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Inertia effect in two-dimensional MHD channel flow under a traveling sine 
wave magnetic field 

Kazuyuki Ueno 
Department of Aeronautical Engineering, Kyoto University, Kyoto 606, Japan 

(Received 12 March 1991; accepted 20 August 1991) 

The inertia effect peculiar to the MHD flow under a traveling sine wave transverse magnetic 
field between two parallel walls is investigated analytically and numerically. Solutions for 
steady flow of incompressible viscous fluid are obtained on the coordinate system moving with 
the traveling magnetic field. The flow is classified by interaction parameter N into three 
categories. (i) In the case of N%H i (H, : average Hartmann number), inertia effect is 
negligibly small and the local force balance in each cross section is the same as that in the 
Hartmann flow characterized by Hl (H,: local Hartmann number which is spatially periodic). 
(ii) In the case of 15 N5 H i, appreciable inertia effect appears in the region where the local 
magnetic field is smaller than N - 1’3B0 (& : the amplitude of sine wave magnetic field). (iii) 
In the case of N< 1, a new type boundary layer appears, where the periodic part of the Lorentz 
force is balanced by inertia force. The inertia effect to the power output and the efficiency of an 
MHD induction generator is very small in spite of the remarkable change in the flow field. 

I. INTRODUCTION mental knowledge of MHD flow in the presence of an alter- 

Magnetohydrodynamic (MHD ) flow under a traveling 
alternating magnetic field, associated with a liquid metal in- 
duction generator, IV3 has been investigated since the 1960s. 
Most of the analytical investigations concentrated on topics 
ofwinding loss and end loss. In such analyses, they neglected 
the viscosity of fluid and assumed a uniform velocity 
throughout the channel. Wang and Dudzinsky,2 comparing 
their experimental result with such an analysis, suggested 
that low efficiency in the experiment may be attributed to the 
high friction loss. In a previous paper,4 we analyzed the-two- 
dimensional flow field for N- 1 considering fluid friction, 
where N is interaction parameter. But it was shown that 
friction loss is small order of H; ’ compared with power 
input, where H, is average Hartmann number and it is much 
larger than unity in a MHD induction generator in general. 
In order to explain the loss observed on the experiment, 
further investigation is needed. On the other hand, recently, 
much attention is paid to the flow field for NB 1 associated 
with MHD metallurgy.5 

In this paper we proceed with the investigation, compar- 
ing the flow under a traveling sine wave magnetic field with 
Hartmann flow6v7 which is a MHD flow under a uniform 
magnetic field between two parallel walls. The flow in our 
problem will have a more complicated structure than Hart- 
mann flow for the following three possible reasons. 

(i) Inertia has a contribution to the flow field, since the 
flow cannot be parallel flow by reason of the existence of a 
spatially periodic Lorentz force. 

(ii) The imposed magnetic field becomes weaker with 
distance from the wall and it not only has the transverse 
component but also the parallel component to the wall. 

(iii) The deformation of magnetic field (which is in- 
duced by the current in channel) has a contribution not only 
to the pressure but also to the velocity. Then, the interaction 
between flow field and magnetic field is more complicated. 
Investigation of the effects of (i)-( iii) will give us a funda- 

nating magnetic field. 
In order to classify this problem, we introduce five non- 

dimensional parameters Ha, N, K, A, and G. Parameters N, 
A, and K correspond to (i), (ii) and (iii), above, respective- 
ly. The main purpose of this paper is to make clear the effect 
of (i ) . In order to simplify the problem, we assume K -+ 0 and 
A -p M) . Under these assumptions, the effects of (ii) and (iii) 
are negligibly small. We show the solutions of flow field for 
various N in the- coordinate system moving with traveling 
magnetic field, where w&can assume the flow field and the 
magnetic field are steady. These solutions make clear the 
local force balance in the flow field and the structure of 
boundary layer. We apply the results of analyses to a MHD 
induction generator. It gives us the relation between N, re- 
presenting the effect of fluid inertia, and the characteristics 
of the generator. 

II. GOVERNING EQUATlONs 
A. Formulation of problem 

In this section we first consider a three-dimensional 
problem in the coordinate system moving with the traveling 
magnetic field. Then, we discuss the possible two-dimen- 
sional problem under some reasonable assumptions, and for- 
mulate it. : 

Figure 1 shows the configuration of the flow field and 
the magnetic field in a straight rectangular duct. In the fig- 
ure, u’ = (u’, u’, w’) denotes the flow velocity, 
B’ = (B ;,B ;,B ; ) the magnetic flux density, and il the 
wavelength of the sine wave magnetic field. The walls at 
y’ = + h are assumed to be insulators and the walls at 
z’ = & b to be perfect conductors. The two conductor walls 
have been shown to be equipotential surfaces and of the same 
electric potential (see Appendix A or Ref. 4). 

