��bc/�r�2�
� cos

�

2
��1 − ���2�1 + �� + �3 + ����bc

�r
�2


+ �1 + ���2�1 + �� + �3 − ����bc

�r
�2
sin

�

2
sin

3�

2
�

+ A0 + O�r1/2� , �65�

FIG. 5. Stress intensity factor vs magnetic field �TMC-V�.
FIG. 6. Stress intensity factor vs magnetic field �TMC-V, TMH-B, TMB�.
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where A0 is the unknown coefficient. When all the magnetic
field quantities are made to vanish, Eq. �65� reduces to the
strain near the crack tip in an elastic plane body.5 Setting �
=� /2 gives

c0E�yyr
1/2 = kh1 − 2c0A0r1/2 + . . . , �66�

where

c0 =
4

�
� 2�1 + ��� + �2� + �5 − ���	��bc/�r�2

2�3 + 2� − �2� + �9 − 2� − 3�2���bc/�r�2� . �67�

From Eq. �66�, a plot of c0E�yyr
1/2 vs r1/2 is linear for small

values of r and the intercept at r=0, at the crack tip, gives
the stress intensity factor kh1.

V. RESULTS AND DISCUSSION

To examine the effect of magnetic field on the stress
intensity factor, the solution of a singular integral equation
has been computed numerically. Figure 3 shows the normal-
ized stress intensity factor kh1 /�0a1/2 as a function of the
strip-width to crack-length ratio a /h under various values of
normalized magnetic field bc for �=0.25 and �=10 000. The
data are obtained from the plane stress and plane strain
analyses. For �=80 GPa, bc=0.0032 and 0.0047 correspond
to the magnetic induction of B0=1.0 and 1.5 T, respectively.
The curves obtained for bc=0 coincide with the purely elas-
tic plane stress and plane strain cases. The normalized stress
intensity factor increases slowly as a /h increases and tends
to the result of the infinite solid as a /h→0. The values of
kh1 /�0a1/2 for a /h→0 are found to be kh1 /�0a1/2=1.230,
1.369 �bc=0.0032, 0.0047� for plane stress and kh1 /�0a1/2

=1.223, 1.348 �bc=0.0032, 0.0047� for plane strain. Applica-
tion of the magnetic field increases the stress intensity factor
depending on a /h. The variations of calculated k /� a1/2
h1 0

Downloaded 27 Nov 2008 to 130.34.135.83. Redistribution subject to
against a /h for TMC-V under various values of B0 in the
plane stress case are compared with the experimental data in
Fig. 4. The agreement between the two is good. A larger
value of B0 tends to increase the stress intensity factor, and
this trend may be more clearly observed in Fig. 5 for a /h
=0.1,0.25 and 0.375. Theoretical predictions of the stress
intensity factor are in agreement with experimental values.
The calculated results for TMC-V, TMH-B and TMB vs bc

are plotted together with the experimental data in Fig. 6 for
a /h=0.375. The effect of the magnetic field on the stress
intensity factor is more pronounced with increasing the spe-
cific magnetic permeability.

VI. CONCLUSIONS

The magnetic fracture behavior was investigated both
analytically and experimentally for a soft ferromagnetic strip
with a single-edge crack. Based on the results of this study,
the following conclusions may be drawn:

1. The magnetic field effect can increase the values of the
stress intensity factor, and depends on the geometry and
material properties of the soft ferromagnetic solids.

2. The effect of magnetic field on the stress intensity factor
becomes more pronounced as the specific magnetic per-
meability takes on higher values.

3. The applicability of the strain gauge method for mag-
netic fracture testing was established. A comparison be-
tween theoretical and experimental values of the stress
intensity factor shows good agreement, and the data
verify the validity of the linear theory for magnetoelastic
interactions in cracked soft ferromagnetic materials.

APPENDIX A

C and D in Eq. �55� are given by
C = �
c1,1�
� c1,2�
� c1,3�
� c1,4�
� c1,5�
� c1,6�
� c1,7�
� c1,8�
�
c2,1�
� c2,2�
� c2,3�
� c2,4�
� c2,5�
� c2,6�
� c2,7�
� c2,8�
�
c3,1�
� c3,2�
� c3,3�
� c3,4�
� c3,5�
� c3,6�
� c3,7�
� c3,8�
�
c4,1�
� c4,2�
� c4,3�
� c4,4�
� c4,5�
� c4,6�
� c4,7�
� c4,8�
�
c5,1�
� c5,2�
� c5,3�
� c5,4�
� c5,5�
� c5,6�
� c5,7�
� c5,8�
�
c6,1�
� c6,2�
� c6,3�
� c6,4�
� c6,5�
� c6,6�
� c6,7�
� c6,8�
�
c7,1�
� c7,2�
� c7,3�
� c7,4�
� c7,5�
� c7,6�
� c7,7�
� c7,8�
�
c8,1�
� c8,2�
� c8,3�
� c8,4�
� c8,5�
� c8,6�
� c8,7�
� c8,8�
�

