
Effect of Turnaround Lines of Magnetic Flux in
Two-Dimensional MHD Channel Flow under a
Traveling Sine Wave Magnetic Field

著者 上野  和之
journal or
publication title

Physics of fluids. A

volume 5
number 2
page range 490-492
year 1993
URL http://hdl.handle.net/10097/35734

doi: 10.1063/1.858871

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235796683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Effect of turnarounei lines of magnetic flux in two-dimensional MHD 
channel flow under a traveling sine wave magnetic fieki 

Kazuyuki Ueno 
Department of Aeronautical Engineering, Kyoto University, Kyoto 606, Japan 

(Received 14 April 1992; accepted 29 September 1992) 

Laminar liquid metal flow fields between two parallel insulator walls under a traveling sine 
. wave magnetic field are numerically solved for a small magnetic Reynolds number. 

When both average Hartmann number H, and cubic root of interaction parameter Nlrn are 
much greater than dimensionless wavelength A, a set of turnaround lines of magnetic 
flux, which exist every half-wavelength, cause a set of recirculating flows. Consequently a 
nozzlelike converging and diverging flow is formed between them. The throat width 
of the nozzlelike flow is estimated to be the greater of N-“4A3’4 or H-“2A”2 compared a 
with the channel height. 

I. INTRODUCTION 

The flow field of an electrically conducting incom- 
pressible viscous fluid between two parallel insulator walls 
is affected (i) by inertia, (ii) by the two-dimensionality of 
the imposed magnetic field, and (iii) by the induced mag- 
netic field under a traveling sine wave transverse magnetic 
field. In a previous paper,’ the inertia effect on laminar 
flows was clarified. In this paper, the effect of the two- 
dimensionality of the imposed magnetic field on laminar 
flows is examined under an assumption of a negligibly 
small effect of the induced magnetic field. 

II. GOVERNING EQUATIONS 

We carry out the analyses on the coordinate system 
moving with the traveling magnetic field. In this coordi- 
nate system, we can assume the magnetic and flow fields to 
be steady and the electric field to be negligible for the 
infinitely extended two-dimensional channel.’ 

Figure 1 shows the flow configuration and typical lines 
of magnetic flux; the magnetic flux density for a small 
magnetic Reynolds number is 

B,=cos x 
sinh( A-‘y) cosh(A-‘y) (1) 
Acosh A-” By=sinx cash A-’ 

in the dimensionless form.’ The two-dimensionality of the 
imposed magnetic field causes the turnaround lines of mag- 
netic flux in sin2 x< tanh2(A- ‘y). 

The dimensionless governing equations’ are 

where A = A-2a2/&2 + a’&“. The flow velocity ( U,U) 
and the pressure’gradient dp/dx are periodic functions of 
x. The average pressure gradient, which drives the fluid, is 

(ap/ax),= - 1. The boundary conditions u = -S and 
v=O are required at the walls y= f 1. 

The dimensionless parameters in Eqs. ( l)-(4) are de- 
fined with A=il/(27rh), Ha= (~7~/27#~hB~, 
N= (aLA.B~)/(4~p,Uo), and S= UJU,; where & 2h, B,, 
Ua, and U, denote the wavelength, the channel height, the 
amplitude of the sine wave magnetic field, the characteris- 
tic flow velocity, and the phase velocity of the traveling 
magnetic field, respectively; the density pL, the viscosity 
vL, and the electric conductivity crL of the fluid are as- 
sumed to be constant. Average Hartmann number H,, in- 
teraction parameter N, and dimensionless wavelength A 
characterize the effects of viscosity, inertia, and the two- 
dimensionality of the imposed magnetic field, respectively. 
We consider the cases limited to Ha> 10, N>lO, and 
A2) 10. 

Ill. RESULTS AND DISCUSSION 

Equations (2)-(4) were numerically solved by using 
the marker-and-cell (MAC) method.2 The steady solution 
was obtained as a converged solution to a time-dependent 
initial value problem. The Euler backward scheme was 
adopted. A 100X 100 irregular rectangular staggered mesh 
system was employed. 

In the bulk flow and its boundary layer, all the numer- 
ical solutions agree with the following analytical solution’ 
for large A, large N, and a small magnetic Reynolds num- 
ber to a good approximation: 

u=Y-(Y+As) 
HI cash HP- sinh Hl 
HI cash H,-- sinh HI ’ (5) 

where 2\I, is the flow rate and H,=v%& sin x. 
On the other hand, in the thin transverse regions con- 

taining the plane x= ks- (k being an integer), the velocity 
distribution changes remarkably with A and N. We call 
this region “the nodal region,” where au/ax is much larger 
than in the bulk flow. The flows in the nodal region can be 
classified into three types: (i) the viscous type, (ii) the 
inertia type, and (iii) the nozzle type. Equation (5) rep- 
resents the velocity distribution in the viscous type nodal 
region Hl 5 1. The flow field in the inertia type nodal re- 
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FIG. 1. Flow configuration and lines of magnetic flux; A=3.162. 

gion, which has been discussed in the previous paper,’ is 
also independent of A. The effect of the two-dimensionality 
of the imposed magnetic field is remarkable in the nozzle- 
type nodal region. 

Streamlines of a typical numerical solution in the 
nozzle-type nodal region are shown with lines of magnetic 
flux in Fig. 2. A set of turnaround lines of magnetic flux 
cause a set of recirculating flows; consequently a nozzlelike 
converging and diverging flow is formed between them. 