The boundary condition for the flow velocity is given by 

u’= -q7, u’=O, w’=O (1) 
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FIG. 1. Configuration of the flow and  magnet ic fields in astraight rectangu- 
lar duct. 

on the walls y’ = f h  and zr = + b, where U, ‘denotes the 
phase velocity of the traveling magnetic field. As the boun- 
dary condition for the magnetic field, we assume 

B; = B, sin(27m’/A) C2a) 

wherep,, qL., Go, and /ccc, are the density, viscosity, electric 
conductivity, and magnetic permeability ofthe fluid, respec- 
tively, all of which are assumed to be constants. 

The analysis is simplified by using the scalar and vector 
potentials @  and A’ = (O,OJ ; ) defined as 

B’ = vrtf --k V’XA’, (5) 
on the walls y’ = & h and 

B;=O W I 
on the walls z’ = -& b, even ifthe current in the d&t d&torts 
the’magnetic field. From above boundary conditions, we can 
assume that w’, B’, tlik electric field E’, and the current den- 
sity j’are steady and periodic with respect to x’. The pressure 
gradient is also assumed to be steady and periodic, though 
the pressure p’ contains an aperiodic part 
- PS (x’ -f- U,t ‘). Indeed this ave’rgge pressure gradient 
- 9, drives the fluid in o?q dir@ion. 

Iti order to fbrmulate thi two-dimensional problem, we 
need to assume 

w)=O, 3; -0, EE==_O, lz;=o, Gal 
and all the variables are independent of z’ in the flow region 
except for the boundary layers on the conductor walls. The 
conductor walls at z’ -= + b are of the same electric poten- 
tial (Appendix A) and,?Z: is also assumed to be,indcpendent 
of.9, then L 

E;=o. (3b)- 

where V’ ‘- (3 /3x’, 3 /3y’, 0). The potentials 4’ and A ; sa- 
tisfy the boundary conditions 

@  =B sin 2nX’ 
3y’ O R ’ ( > A[ -0 , 

on the walls y’ = rf h. The first term on the right-hand side 
of Eq. (51 shows the irrotational magnetic field imposed 
externally and the second term shows the rotational magne- 
tic field induced by the internal current. Substituting Eq. (5) 
into Eqs# (4e) and (4f), we obtain 

where we use the relation of Eq. (4dI. 

C7a) 

For the case of uniform magnetic field, Hunt and 
Stewartson” showed that the boundary layers on the con- 
ductor walls do not alfect the two-dimensional configuration 
in the other flow region if the Hartmann number and the 
aspect ratio b Jh are large enough. But it is difficult to verify Y’ 
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t#t+ i[/jTy-p- 81 

that the above situation is valid for the case of alternating 
t 

E L . . 

magnetic Geld, since the boundary layers on the conductor xl 
u’ 

wails have a three-dimensional structure. El’ - 
.“. Here, we assume that a’ two-dimensional Aow field is 
possible for the sine wave magnetic fieId, and we consider a 
two-dimensional flow field between two parallel insulator 
walls as shown in ?Yig. 2. Then, the governing equations can 
be written as follows: *-------- h  ..~ * 

2h 

i 

(W FIG. 2. Configuration of two-dimensional flow and  magnet ic fields between 
two paralIe1 insulator walls. 
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B. Normalization 
This problem has two characteristic lengths R /2r and h, 

which are independent of each other. On choosing the nondi- 
mensional parameters, we use /1/27r or h so that the para- 
meters can appropriately correspond to the construction of 
the flow and the magnetic fields. 

The fluid is driven on the fundamental force balance 
between the pressure gradient and the Lorentz force. Then 
we can take the characteristic velocity as 

u, z PXQ 29xa =-. 
o, (B,,/v~)~ uLB; 

We can estimate the viscous force at 

1 vtWh2 2rlL -z 
H; o&(B,/fl)Z= gLh2B; ’ 

(8) 

(9) 

compared with the Lorentz force, and the inertia force at 

1 -pL UFJ/(/z /2P) %PLu, 

z=cL U, (Bo/vT)2 
=- 

a;ilBi 
(10) 

compared with the Lorentz force. The nondimensional para- 
meters H, and N are referred to as average Hartmann 
number and interaction parameter, respectively. 

