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Abstract—The main purpose of this paper is to realize an
effective human–robot coordination with physical interaction. A
dance partner robot has been proposed as a platform for it.
To realize the effective human–robot coordination, recognizing
human intention would be one of the key issues. This paper focuses
on an estimation method for dance steps, which estimates a next
dance step intended by a human. In estimating the dance step, time
series data of force/moment applied by the human to the robot are
used. The time series data of force/moment measured in dancing
include uncertainty such as time lag and variations for repeated
trials because the human could not always exactly apply the same
force/moment to the robot. In order to treat the time series data
including such uncertainty, hidden Markov models are utilized for
designing the dance step estimation method. With the proposed
method, the robot successfully estimates a next dance step based
on human intention.

Index Terms—Ballroom dances, dance step estimation, hidden
Markov models (HMMs), human intention, human–robot cooper-
ation, mobile robot.

I. INTRODUCTION

IN MOST human–robot coordination systems that have
been developed by several researchers, the control archi-

tecture is designed so that the robots move passively against
force/moment applied by a human and execute tasks in co-
operation with a human [1]–[3]. These systems are effective
in executing simple tasks such as handling an object. On the
other hand, some researchers have proposed pet robots [4], [5],
which move actively against interactions among humans and
themselves. With information such as sound, light, and a simple
interaction by using the touch sensors, etc., these robots could
move actively for entertainment or human mental healing.
However, human–robot coordination for realizing tasks is not
considered in their systems.

If robots could move not only passively but also actively
based on human intentions, environments, knowledge of tasks,
etc., we could realize more effective human–robot coordination
system than the conventional one. Considering the case of
coordination among humans, each human would move not
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only passively but also actively based on such information. In
this paper, human–robot coordination with physical interaction
between a human and a robot is discussed to execute tasks more
effectively, in which the robot moves not only passively but also
actively based on such information.

In this paper, a dance partner robot executing ballroom
dances with a human is focused as an example of human–robot
coordination with physical interaction. In the previous research
[6], the concept of the dance partner robot was proposed, and
the robot, which was referred to as the Mobile Smart Dance
Robot (MS DanceR), and its control architecture, which was
referred to as Control Architecture based on Step Transition
(CAST), were developed. CAST is composed of three modules,
namely: 1) “Knowledge;” 2) “Step Estimator;” and 3) “Motion
Generator.” Knowledge stores the information on dancing such
as basic step trajectories and transition rules for dance steps.
Step Estimator estimates a next step based on the rules and
human’s intention, which is mainly communicated to the robot
by interactive force/moment applied between the human and the
robot. Motion Generator generates actual motions of the robot
based on the trajectories and the physical interactions with
the human.

The human–robot coordination would be more successful
and effective if the robot could estimate human’s intention
and behave actively so that the robot helps the human to
execute tasks according to the intention. Therefore, recognition
of human’s intention would be one of the essential robot’s
functions for realizing the coordination. This paper focuses on
the step estimation problem in CAST, i.e., an estimation method
for a dance step intended by the human. Two step estimation
methods have been developed in the previous research, and the
robot could realize dancing with a human successfully [6], [7].
In these step estimation methods, only the instantaneous force/
moment information at the step transitions are utilized. Con-
sidering the case of dancing among humans, however, it might
be difficult for humans to estimate his/her partner’s intention
using such instantaneous information because a male dancer
could not always apply the same lead to his partner, and the
lead would include uncertainty such as a time lag and variation
for repeated trials. Therefore, it would be more successful to
model tendencies of dancer’s leads with such uncertainty by
using time series of force/moment information. Hidden Markov
models (HMMs) [8] are utilized to model the time series data
with human’s uncertainty because HMMs can stochastically
model tendencies of time series data with uncertainty.

HMMs are used successfully in the fields of speech recog-
nition, bioinformatics, etc. In these days, the applications on
gesture recognition, control of robots, etc., using HMMs are
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Fig. 1. Step transition in waltz.

studied by some researchers. Lee and Xu have developed a
gesture recognition system, which is interfaced to a Cyberglove
for use in recognition of gestures from the sign language
alphabet [9]. Inamura et al. have studied motion generations
for robots imitating human motions [10]. Yamada et al. have
proposed a method for preventing hazardous accidents due to
operators’ action slip in their use of a Skill-Assist [11].

