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The inertia effect peculiar to the MHD flow under a traveling sine wave transverse magnetic
field between two parallel walls is investigated analytically and numerically. Solutions for
steady flow of incompressible viscous fluid are obtained on the coordinate system moving with
the traveling magnetic field. The flow is classified by interaction parameter & into three
categories. (i) In the case of N3 H ] (H,: average Hartmann number), inertia effect is
negligibly small and the local force balance in each cross section is the same as that in the
Hartmann flow characterized by H, (H,: local Hartmann number which is spatially periodic).
(ii) In the case of | SN S H 2, appreciable inertia effect appears in the region where the local
magnetic field is smaller than N ~'*B, (B,: the amplitude of sine wave magnetic field). (iii)
In the case of N< 1, a new type boundary layer appears, where the periodic part of the Lorentz
force is balanced by inertia force. The inertia effect to the power output and the efficiency of an

MHD induction generator is very small in spite of the remarkable change in the flow field.

I. INTRODUCTION

Magnetohydrodynamic (MHD) flow under a traveling
alternating magnetic field, associated with a liquid metal in-
duction generator,” has been investigated since the 1960s.
Most of the analytical investigations concentrated on topics
of winding loss and end loss. In such analyses, they neglected
the viscosity of fluid and assumed a uniform velocity
throughout the channel. Wang and Dudzinsky,” comparing
their experimental result with such an analysis, suggested
that low efficiency in the experiment may be attributed to the
high friction loss. In a previous paper,* we analyzed the two-
dimensional flow field for N~1 considering fluid friction,
where N is interaction parameter. But it was shown that
friction loss is small order of H ;' compared with power
input, where H, is average Hartmann number and it is much
larger than unity in a MHD induction generator in general.
In order to explain the loss observed on the experiment,
further investigation is needed. On the other hand, recently,
much attention is paid to the flow field for N3 1 associated
with MHD metallurgy.’

In this paper we proceed with the investigation, compar-
ing the flow under a traveling sine wave magnetic field with
Hartmann flow®’ which is a MHD flow under a uniform
magnetic field between two parallel walls. The flow in our
problem will have a more complicated structure than Hart-
mann flow for the following three possible reasons.

(i) Inertia has a contribution to the flow field, since the
flow cannot be parallel flow by reason of the existence of a
spatially periodic Lorentz force.

(ii) The imposed magnetic field becomes weaker with
distance from the wall and it not only has the transverse
component but also the parallel component to the wall.

(iii) The deformation of magnetic field (which is in-
duced by the current in channel) has a contribution not only
to the pressure but also to the velocity. Then, the interaction
between flow field and magnetic field is more complicated.
Investigation of the effects of (i)-(iii) will give us a funda-
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mental knowledge of MHD flow in the presence of an alter-
nating magnetic field.

In order to classify this problem, we introduce five non-
dimensional parameters H,, N, K, A, and G. Parameters N,
A, and K correspond to (i), (ii) and (iii), above, respective-
ly. The main purpose of this paper is to make clear the effect
of (i). In order to simplify the problem, we assume K — 0 and
A — . Under these assumptions, the effects of (ii) and (iii)
are negligibly small. We show the solutions of flow field for
various A in the coordinate system moving with traveling
magnetic field, where we can assume the flow field and the
magnetic field are steady. These solutions make clear the
local force balance in the flow field and the structure of
boundary layer. We apply the results of analyses to a MHD
induction generator. It gives us the relation between N, re-
presenting the effect of fluid inertia, and the characteristics
of the generator.

Il. GOVERNING EQUATIONé
A. Formulation of problem

In this section we first consider a three-dimensional
problem in the coordinate system moving with the traveling
magnetic field. Then, we discuss the possible two-dimen-
sional problem under some reasonable assumptions, and for-
mulateit.... . -

Figure 1 shows the configuration of the flow field and
the magnetic field in a straight rectangular duct. In the fig-
ure, o = (u', v, w') denotes the flow velocity,
B' = (B,B,,B;) the magnetic flux density, and A the
wavelength of the sine wave magnetic field. The walls at
y' = 4+ h are assumed to be insulators and the walls at
z' == b to be perfect conductors. The two conductor walls
have been shown to be equipotential surfaces and of the same
electric potential (see Appendix A or Ref. 4).