The major contributive terms in Ampere’s law, Eq. 
( 7b), are a ‘A :/ay” and a,,~= u’ a&/ay’. Then we can take 
the characteristic value of A : as 

A, =cLpLh =U,B,. (11) 
We can estimate they’ component of the induced magnetic 
field at 

Ks A,/@ 1237). 2n-a,~~ h 2 U, ._ - 
B, = R 

(12) 

compared with they’ component of the imposed magnetic 
field, and the x’ component of the imposed magnetic field at 

1 hB,/(/l/27~) 2n-h -5 
A B. =--- /I 

(13) 

compared with they’ component of the imposed magnetic 
field. 

A set of five nondimensional parameters H,, N, K, A, 
and 

GE Us/UC (14) 
specifies a unique dynamically similar solution of the flow 
field and the magnetic field. 

Now we write the problem in normalized nondimen- 
sional variables: 

x’ = (A. /2~-)x, y’ = hy, 
IL’ = C&u, v’ = (2?rh //I) U,v, p’ = (P,& /2r)p, 

(15) 
4’ = hB,#, A ; = A,A,. 

Eliminating& from Eqs. (4b) and (4~) by using Eq. (4d), 
and substituting Eq. ( 15) into Eqs. (4a)-(4c), (7a), and 
(7b), we obtain the following equations: 

dU+-0, 
& 

ax ay (1W 

(16b) 

+2u z-K%) 
[( ax 

(16~) 

1 a24+a24r0 -- 
A” ax2 ay" ' (16d) 

1 a54 a 2~ 
----f_+-.-...L= - u 

A2 ax* ay2 [( 

. (16e) 

The boundary conditions are represented as 

u= -G, v=O, (17a) 

*=sinx, 
at 

A =O L 3 (17b) 

on the walls y = f 1. The average pressure gradient is - 1 
in the nondimensiona form. Each nondimensional variable 
is expected to be the order of unity. 

III. ANALYSIS AND DISCUSSION 

In this section, we make clear the relation between the 
structure of the flow field and the interaction parameter N, 
which represents the effect of fluid inertia. In order to sim- 
plify the problem, we assume 

K-O and A-co. (18) 
Under these assumptions, Eq. (16d) reduces to 
a “4/ay’ = 0, and the solution can be easily found: 

4=ysinx. (19) 
Substituting Eqs. (18) and (19) into Eqs.~( 16), we obtain 

(20a) 

- udu+v& 1 
N ( ax ay > 

i a2u = -2k+---- 
Hz ay2 u( I- cos 2x), I2Ob) 
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0 =-LIE 
ay p 

(-2oc ) 

a 54 ----5= -usinx. 
ay” 

(20d) 

Equations (19) and (20b)-(20d) have the following three 
features, which come from the assumptions of Eqs. ( 18). (i) 
The p component of the imposed magnetic 6eld is constant 
across the channel. (ii > The x component of imposed magne- 
tic field has no contribution to the flow field. [iii) The in- 
duced magnetic field is determined by Eq. (2Od)) but it has 
no’ contribution to the flow f&ld.- 

A. Analytical solution for a large interaction parameter 
In this subsection, we analyze the case of 

M- 03 (21) 
analyticdly. The analysis is s&plified by usirig the stream- 
function $(x,y) defined as 

u2Y 
ay * 

t,= 2?& 
ax * (22) 

The continuity equation (20a). is satisfied automaticaIIy by 
using the streamfunction. We define the local Hartmann 
number as 

Hl (x) s’ZHa sin x. (23) 
Differentiating the momentum equat;on (2Ob) withy, 

we have 

where we havetaken account ofEqs. (20~) and (2I)-(23). 
Rewriting the boundary conditions (17a) by using the 
streamfunction, we have 

336 W.-.--Z 
JY 

-G, #== rt*uH 

at y = -i- 1, where the constant ‘-I/,,, denotes a half of the 
nondimensional ffow rate. We can find the solution as 

t,b= Yir,y - (Y,,, + G) ~~~~y~~~~~~ . (241 
I I , f 

Substituting Eq. 124) into the iirst equation of (22), we ab- 
tain 

u=~u,--c'%fr,-i-G) 
H!cosh Hry - sinh HI 
HI cash HI - sinh H, ’ !25) 

In order to determine Y,, we integrate the momentum 
equation ( 20b ) from x = - stox = ?randfromy = -- 1 to 
y = 1. Considering that the average pressure gradient is 
- 1, Eq. (20b) red&es to 

Substituting Eq. 125) into this equation, we obtain 

S”_ R [H: $nh H,/(H, cash H[ - sinhat) ]dx 
w”=l’-(l+G) 2rHf -l-S?, [H:sinhli,/lH,coshH,-sinhH,)‘~. 