� �A1�

D = �D1�
�,D2�
�,D3�
�,D4�
�,D5�
�,D6�
�,D7�
�,D8�
�	T, �A2�
where

c1,1�
� = � �B0

�0�r
��
h cosh�
h� −


 + 3�


 + �
sinh�
h�
 ,
c1,2�
� = � �B0

�0�r
��
h sinh�
h� −


 + 3�


 + �
cosh�
h�
 ,

c1,3�
� = � �B0 �
 sinh�
h� ,

�0�r
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c1,4�
� = � �B0

�0�r
�
 cosh�
h� ,

c1,5�
� = �2��bc

�r
�2� �


 + �
� − �r

 sinh�
h� ,

c1,6�
� = �2��bc

�r
�2� �


 + �
� − �r

 cosh�
h� ,

c1,7�
� = 
e−
h,

c1,8�
� = 0, �A3�

c2,1�
� = c2,2�
� = c2,3�
� = c2,4�
� = c2,8�
� = 0,

c2,5�
� = 
 cosh�
h� ,

�A4�
c2,6�
� = 
 sinh�
h� ,

c2,7�
� = 
e−
h,

c3,1�
� = 
h cosh�
h� −
�


 + �
sinh�
h� ,

c3,2�
� = 
h sinh�
h� −
�


 + �
cosh�
h� ,

c3,3�
� = 
 sinh�
h� ,

c3,4�
� = 
 cosh�
h� , �A5�

c3,5�
� = � �B0

2��r
��
 + 3�


 + �
�
 sinh�
h� ,

c3,6�
� = � �B0

2��r
��
 + 3�


 + �
�
 cosh�
h� ,

c3,7�
� = c3,8�
� = 0,

c4,1�
� = 
h sinh�
h� −

 + 2�


 + �
cosh�
h� ,

c4,2�
� = 
h cosh�
h� −

 + 2�


 + �
sinh�
h� ,

c4,3�
� = 
 cosh�
h� ,

c4,4�
� = 
 sinh�
h� , �A6�

c4,5�
� = � �B0

��r
��
 + 2�


 + �
�
 cosh�
h� ,

c4,6�
� = � �B0

��r
��
 + 2�


 + �
�
 sinh�
h� ,
c4,7�
� = c4,8�
� = 0,
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c5,1�
� = c5,2�
� = c5,3�
� = c5,4�
� = c5,6�
� = c5,7�
�

= 0,

c5,5�
� = − 
 , �A7�

c5,8�
� = 
 ,

c6,1�
� = c6,3�
� = c6,5�
� = c6,7�
� = 0,

c6,2�
� = − � �B0

��r
��
 + 3�


 + �
� ,

c6,4�
� = � �B0

�0�r
�
 , �A8�

c6,6�
� = �2��bc

�r
�2� �


 + �
� − �r

 ,

c6,8�
� = 
 ,

c7,1�
� = − �
 + 2�


 + �
� ,

c7,2�
� = c7,4�
� = c7,6�
� = c7,7�
� = c7,8�
� = 0,

�A9�
c7,3�
� = 
 ,

c7,5�
� = � �B0

��r
��
 + 2�


 + �
�
 ,

c8,1�
� = c8,3�
� = c8,5�
� = c8,7�
� = c8,8�
� = 0,

c8,2�
� = − � �


 + �
� ,

�A10�
c8,4�
� = 
 ,

c8,6�
� = ��B0

�r
�� 1


 + �
�
 ,

and

D1�
,�� = � �B0

�0�r
��� 
 + �


 + 2�
��1 +

1

2
��bc

�r
�2�
 + 3�


 + �
�


���1 − 
h�sinh�
�� + 
� cosh�
��	

− �1 + �r + ��bc

�r
�2
sinh�
���e−
h, �A11�

D2�
,�� = − � �B0 �sinh�
��e−
h, �A12�

�0�r
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D3�
,�� = �� 
 + �


 + 2�
��1 +

1

2
��bc

�r
�2�
 + 3�


 + �
�


���1 − 
h�sinh�
�� + 
� cosh�
����e−
h,

�A13�

D4�
,�� = − �� 
 + �


 + 2�
��1 +

1

2
��bc

�r
�2�
 + 3�


 + �
�


���1 − 
h�sinh�
�� + 
� cosh�
��	

−
�


 + 2�
��
 + �

�
�

+
1

2
��bc

�r
�2
sinh�
���e−
h, �A14�

D5�
,�� = − � �B0

�0�r
�e−
�, �A15�

D �
,�� = 0, �A16�
6
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D7�
,�� = �� 
 + �


 + 2�
��1 +

1

2
��bc

�r
�2�
 + 3�


 + �
�


��sinh�
�� + 
� cosh�
��	

−
�


 + 2�
��
 + �

�
� +

1

2
��bc

�r
�2
e−
�� ,

�A17�

D8�
,�� = 0. �A18�
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