The boundary condition for the flow velocity is given by

uw=-U, v=0, w=0 n
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FIG. 1. Configuration of the flow and magnetic fields in 2 straight rectangu-
lar duet.

on the walls y' = + #and 2’ = + b, where U, 'denotes the
phase velocity of the traveling magnetic field. As the boun-
dary condition for the magnetic field, we assume

B! = B, sin(2wx'/A) (2a)
onthewalls Y = + A and

B!=0 (2b)
onthewallsz = -+ b, even if the current m the duict distorts

the magnetic field. From above boundary conditions, we can
assume that u', B, the electric field E', and the current den-
sity j’ are steady and periodic with respect to x’. The pressure
gradient is also assumed to be steady and periodic, though
the pressure p' containg an  aperiodic  part
— Py (x' + Ust"). Indeed this average pressure gradient
— P, drives the fluid in one direction.
Th order to formulate the two-dimensional problem, we
need to assume

w =0, B,=0, E,=0, E,=0, (3a)

and all the variables are independent of 2 in the flow region
except for the boundary layers on the conductor walls. The
conductor walls at z’ = 4 & are of the same eleciric poten-
tial (Appendix A) and E [ is also assumed to be mdependent
of Z', then

E.;=0. (3b)

For the case of uniform magnetic field, Hunt and
Stewartson® showed that the boundary layers on the con-
ductor walls do not affect the two-dimensional configuration
in the other flow region if the Hartmann number and the
aspect ratio b /k are large enough. But it is difficult to verify
that the above sitination is valid for the case of alternating
magnetic field, since the boundary layers on the conductor
walls have a three-dimensiomal structure.

. Here, we assume that a’ two-dimensional flow field is
possible for the sine wave magnetic field, and we consider a
two-dimensional flow field between two parallel insulator
walls as shown in Fig. 2. Then, the governing equations can
be written as follows:

W A _

== (), (4a)
ax'
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Cox Hx”' ay'z
—I B, (4b)
A :90') ap’ ( % azu’)
U o U o= = = gy | e e
P L( a " a) T Ty T et T g
L= {¥’B, —vBR}), (4d)
B, 3B, )
& ¢
aB; 53 :

G

wherep, , n,, o, and y, are the density, viscosity, electric
conductivity, and magnetic permeability of the fluid, respec-
tively, all of which are assumed to be constants.

The analysis is simplified by using the scalar and vector
potentials ¢’ and A’ = (0,0,4 !} defined as

B =V -+ VxA, (5)
where V' = (d/dx", 3 /dy', 0). The potentials ¢' and 4 | sa-
tisfy the boundary conditions

ag’ . (Zﬂx‘)

— = By sinf —=], A =0, (6)

X Bo A ~e )
on the walls p = -+ A. The first term on the right-hand side

of Eq. (5) shows the irrotational magnetic field imposed
externally and the second term shows the rotational magne-
tic field induced by the internal current. Substituting Eq. (5)
into Eqgs. (4e) and (4f), we obtain

2¢I + 2¢I

gy (7e)
a,‘4;+az,4;:_a [u,(@i_a,z;)
Ix? 't rhe dy I
oAl
RGN

~ where we use the relation of Eq. (4d).

?& -

FIG. 2. Configuration of two-dimensional flow and magnetic fields between
two parallel insulator walls.
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B. Normalization

This problem has two characteristiclengths A /27and A,
which areindependent of each other. On choosing the nondi-
mensional parameters, we use A /27 or £ so that the para-
meters can appropriately correspond to the construction of
the flow and the magnetic fields.

The fluid is driven on the fundamental force balance
between the pressure gradient and the Lorentz force. Then
we can take the characteristic velocity as

Py 2P,

U,= = — 2
* T 0L (Bo/VD)?  oLB: @

‘We can estimate the viscous force at

1 _ n.Up/h? _
H2 o.U,(B,/V2)* o, h?B’

compared with the Lorentz force, and the inertia force at

)]

1_p U/(A/2m)  4mp, T, 10)
N 0, Uy(Bo/v2)? o, AB} e

compared with the Lorentz force. The nondimensional para-
meters A, and N are referred to as average Hartmann
number and interaction parameter, respectively.

The major contributive terms in Ampére’s law, Eq.
(7b),are 3?4 /3y and o u, u ' 8¢4'/3y". Then we can take
the characteristic value of 4/ as

Ao=0 1, h*U,B,. (11)

We can estimate the ' component of the induced magnetic
field at

Ao/ (A2m)- 2mo p hUp -
B, - A

K= (12)

compared with the 3’ component of the imposed magnetic
field, and the x' component of the imposed magnetic field at

1 ABy/(A/2m) 2&711

AT B A
compared with the y' component of the 1mposed magnetic
field.

A set of five nondimensional parameters H,, N, K, A,
and

(13)

G=U, /U, (14)
specifies a unique dynamically similar solution of the flow
field and the magnetic field.