The integration in the right-hand side has to be carried out 
numerically. ’ ’ 

Figure 3 shtiws typical‘ distributions of the velocity u in 
various cross sections over one wavelength of the channel. 
The local force balance in the flow field isthe same as that of 
Hartmann Aow, though the bpundary layer in. each. cross 
section is characterized by Hl (X) rather than Ha *‘Therefore, 
the thickness of the bouridary layer varies periodi&lly’with 
x; 15 the fegion of [H, (xl 1s 1, the bo’undary iayer extends 
over the channel crtiss section: Partictilarl$, Pdiseriille disti’i- 
bution appears in the cross section atlx = mrr (m is integer), 
where H1 = 0. 

Bi Numeric@ solutions fe,’ various interacti& 
parameters ’ 

In this subsection, we find the steady solutions numeri- 
tally as converged soi%ions of the corresponding initial val- 
ue problems for various N. In order to solve the initial value 
problem, we use the Marker-and-Cell (MAC) method9 
which Is improved for the case of A-r 00 (see Appendix B), 

If 5P is given at certain time P = &it, IL” + ’ at next time 
f I=. ( IZ + I ) Af can be obtaiaed by the following prodedure. 
First, the nondimensjonal flow rate \I!; is calculated by the 
relation 
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s 

I 
‘tf@,(X) = u dY% (27) 

a 
where we treat V, not as a ‘Gistant but as a function of x. 
Second, the velocity un is determined by the relation 

a -Y 
jJ= -~ 

1 
aq 

ax D u&2+-~ Y* .; ax (28) 
Third, we salve 

1 
u 

0 

FXG. 3. IXstributi&suPuin variouscrosssectionsoftheanalyticalsolution 
forN-~~,H;,=31.6,andG= 1. 
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3% -= 
dX’ 

(29) 

to obtainp”, substituting u’, u”, and Y: into the right-hand 
side. Although dY,/Jx is identically zero due to the contin- 
uity equation, it is retained in Eqs. (28) and (29) as a correc- 
tion term in order to prevent the accumulation of numerical 
errors. Fourth, the momentum equation 

s++ ( u2L+u& =--&-f-- > ap i a*u 
ay H: ay* 

- U(l-cos2x) (30) 
is integrated with t to obtain U” + ’ [the time t ’ has been nor- 
malized by the relation of t ’ = (2p,/a, B i )t 1. 

On the above procedure, we require the boundary con- 
ditions 

-+= 0, u =O, 
3 

at y = 0, 

U= -G, ~1.0, aty=l, (31) 

u(x + r*y) = u&Y), v(x + r,y) = W,y), 
p(x + r) =p(x) -n-3 

considering the symmetry and the periodicity. 
We use the Euler backward scheme 

11 n+l_ *” 

At 
au n+l 

dY > 

= dpn I 1 a*un+l ----..--u~+~(l-cos2x) (32) 
3x Hi i?y” 

to integrate Eq. (30)) where the second term of the left-hand 
side is linearized as 

1 -- 
‘- N 
We employ the 100 X 50 irregular rectangular staggered 

mesh system to evaluate U, v, and p at each mesh point (50 
mesh points along the line of x = const have the same value 
of p). All the spatial derivatives, except for the nonlinear 
terms, are approximated by the central difference. The non- 
linear terms are approximated by the third-order upwind 
scheme by Kawamura and Kuwahara. lo The finite-differ- 
ence equations by discretizing Eqs. (29) and (32) are solved 
by the Gauss-Seidel method. 

For our converged solutions, the error of‘the ccntinuity 
equation N,/dx is smaller than 5.7 x 10 - 4. 