Communication among partners using physical interactions,
which is focused in this paper, would be one of the key factors
enhancing efficiency of tasks not only in coordination among
humans but also in human–robot coordination. In this paper,
HMMs are designed so as to model the physical interactions
changing with time, and an estimation method for a dance step
intended by a human is proposed using the models. With the
proposed method, the communication between a human and the
dance partner robot could be realized for more effective coor-
dination. The product of our study could be available for esti-
mating human’s intention in human–robot cooperating systems
and human assist systems for welfare fields, in which machines
would be required to behave not only passively but also actively
in coordination with a human based on physical interactions.

In the following part of this paper, first, the brief of step
estimation is described. Next, the new step estimation system is
designed. In addition, its main module “Calculator” is modeled
using HMM. Finally, the estimation system is applied to MS
DanceR, and experiments are performed in order to illustrate
the validity of the proposed system.

II. DANCE STEP ESTIMATION

In this paper, a waltz is selected as an example of ballroom
dances. For the simplicity of modeling the waltz, five basic
steps in the waltz are used, namely: 1) closed change left
(CCL); 2) closed change right (CCR); 3) natural turn (NT);
4) reverse turn (RT); and 5) square turn (ST). Transition rules
for these steps, which are referred to as “Step Transition,” are
shown in Fig. 1. A human selects a step according to Step
Transition, and the robot stochastically estimates the step. Step
Estimator estimates a next step based on Step Transition and
human’s intention. In this paper, it is assumed that human’s
intention is mainly communicated to the robot by force/moment
applied between the human and the robot.

In the previous research, two methods for step estimations
have been proposed, i.e., 1) a method based on production rules
using force/moment thresholds [6] and 2) a method based on
neural networks (NNs) using force/moment patterns [7]. MS
DanceR could dance together with a human using these meth-

Fig. 2. Sensory data used in Step Estimator. (a) Instantaneous data for step
estimations. (b) Time-series data for step estimations.

Fig. 3. Sensory data with time lag and variation for repeated trials.

ods. In these methods, the instantaneous force/moment data at
transitions of steps illustrated in Fig. 2(a) have been utilized.

Considering the case of dancing among humans, however,
it would be difficult for humans to estimate his/her partner’s
intention using such instantaneous information. It would be
more successful to use the time series of force/moment infor-
mation illustrated in Fig. 2(b). In this paper, a step estimation
system is designed, in which the time series of force/moment
information are utilized. In treating the time series data for
estimations, the uncertainty of data such as time lag and vari-
ation for repeated trials (Fig. 3) has to be considered because
the human could not always exactly apply the same force/
moment to the robot in dancing. In order to estimate the next
step more successfully, the estimation models have to be
designed so that they allow such human’s uncertainty.

For designing the new Step Estimator, it is assumed that
the features of male dancer’s leads in dancing are observed
effectively during Teffective, which is a short time in the
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Fig. 4. Step Estimator.

Fig. 5. Feature Extractor.

latter part of a step shown in Fig. 2(b). In the new step
estimations, not only the instantaneous sensory data but also
the sensory data in the short time Teffective are utilized. HMM
is used to design the new Step Estimator. In the new Step
Estimator, HMM models tendencies of male dancer’s leads
with uncertainty, i.e., force/moment applied by a male dancer
to the robot, by using time series of force/moment information.

III. DESIGNING STEP ESTIMATION SYSTEM

The Step Estimator shown in Fig. 4 consists of three mod-
ules, namely: 1) “Feature Extractor;” 2) “Calculator;” and
3) “Evaluator.”

A. Feature Extractor

Feature Extractor outputs features of the time series data
I ∈ RD in Teffective, where D is the dimension of sensory data.
For feature extraction of the data, the averages of the data in
each time segment ∆T shown in Fig. 5 are utilized. Feature
Extractor outputs the features of the data as the observation
sequences O = {o(t) ∈ RD|t = 1, 2, . . . , T}, where T is the
number of the time segments.

B. Calculator

Calculator outputs the reference probability P k, which is
the kth indicator corresponding to the kth step of all possible
K steps limited by Step Transition. This value is used for
a selection of the most valid step expected to be intended
by a human. In order to treat the time series data including
the human’s uncertainty, Calculator is designed using HMM.