The classification of the flows in the nodal region is 
definitely explained by the asymptotic behavior of the mo- 
mentum equations for large A, H,, and N. 

The thickness of the nodal region in the x direction is 
denoted by E. By using E ( 4 1) , each parameter is replaced 
and the stretched coordinates are introduced as follows: 

A=6 -I, &=E-, N=E--“; x=E~, y=T (6) 

Variables c=u, ~=Ev, jY= eB3p, xX= ew2’Bx, and 
By=e-* By are expected to be O( 1) functions of ,U and y 
Substituting Eqs. (6) into Eqs. (2)-(4), we obtain the 
equations for the nodal region. 

Only three kinds of force balances are possible. In the 
cases of(i) m=l, n>3, I> 1, (ii) n=3, m> 1, I> 1, and 
(iii) I= 1, m > 1, n> 3, the momentum equations are re- 
duced to 

1 

FIG. 2. 

.- * 1 0 1 
AX 

Streamlines (solid) and lines of magnetic flux (dashed) of a 
numerical solution in the nozzle-type nodal region; h=3.162, 
H,,=3.162x103, N=lO’ S=l > . 

TABLE I. Analytical estimations of the conditions and the thickness of 
the nodal region E. 

Type Conditions E 

Viscous type l<H,(N’“, l(H,<A WC’) 
Inertia type l(N”‘(H,, l(N”‘&A O(N-1’3) 
Nozzle type l<A(H, 1 <A(N”3 @A-‘) 

2- 
0= -$+$-2&i;, 

aF 
O= 7’ 
-ai7 -au aF 
u z+ u T$= -a,--2iiii;, 

aF 
O=-3y”’ 

(7) 

(8) 

respectively, where we neglect small-order terms. Equa- 
tions (7)-(9) show the force balance in the viscous-type 
nodal region, the inertia-type nodal region, and the nozzle- 
type nodal region, respectively. According to the above 
analysis, the conditions and the thickness of the nodal re- 
gion E are estimated as shown in Table I. No solution to 
our numerical calculations contradicts these estimations. 

The magnetic flux density is 5,=x gy=.Y for large A. 
For this magnetic field, there is an weak solution of Eq. 
(9): 

ai 
iF=Y sgn(F) -) 

ag 
ay 

iT= -Y sgn(?) z, 

for j?<?, and ii=O, i?=O for y” > g2, where 

1 

Y 0 

-1 
-1 0 1 

AX 

FIG. 3. Streamlines (solid) and lines of magnetic flux (dashed) of the 
analytical solution in the nozzle-type nodal region. 
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FIG. 4. Numerical results of the half-width of the throat d; 
H,=3.162x103, S=l. 

i?Gl.a = 
log 1 x+71 -log 1 Z--F1 

2log(l+ 4%j%l)-log@-7) * 

Figure 3 shows the streamlines of the above solution with 
the lines of magnetic flux. A set of recirculating flows from 
the numerical solution reduce to a set of stagnant fluid 
regions. This result shows (i) that the asymptotic analysis 
successfully represents the force balance in the nodal re- 
gion, and (ii) that the nozzle-type nodal region has fine 
structures on v= G and v= f 1, where the simplified 
equation (9) is not appropriate. 

We are interested in the fine structure which contains 
the point of the largest flow velocity in the nozzle-type 
nodal region; we call this fine structure “the throat” after 
ordinary nozzle flow. 

In the cross section of the largest velocity point, there 
are four inflection points where d2Z/@=0; the outer two 
points exist in the recirculating flow and the inner two 
points exist on the border of the nozzlelike flow. We define 
the throat width 2d to be the distance between the inner 
two points. Figure 4 shows d’s of the numerical solutions. 
The half-width d is nearly equal to N-“4A3’4, though d 
has an lower limit nearly equal to @F1’2A1’2. 

The results in Fig. 4 can be explained by the asymp- 
totic behavior of the momentum equations; the following 
procedure is the same as Eqs. (6)-(9). 

TABLE II. Analytical estimations of the conditions and the half-width of 
the throat d for each widening force. 

Widening force Conditions d 

Viscous force 1 (h3(H&N O( H; “2A”2) 
Inertia force l<A’<N(H:A O(N- 1/4A3/4) 

By using d( g 1 ), the parameters tire replaced and fur- 
ther stretched coordinates are introduced as follows: 

A2/H;=dm, h3/N=d”; Z=d$ v=dv^. (11) 

Variables- u^=dCi, fi=&, p^=de2F, bx=d-‘~,, and 
ky=d-l By are expected to be 0( 1) functions of 2 and 9. 
Substituting Eqs. ( 11) into Eqs. (2)-(4), we obtain the 
equations for the throat. 

Only two kinds of force balances are possible. In the 
cases of(i) m=4, n>4 and (ii) n=4, m>4, the momen- 
tum equations are reduced to 

A 2* 
(3= -~+~+~-2(@4~jjy, 

a2 a2 aj 
,. 2- 2- 

o= -~+-a~+q+2(+o~x) bx, 
ag ax ay” 

a; at2 ab 
u^ z+“-@= -ax^-2(tii$-&~y, 

av^ do ab 
2i~+“~=-,+2(~~~-“8)~~, 

av 

(12) 

(13) 

respectively, where we neglect small-order terms. The 
above equations show that either the viscous force or the 
inertia force widens the throat to finite width. According to 
the above analysis, the conditions and the half-width of the 
throat d for each widening force are estimated as shown in 
Table II. The results in Table II agree with the numerical 
results in Fig. 4. 
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