Figures 4(a)-4(d) show typical distributions of u in 
various cross sections over one wavelength of the channel 
(we show the region - YT<X<VT and - 1 &v< 1, though we 

2 

1 
u 

0 

-1 

(a) 

2 

1 
ll 

0 

-1 
1 0 -1 

Y 

04 

2 

1 
u 

0 

-1 
1 0 -1 

Y 
(c) 

2 

I 
u 

0 

-1 
1 0 -1 

,Y 

(d) 

FIG. 4. Distributions of u in variouscross sections of the numerical solu- 
tions. (a) N= 5.03x10’, H, = 31.6, G= 1; (b) N= 1.59X10*, 
H, =31.6,G= 1; (c) N=1.59, H, -31.6,G= 1; (d) N= 1.59x10-: 
H, = 31.6, G= 1. 
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1 
u 

0 

-1 

A’ = 1.59 X IO-*, 5.05 x liO-*, 0.159, Q.503, 

1.59, 5.03, 15.9, 504 1:59x 102, 

5.03 x 102, x.59 x 105, x108, h,d3 IO” 5.03 x 

..)-(A 

-n 0 n 

x 

u 

N = 1.59 x L -- 

IO-", 0.159, 1.59, 15.9, 1.59 x IO*, 

I.59 x 103, 1.59 x 104, 1.59 x w, 1.59 x 106 

t r t 1 

.‘. 

-1 E--_.L 1 P 

-IT 0 TG 

x 

(Cf 

FE. 5. Distributions of u on the central plane p = o for various N. (a) 
~,=lO,G=l;(b)H,=31.6,G=l;(c)H,-l~~,G=~. 

solve the region O<x<n and O<y<l). Figures S(a)-S(c) 
show the distributions of u on the central plane y = 0 for 
various A? We can classify the solutions by Ninto three cate- 
gories. (i) In the case of N$Ez, the inertia effect is negligi- 
bly small throughout the flow field, then the flow field ap: 
proximately agrees with the flow which has been given 
analytically in the last subsection. (ii) In the case of 
1 X NSH;f, the inertia effect is remarkable in the region of 

ll 

" w 5.03 10-5, = x 1.59 x 10-2, 

5.03 x 10-t, 0.159, 1.89, 0.503, 
0.03, 15.9, 50.3, 1.59 x 102, 1.59 x i 

-1 0 ? 

Y 

Ib) 

2 

1 
u 

0 

Ilu F small N 

-1 
-1 0 1 

Y 
(4 
FIG. 6. Distributions of u in the cross section at x = tnlr ( m is integer) for 
various LT. (a) H. = 10, G= 1; (b) H, = 31.6, C= 1; (cf H, = 100, 
G== 1. 

[sin if SN - I”. (iii) In the case of N< 1, the velocity is si- 
milar to Hartmann flow. 

Figures G(a)-&(c) show the-distributions ofu in the 
cross section at x = ~GP (m is an integer) for various A? 
When we define the thickness of the boundary layer as 

dv 
” ’ 

(33) 
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S is obtained versus Ha- ‘N 1’3 as in Fig. 7. For category (i), 
6 is approximately equal to l/3, since the distribution of u 
agrees with Poiseuille flow in good approximation. For cate- 
gory (ii), inertia force has the same order as the Lorentz 
force in the region of [sin XI 5 N - “3. Then, the ratio of the 
inertia force to the viscous force in this region, that is to say, 
local Reynolds number is Hz N - 2’3, and S is the order of 
H; ‘N ‘13. For category (iii), S is approximately equal to 
l/H,, since the distribution of u is similar to Hartmann flow. 

C. Force balance for small interaction parameter 

The numerical solutions in the last subsection show that 
the velocity distribution for N< 1 is similar to that in Hart- 
mann flow, 

11 = 1 - ( 1 + G) (cash H,y/cosh Ha ), Wa) 
v = 0, (34b) 
p= -x, (34c) 

which can be obtained if the term of cos 2~ is dropped from 
Eq. (20b). Here, we try to obtain the solutions for 

N41, Ha34 G-1, (35) 
by adding some correction terms to Eqs. (34) and make 
clear the local force balance in the flow field and the struc- 
ture of boundary layers under the assumption of laminar 
flow (see Appendix C: stability of the flow for small N) . 