The detail of modeling and an expression of the reference
probability P k are described in Section IV.

C. Evaluator

Evaluator outputs a next step. Two processes are executed
in Evaluator. The first process searches the largest reference
probability P kmax

and the second largest reference probability
P k2nd

from P k(k = 1, 2, . . . ,K), i.e.,

P kmax
= max

1≤k≤K
P k (1)

P k2nd
= max

1≤k≤K,k �=kmax
P k. (2)

In the second process (3), the fraction P kmax
/P k2nd

is com-
pared with a constant κ. Step kmax is outputted as the next
step if P kmax

/P k2nd
> κ. If this condition is not true, STOP

is outputted, which means that Step Estimator cannot estimate
a next step and stops dancing, i.e.,

k∗ =
{
kmax, if P kmax

/P k2nd
> κ

STOP, else
. (3)

IV. DESIGNING ESTIMATION MODULE USING HMM

The sensory data measured in dancing include the uncer-
tainty such as time lag and variation for repeated trials, which
arise from the fact that a human cannot always apply the same
force/moment to the robot. In order to execute step estimations
more successfully, it is needed to model the estimation system
that considers the influence of these errors. In this section,
Calculator is designed using HMM, which is a main module
of Step Estimator. Next, the reference probability P k outputted
by Calculator is expressed.

A. Expression of HMM

HMM is a stochastic method for modeling observed se-
quences including uncertainty. HMM has three sets of prob-
abilistic parameters, i.e., 1) the probability distribution for the
initial state Π, 2) the probability distribution for state transitions
A, and 3) the probability distribution for observed sequencesB.
For convenience, a compact notation is used to indicate these
sets, i.e.,

λ = (Π, A,B). (4)

These sets are expressed as follows:

Π = {πi|i = 1, 2, . . . , N} , πi = P (q(1) = si) (5)

A = {aij |i, j = 1, 2, . . . , N} ,
aij = P (q(t+ 1) = sj |q(t) = si) (6)

B = {bi(t)|i = 1, 2, . . . , N, t = 1, 2, . . . , T} ,
bi(t) = P (o(t)|q(t) = si) (7)
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Fig. 6. Continuous left-to-right HMM.

Fig. 7. State space and observation sequence.

where

N number of states;
T number of time segments;
S = {si| i = 1, 2, . . . , N}, set of states;
Q = {q(t)|t = 1, 2, . . . , T}, time series of states;
O = {o(t)|t = 1, 2, . . . , T}, time series of observed data.

In this paper, the continuous left-to-right HMM shown in
Fig. 6 is used for modeling Calculator. The HMM models be-
haviors of training samples, i.e., force/moment measurements
in dancing, obtained from repeated trials. In this model, each
state shows the pattern of observed data, which are features of
sensory data. In other words, the probability that the current
state is state si is large if observed data are similar to the specific
values with respect to the state si. The relationship between
states and observed data in the case of dimension D = 2 is
illustrated in Fig. 7, where o1(t) and o2(t) denote the first and
second components of o(t) ∈ R2, respectively. According to a
specific continuous probability density included in each state,
i.e., bi(t), as introduced in Section IV-B, observation sequences
are outputted from each state.

B. Initial Setting for HMM Parameters

HMM is a stochastic method, and its probabilistic para-
meters are computed by Baum–Welch algorithm. Initial para-
meter settings are very important and difficult issues because
Baum–Welch algorithm, which is one of the expectation–
maximization algorithms, increases the objective function
P (O|λ) to local maximum.

Considering the left-to-right HMM, at first, the initial values
of parameters (Π, A) are set by

πi =
{

1, if i = 1
0, else

(8)

aij

{ �= 0, if j ≤ i+ 2
= 0, else

. (9)

Equations (8) and (9) show that the initial state is always state
s1 and that state transition is limited to three, i.e., si ⇒ si, si ⇒
si+1, and si ⇒ si+2.