Now we write the problem in normalized nondimen-
sional variables:

=(A/2m)x, ¥y =hy,

V= Qwh /A)Uyv, p' = (Pl /27)p,

(15)

u' = Uyu,

@' =hByp, A]=A,A,.
Eliminating j, from Eqs. (4b) and (4c) by using Eq. (4d),
and substituting Eq. (15) into Egs. (4a)—(4c), (7a), and
(7b), we obtain the following equations:
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du

Z -, (16a)
dx dy
2 2
_I_(u_él+ au> _dp 1(1’8u+8u)
N\ ox dy dx A ox* 9
dy . Ox
vt )]
A? 6x ady
3¢ 94, )
X — K 16b
(3}) ax (165)
1 v gg)__ig_ 1 (162 8v)
NAl(u c9x+vz?y dy +H§A2 A?* 9x? s
+ 2[u (@__ Kﬁ‘i)
dy Ix
(L3 +K<9Az)]
A? dx dy
1 ¢ a4 ) A
—_— T L K—=}, 16
X(A2 ax+ S (16¢c)
1 3% 9%
A* x> & (16d)
2 2
LA A [ (3 efi)
A* Ox? ay* dy dx
1 ¢ )]
— K 16
U(A“ Ix ' dy (16e)
The boundary conditions are represented as
u= -G, v=0, (172)
éﬁzsinx, A, =0, (17b)
dy

on the walls y = - 1. The average pressure gradientis — 1
in the nondimensional form. Each nondimensional variable
is expected to be the order of unity.

11l. ANALYSIS AND DISCUSSION

In this section, we make clear the relation between the
structure of the flow field and the interaction parameter ¥,
which represents the effect of fluid inertia. In order to sim-
plify the problem, we assume

K—-0 and A- . (18)
Under these assumptions, Eq. (16d) reduces to

d%¢/3y* = 0, and the solution can be easily found:
¢ =ysin x. (19)

Substituting Egs. (18) and (19) into Eqgs. (16), we obtain
du

Ec_ :9; =0, (20a)
i (u _a_u + v a_u)
N\ dx dy
2
= —%’i— lef O;yi‘ — u(1 — cos 2x), (20b)
Kazuyuki Ueno 3109
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= — 9 . _ : (20c)
334,

3y’
Equations (19) and (20b)—(20d) have the following three
features, which come from the assumptions of Eqs. (18). (i)
The y component of the imposed magnetic field is constant
across the channel. (i) The x component of imposed magne-
tic field has no contribution to the flow field. (iii) The in-

duced magnetic field is determined by Eq. (ZOd) but it has
na coniribution to the flow field.-

= — ysinx.

(204d)

A, Analytical solution for a large mteraction parameter
In this subsection, we analyze the case of '
(21)

analytically. The analysis is sirﬁpliﬁed by using the stream-
function ¥(x,p) defined as

N-wo

P .
j= o ¥
v o (22)
The continuity equation (20a) is satisfied automatically by
using the streamfunction. We define the local Hartmann
number as

H (xy=vVIH, sin x. (23)
Differentiating the momentum equatibn {20b) with y,

we have
1

W, =1—(1+&)

" . [H?}sinh H,/(H, cosh H, — sinh H;) Jdx

ﬂ — H 2 5_‘231' = 0,
a*
where we have taken account of Egs. (20¢) and (21)-(23).
Rewriting the boundary conditions (17a) by using the
streamfunction, we have

"a—‘ﬁ’ = - G: Z/l = + \Pw:

ay ) o
at p = + 1, where the constant ¥, denotes a half of the
nondimensional flow rate. We can find the solution as

sintt H;y — y sinh H,

=W, y— (¥, +G , - .
4 7= R+ )H;QoshH,~sth,

(24)

Substituting Eq. (24) into the first equation of (22), we ob-
tain

cosh H,y — sinh H,
H, cosh H, —sinh H,

In order to determine ¥, we integrate the momentum
equation {20b) fromx = — wtox = wand from y= - lta
y = 1. Considering that the average pressure gradient is

— 1, Eq. (20b) redices to-

L J"’ (c”u) )
— | (Z) ax-w,
Zﬂ-Hi - ay p=1 * v

Substituting Eq (25) into this equation, we obtain

u=\W, — (¥, +G)

(25)

0=1+

(26)

The mtegratlon in the rlght-hand suﬂe has to be carned out
numerically. : -

Figure 3 shiows typical d1str1butlons of the velocity u in
various cross sections over one wavelength of the channel.
The local force balance in the flow field is the same as that of
Hartmann flow, though the boundary layer in_each cross
section is characterized by H, (x) rather than H, . Therefore,
the thickness of the boundary layer varies periodically with
x. In the region of {H ; (x)] %1, the boundary layer extends

over the channel cross section: Particularly, Poiseuille distri- -

bution appears in the cross section at’x = mar (# is integer),
where H, = 0.