7. Core ffow 

In the core region, the second term on the right-hand 
side of Eq. (34a) is negligibly small. Substituting u = 1 into 
Eq. ( 2Ob), we find a periodic variation term 

cos 2x (36) 
in the Lorentz force terms. This is a peculiar term for the sine 
wave magnetic field. This force can be balanced by the pres- 
sure gradient alone. Then, by adding the correction term to 
Eq. (34~)) the pressure is obtained as 

p= -x++Isin2x. (37) 

2. Boundary layer 

We consider the boundary layer on the wall at y = 1. We 
introduce the stretched coordinate 

q=H,(l -Y> (38) 
to analyze the flow field in the boundary layer. Then, Eqs. 
(20a)-(20c) reduce to 

$-Ha&&, 
Jr] 

WW 

1 _ 
N 

a*u = -$+-- u( 1 - cos 2X), 
a* 

(3%) 

()=dp 
atl. (39c) 

In this layer, Eq. (3W approximate to 
u = 1 - ( 1 + G) exp( - 7). Substituting this into Eq. 
(39b), we can find a term 

0.1 
6 

0.01 

FIG. 7. The thickness of boundary layer S. A, the numerical solutions for 
H, = 10, G = 1; 0, the numerical solutions for H, = 3 1.6, G = 1; 0, the 
numerical solutions for Ho = 100, G = 1; - - -, Poiseuille flow; ----, Hart- 
mann flow for H, = 10,31.6, and 100. 

[l - (1 + G) exp( -n)] costi (40) 

in the Lorentz force terms. This is a peculiar term for the sine 
wave magnetic field. 

The force shown by the first term in brackets of Eq. (40) 
is the same as the force shown by Eq. (36); it can then be 
balanced by the pressure gradient. On the other hand, the 
force shown by the second term in brackets causes the alter- 
nation of velocity. We assume the solutions for the velocity 
in the form 

u=l-(l+G)exp(--)+Nu,(x,n), (41a) 
v = a, ‘NV, (x,a), (41b) 

where u, and u, are unit order periodic functions that satisfy 
f; U, dx = 0 and $A u, dx = 0. Substituting Eqs. (37) and 
(41) into Eqs. (39), and neglecting small-order terms, we 
obtain 

II-2 , au aU --0 
ax a?,l 

(424 

au 
[l-(l+G)exp(--y)ly-(l+G)exp(--q)u. 

=- (I+ G) exp( - 71)) cos 2x. (42b) 
If we require a boundary condition 

u, =o (43) 
on the wall 7 = 0, the solutions are obtained as 

u, (x,7) = [ (1 + G)/2G ] exp( - n) sin 2x, (4W 
u,(x,~)=[(l+G)/G][l-exp(-n)]cosZr. 

(44b) 
Both the second term of Eq. (41s) and U, contain the factor 
exp [ - H, ( 1 - y) 1, that is to say, the boundary layer has a 
thickness of the order H; ‘. The former is formed on the 
balance between viscous force and the component of Lorentz 
force independent of x. On the other hand, the latter is 
formed on the balance between inertia force and the periodic 
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component of Lorentz force. The latter type of boundary 
layer is peculiar to the alternating magnetic field. 

Equations (42) do not have enough degrees of freedom 
to satisfy all the boundary conditions. In fact, U, does not 
vanish on the wall. This fact suggests the existence of a sub- 
layer adjacent to the wall. Then, we stretch the coordinate 
further: 

~=N-‘aq=HaN--“2(1 -y). 

Equations (20a)-(20c) reduce to 
(45) 

aa Ha au --- 
ax 

- 0, 
LYl/*~- 

--- 

= akya*u 
ax 

-----a(1 -cos2x), 
N as2 

(46a) 

(46~) 

We assume the solutions for this sublayer in the form 

u= -GG+N’/*(~+G)~ 

i-N -(l+G)$++ sin 2x 

f- .@h (x,$g + +‘*l > 
(47a). 

1 
u=H,‘N3’2 ’ fcG 

( 
-5cos~+v,Cx,~) 

> 
+ *‘*T 

(47b) 

where the terms containing u6 or ub are the correction terms 
for the sublayer and the other terms are the Taylor expan- 
sion of Eqs. (41)‘ Here, r+, and tib are assumed to be unit 
order periodic functions, and uh must tend to zero as g- CO. 
Substituting Eqs. (37) and (47) into Eqs. (46), and neglect- 
ing small-order terms, we obtain 

(4W 

(48b) 

The boundary conditions are represented as 
[(l-l-Gj/2G]sin2x+Ic,=O, (49a) 
is, = 0, i (49b) 

on the wall g = 0. The correction uh is caused by u, through 
the condition (49a), and formed on the balance between 
inertia force and viscous force. 

The forms of Eqs. (48b) and (49a) agree with the mo- 
mentum equation and the boundary condition for the flow 
field on an oscillating plane wall, though the inerfla term of 
the momentum equation is time derivative for that prob- 
lem.” This fact means that U, is simiIar to the boundary 
layer on an oscillating plane wall dynamicalIy. 