The continuous observed sequence probability bi(t) is ex-
pressed by mixed Gaussian distributions, i.e.,

bi(t) =
M∑

m=1

cimbim(t) (10)

bim(t) =
1

(2π)
D
2 |Σim| 12

× exp
(
−1

2
(o(t)−µim)T Σ−1

im (o(t)−µim)
)

(11)

where M is the number of mixed Gaussian distributions; cim is
the mixture coefficient for the mth mixture in state si; bim(t)
is the mth mixture component of mixed Gaussian distributions
in state si; D is the dimension of sensory data; o(t) ∈ RD

are observed data outputted by Feature Extractor; and µim ∈
RD and Σim ∈ RD×D are Gaussian mean vector and variance
matrix for the mth mixture component in state si, respectively.
With respect to time t and state si, bi(t) expresses the degree of
similarity between sensory data and training samples.

The initial values of cim are set by

cim =
1
M

, for all i and m. (12)

In order to simplify the initial parameter settings for µim and
Σim, the number of HMM states N is set to be equal to the
number of time segments T . In addition, a time index t corre-
sponds to a state index i in the initial parameter settings. The
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Fig. 8. Initial value settings for parameters µim and Σim.

Fig. 9. Neighborhoods of final state.

initial values of µim and Σim are calculated based on sets of
training samples, i.e., O1, O2, . . . , OV , where V is the number
of sets of training samples. With respect to time t, training
samples o1(t), o2(t), . . . , oV (t) are divided into M clusters. In
the clustering process, samples are divided so that each cluster
has the same number of samples and that the sum of Euclidean
distances between samples ov1(t) and ov2(t)(1 ≤ v1, v2 ≤
V/M) included in each cluster is minimized. Then, µim|i=t and
Σim|i=t are calculated as averages and variances of samples
included in each cluster, respectively. Fig. 8 illustrates the
idea in the case of D = 2, M = 3, and V = 15. After initial
value settings, the parameters of HMM are learned by the
Baum–Welch algorithm.

C. Expression of Reference Probability

The reference probability P k outputted by Calculator is
computed by forward algorithm [8] and expressed as follows:

P k = P
(
O|λk

) L∑
l=1

P
(
q(T ) = sN−(L−l)|O, λk

)
. (13)

The reference probability P k is a product of two probabilities.
One is the probability that HMM λk outputs the observed
sequences O, which confirms the validity of data. The other
is the probability that a state at the last time q(T ) exists at
any one of the neighborhoods of the final state sN , i.e., states
sN−(L−1), sN−(L−2), . . . , sN , where L is the number of neigh-
borhoods. The idea of neighborhoods is illustrated in Fig. 9.
This probability evaluates the approach of the state q(T ) to the
neighborhoods of the final state sN . Considering the second
term, the observed data are evaluated more strictly because
Calculator is designed so that a close relationship between a
time t and a state si is generated in initial parameter settings.

Fig. 10. Dance partner robot “MS DanceR.” (a) Robot structure. (b) Interac-
tion with human.

V. EXPERIMENTS

In this section, experiments on step estimations are per-
formed in order to illustrate the validity of the proposed system.

A. Condition

The robot used in the experiments is shown in Fig. 10(a).
An omnidirectional mobile base is used for executing various
motions of dance steps. In addition, a force/torque sensor
is installed between the upper body and lower body of the
robot. A human affixes his/her own body to the robot’s upper
body, as shown in Fig. 10(b), and applies force/moment to the
robot through the interaction. The force/moment applied by
the human to the upper body of the robot is aggregated into the
sensor, and the force/moment measurements are used for step
estimations (the dimension of sensory data D = 6). The real-
time operating system QNX is used to control the robot, whose
control frequency is 1 kHz.

In order to evaluate HMM-based estimations, experiments on
step estimations with the previous method based on NNs [7] are
performed. Three subjects perform these experiments. Together
with the robot, each subject intends to dance the following two
step sequences. Needless to say, the robot does not know the
step sequences.

Step sequence 1:

CCL ⇒ NT ⇒ CCR ⇒ RT ⇒ CCL

⇒ ST ⇒ CCL ⇒ CCR ⇒ CCL.

Step sequence 2:

NT ⇒ NT ⇒ ST ⇒ RT ⇒ RT.

All step transitions shown in Fig. 1 are executed by danc-
ing these step sequences. Fifteen trials are repeated in each
experiment.

B. Result and Evaluation

Experimental results of subject A are shown in Fig. 11, where
each sign of circle (©), triangle (�), and cross (×) means suc-
cess, STOP, and a mistake, respectively. Experimental results of
the other subjects are obtained in the same manner.