The solutions for G > 0 are found as 

ub(x,51 = [ - (1 I- GV2G I exp( - C “‘c) 

Xsin(2x + G ““J-), ( 5Oa) 
~,(x,{)=[(l+G)/2G~‘~] [sin2x--exp(-G”2<) 

Xsin(2x f G “‘5) - cos 2x + exp( - GXnJ) 
: 

xcos(2x i- G”*~j]. (sob> 

The thickness of the sublayer is the order of N; ‘N*n,.‘Xf 
higher-order approximations of tl, v, and p are desired, the 
above procedure can be extended according to the method of 
composite asymptotic expansion. l2 

IV. APPLICATION TO AN INDUCTION GENERATOR 
The results of analysis in the channel are applied to an 

MHD induction generator that has an idealized stator 
shown in Fig. 8. The insulator wall is assumed to be thin 
enough and the winding of the stator is idealized into a cur- 
rent sheet, which has infinite conductivity in the z’ direction 
but no current in the x’ direction. The electromagnet iron 
placed outside above the current sheet is assumed to have 
infinite magnetic permeability and no current. 

We take a closed circuit shown in Fig. 8. Since the wall 
and thecurrent sheet are thin enough and the permeability of 
the electromagnet iron is infinity, Ampere’s law is reduced to 

where f& is the z’ component of the sheet current density in 
the current sheet. Since we can take the closed circuit arbi- 
trarily, we obtaia 

J’ _ (~:I,,=,-, 
Lf- 

PL 
--$g-+$),=hwo. (51) 

En the current sheet, the relation 

ES, 2; - (U’B;),,, h = U,@, sin(27rx’/il), (52) 
must be satisfied according to Ohm’s law, where Ed, is thez” 
component of the electric field in the current sheet. 

Current sheet 
Insulator wd 

Electromagnet iron 

u” 

FIG. 8. Configura6on of an idealized stator. 
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FIG. 9. A half of the nondimensional flow rate V!,,,. 0, the numerical solu- 
tions; - - -, the analytical solution for N- W; ----, the analytical solution for 
N<l. 

The electrical power output per unit volume P &, the 
Ohmic loss per unit volume P oh,,, , the friction loss per unit 
volume P&, and the mechanical power input per unit vo- 
lume P Lech are given by 

A 

s 
( - J&E&ldx’, 

J 

0 

(53) 

P’ 1 h 
mech =- s Ah o 

(u’ + v, >PxoA dy’, 

respectively. Using the above quantities, the conservation of 
energy is provided as 

P6ech =p:lec f p bhn-a + p irk. (54) 
When we can assume A-t CO and K-+0, Eqs. (53) re- 

duce to 

Pi,; = a, U; (Bo/fl)2G’IJ/,, 

P Ah,,, =uLU; ($)2$s’s”u2(l -cosZx)dxdy, 

(55) 

P ;A, = a, u; (T&$l,‘~($ydXdY> 

P’ much 2PP, +G), 

where we use the relations of Eqs. (15), (19), (20), (51), 
and (52). Though PAhm and PitiC are always positive, the 
signs of P& and Pkech can be changed with respect to G. 
The system works as a generator for G> 0, while it works as 
a pump for G< - Y,. 

We can define the generator efficiency vrR as 

Teff s p :,ec ip 6ech = Y,G/(Y,,, + G), 

and the power factor F as 
(56) 

F2z [S;: ( - J&Eb,W]2 K  =A4Y2 

(S: Jt’dx’)(S; E:;dx’) = 1 +K’h&Z, ’ 
(57) 

where the value of KA2 has not been prescribed under the 
assumption A-+ 03 and K-0. The power factor Fis required 
to be a large value in an actual induction generator, since the 
winding loss is greatly dependent on F. 

The generator characteristics P&, P,t,,-,, , qeff, and F 
are expressed by simple relations with Y,. Figure 9 shows 
YU vs Nby using the results of Sec. III. The nondimensional 
flow rate Yw slightly change with N, although the flow field 
remarkably changed with N. Then, we can conclude that the 
inertia effect to the generator characteristics is very small if 
A is sufficiently large and K is sufficiently small. 
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APPENDIX A: ELECTRIC POTENTIAL ON THE 
CONDUCTOR WALLS 

The walls at z’ = + b are perfect conductors, therefore 

IT +u’xB’=O 

must be satisfied according to Ohm’s law. Since 
u’ = ( - U,,O,O) and B’ = (B :,B$O) on the walls, the par- 
allel components of the electric field are 

E; =0, E; ==O. (AlI 
Therefore, the inner surface of each conductor wall is an 
equipotential surface of the electric field. 

We introduce a coordinate system shown by 
XN =x’+A/2, yM = -y’, z” = -2. (A21 

Considering the symmetry and the periodicity with x’, the 
velocity u” and the magnetic flux density B” on the x”y”z” 
coordinate system are shown as 

epd(x”,y”,z”) = e;*u’(x’,y’,z’), 

e;*B” (x”,y”,z”) = e;=B’(x’,y’,z’), (A3) 

where e; and e; are fundamental vectors. Therefore both the 
x’y’z’ and the x”y”z” coordinate systems are equivalent. This 
fact suggests that we cannot distinguish the wall at z’ = b 
(z” = - b) from the wall at z’ = - b (z” = b). Then, both 
conductor walls must have the same electric potential. 

APPENDIX B: IMPROVED MAC METHOD 
For finite A and K-O, we have following equations ac- 

cording to the MAC method: 
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By integrating Eq. (B4) withy under this assumption, we 
have 

(B7) 

S”-$ ( 
au au 

ux-tvay > 
1 d”u ;-s++ I-- ( ct A2 ax” 

+ aaL! - 
ay’ > 

-2 &LIuds6 
( > 

?!!fL 
ay A2 ax ay ’ 

!z+L udv+vau 
at N ( ax 3y > 

p -pap+ l 
( 

1 Pu+a’u -7- 
ay 22; A” ax2 $7 i 

+2 *2!?LLu a+ a+ ( dY A= 
- -9 

> a~ ax 

(Bl) 

CB2) 

U33) 

where 

U34) 

Although D is identically zero due to the continuity equa- 
tion, it is retained as a correction term in order to prevent the 
accumulation of numerical errors. 

If we take A- CO in the above equations, Bqs. (B2) and 
(B3) reduce to apraY = 0 and a”p/ay* = 0, respectively, 
and then it becomes impossible to solve the problem. 

In order to avoid this difficulty, we integrate Eq. (B3) 
from y = 0 to y = 1. Considering the boundary condition 
Eq. (51), we have 

1 a9 
+- 

wl 0~~ 
zqh2 ax3 At -%? 

035) 

where Y!, = .fhu dy. And then, taking A+ ~0 and 
qS=y~inx, Bqs. (Bl) and (B5) reduce to Bqs. (30) and 
(29 ), respectively. 

Since Eq. (B2) reduces -to ap/ay = 0 for A+ tx,, we 
have lost the relation which decides U. In this case, we can 
introduce an assumption as 

and Eq. (25 1. 

APPENDlX c: STABILITY OF THE FLOW FOR SMALL N 
In the case ofsmall Nand large H,, Keynolds number is 

so large that the assumption of laminar tlow in Sec. III C 
might be uncertain, though it is known that the existence of 
the magnetic field stabilizes the flow in general. 

On considering the linear stability problem for Ng 1, 
$fG > 1, and Kg 1, we may notice the following three factors 
for this problem: Ci) The undisturbed flow has exponential 
boundary layers; (ii) the undisturbed flow is not strictly a 
parallel flow: and (iii) the disturbances are directly affected 
by the magnetic field. 

The boundary layer on a flat plate with constant suction 
has similar factors to (i) and (ii). However, according to the 
analysis of Hughes and Reid,i3 the effect of (ii) is not do; 
minant for the stabifity of the flow. On the other hand, Hart- 
mann flow under a uniform transverse magnetic field has the 
same factors as (i) and (iii). But, according to theanalysis of 
Lock,*4 the effect of (iii) is not essential for that flow. The 
dominating factor for stabilizing the tlow field is (i) in both 
problems. 

If the effect of the factors (ii) and (iii) is neglected on 
the analogy of the results of Hughes and Reid and Lock, the 
critical Reynolds number may be a value as large as that in 
their cases. Then we suppose 

R, - 50 000, (Cl) 
where R = pL UgS/qt is the Reynolds number based on the 
thickness S of the boundary layer. In the present problem, 
since 6 = h /& , laminar flow may be possible for 

N> rr, A/50 000. CC21 
In Sec. III, we have assumed A -- r;n in order to simplify 

the problem. We do not know the minimum A for which the 
analysis in Sec. III C is still valid, but we anticipate the la- 
minar ffow can be realized if the condition (CZ) is satisfied. 
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