For experimental results of all subjects, the number of suc-
cesses (©), the number of STOPs (�), and the number of
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Fig. 11. Experimental results of subject A. (a) With HMMs. (b) With NNs.

mistakes (×) are counted and expressed in Table I. In order
to evaluate experimental results, the following two methods for
calculating success rates are used.

Evaluation method 1:

Success Rate = (Num. of Successful Step Transitions/

Num. of Trials of Step Transitions) × 100[%].

Evaluation method 2:

Success Rate = (Num. of Successful Step Sequences/

Num. of Trials of Step Sequences) × 100[%].

Success rates evaluated by these methods are expressed
in Table II.

TABLE I
EXPERIMENTAL RESULTS OF THE THREE SUBJECTS.

(a) WITH HMMS. (b) WITH NNS

C. Consideration

According to Table II, the success rates with HMM-based
step estimation method are higher than those with the previ-
ous estimation method for each subject. These successes are
achieved by using the time series data for step estimations and
treating the data with human’s uncertainty as stochastic models.
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TABLE II
SUCCESS RATE

Fig. 12. Force data (Fy : force along the y-axis) applied by subject A.
(a) Transition from step CCR to step CCL. (b) Transition from step CCR to
step RT.

With respect to subject C, success rates are less than those
of the other subjects because subject C is not an experienced
dancer. Dance instructors sometimes say that beginners are
liable to apply vague leads to their partner because of lack of
experience. As an example of leads applied by subjects, force
data along the y-axis, i.e., Fy , at the transition to step CCL
and step RT are focused. Compared with the leads applied by
subject A, which are shown in Fig. 12(a) and (b), variation of
the leads applied by subject C is large according to Fig. 13(a)
and (b). In addition, a range of instantaneous data at the
transition to CCL, i.e., from 40 to 60 N, overlaps with the one
at the transition to RT, i.e., from 30 to 50 N. The leads applied
by subject C would not be recognizable due to the overlap. This

Fig. 13. Force data (Fy : force along the y-axis) applied by subject C.
(a) Transition from step CCR to step CCL. (b) Transition from step CCR to
step RT.

also appears in other components of force/moment. Such vague
leads applied by subject C could make step estimations difficult.

According to Table II, however, differences of success
rates between HMM-based method and NN-based method
about subject C, i.e., 89.29% − 71.28% = 18.01%, 50.00% −
10.00% = 40.00%, are much larger than those about the other
subjects. Then, we consider the following. When instantaneous
data at the transition are focused, with respect to subject C,
the overlap mentioned in the previous paragraph could not give
the NN-based method a high performance. When time series
data are focused, however, overlap between time series data
for the transition to step CCL and those for the transition to
step RT is not too large to be recognized. From 0.1 to 0.2 s in
Fig. 13(a) and (b), for example, differences between the data for
the transition to step CCL and those for the transition to step RT
are large. For the aforementioned reason, HMM-based method
could estimate the next step more successfully than the previous
method for all subjects, especially subject C.

These facts illustrate the validity of the HMM-based step
estimation method proposed in this paper.
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VI. CONCLUSION

In this paper, human–robot coordination with physical in-
teraction was discussed. As an example of the effective
human–robot coordination, ballroom dances were taken up. A
dance partner robot, which was referred to as MS DanceR, and
its control architecture, which was referred to as CAST, were
introduced. In CAST, the step estimation system had to behave
successfully because the robot’s motions were mainly decided
by the estimations. In this paper, the step estimation system was
improved, and its main modules were designed using HMMs.
Experiments on the step estimations were performed using the
HMM-based method and the previous method. The validity of
the estimation method proposed in this paper was confirmed by
experimental results.

Although the proposed estimation method works success-
fully, the experimental results also describe that completely
estimating the behavior intended by a human is difficult. Con-
sidering the case of coordination among humans, however, they
could not always correctly estimate his/her partner’s intention.
The more important issues for continuing the coordination
would be detecting mistakes as soon as possible and chang-
ing and adapting his/her behavior to the correct behavior by
perceiving his/her partner’s behavior. The future works will
address the error recovery problems in order to realize the more
effective human–robot coordination.
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