B Numerical solutions for vanous mteractlon
parameters

In this subsection, we find the steady solutions numeri-
cally as converged soliitions of the corresponding initial val-
ue problems for various &. In order to solve the initial value
problem, we use the Marker-and-Cell (MAC) method®
which is improved for the case of A— « (see Appendix B).

If #" is given at certain time ¢ = nAt, u” * ! at next time

= (n + 1) At can be obtained by the following procedure.
Fu'st the nondimensional flow rate W2 is calculated by the
relation

3110 Phys. Fluids A, Vol. 8, No. 12, December 1991

2TH?E + [H? siph H,/(H, cosh H, — sinh H,) ldx ’

|
i -
¥, (x) =f udy, 2%
. Je

where we treat ¥,, not as a constant but as a function of x.
Second, the velocity v” is determined by the relation

%[

Thlrd we solve

(28)

v+—~y

2 =
1 Xa
u L
O L
.-'] I
1 0

FIG. 3. Distributiéns of u in various cross sections of the analytical solution
for N o, H, = 31.6,and G= 1.
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2 1
0

1 ()
H2\3xdy/y=1

—m[\P (1 —cos2x)] +—

1 av,
Ar dx

(29)
to obtain p”, substltutmg u", v", and ¥}, into the right-hand
side. Although d¥,,/0x is 1dentlcally zero due to the contin-
uity equation, it is retained in Egs. (28) and (29) as a correc-
tion term in order to prevent the accumulation of numerlcal
errors. Fourth, the momentum equation

du 1 ( 6u+ c?u) dp 1 3%
Ix ay ox  H! 9y
—u(l—cos2x) - (30)
isintegrated with ¢ to obtain #” * ' [the time ¢’ has been nor-
malized by the relation of t' = (2p, /0, B§)t].
On the above procedure, we require the boundary con-
ditions

gt N

9 _o, »=0, aty=0,

dy

u= —G, v=0, aty=1, 31
u(x + my) = u(xy), vix+my) =v(xy),

plx + m) =p(x) —m,

considering the symmetry and the periodicity.
We use the Euler backward scheme

wtl—yr 1 ( . Out! ,,c?u”“)
= v
At +N “ dx + ady
n 2,,n+1
_op 1 —-a—u~—~—--—-u"+1(1——0082x) (32)
dx HI ‘

tointegrate Eq. (30), where the second term of the left-hand
side is linearized as

+ 1 +1
_.l_(un+1 au" + ! du" )

N Ix ay /
n+1 n--1
,::J— (u,, du o Ju ) .
N Ix dy

We employ the 100X 50 irregular rectangular staggered
mesh system to evaluate u, v, and p at each mesh point (50
mesh points along the line of x = const have the same value
of p). All the spatial derivatives, except for the nonlinear
terms, are approximated by the central difference. The non-
linear terms are approximated by the third-order upwind
scheme by Kawamura and Kuwahara.'® The finite-differ-
ence equations by discretizing Eqgs. (29) and (32) are solved
by the Gauss—Seidel method. '

For our conveérged solutions, the error of the contmulty
equation d¥,,/3x is smaller than 5.7 10~

Figures 4(a)—4(d) show typical dlstnbutlons of u in
various cross sections over one wavelength of the channel
(we show the region — 7<x<7and — 1<y<1, though we

3111 Phys. Fluids A, Vol. 3, No. 12, December 1991

(d)

FIG. 4. Distributions of « in variouscross sections of the numerical solu-
tions. (a) N=3503x10°, H, =316 G=1 (b) N=1 59%10%
H,=316G=1(c)N=159,H, =316,G=1; (d)N——159><10‘
H,=316G=1.
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small N
u 1. -
N =503 x 1073, 1.59 x 1072, 5.03 x 10-2,
Or 0.159, 0.503, 1.59, 5.03, 15.9, 50.,
159 x 102, 1.58 x 108 B
-1 i $ i i 1L i 1 1 1
~TC O T
X
{a}
2 - T T T T T
small N
u o 7
O b N=150x10"% 503x 1072, 0.150, 0.503,
1.59, 5.08, 159, 50.3, 159 x 109,
5.08 x 10%, 1,50 x 10%, 5.03% 10%, 5,03 x 10* |
-1 i 3 L g 3 I3 i 1 1.
-t 0 T
X
{b)
’ 2 T ¥ ¥ T i 3 T T T
large &

small N
u L : N
N =159 x 1077, 0.159, 1.50, 15.9, L.50 x 102,

159 x 10%, 158 x L0, 1.50 x 10%, 1.50 x 10°

—‘1 i ¢ I 3 . ~ 1 L 1 1. 1
-TC o T

X
{c)

FIG. 5. Dlstributxons of u on the central plane y = 0 for various . (a)
H,=10,G=1;(b) H, =316, G=1; (¢) H, = 100, G= 1.

solve the region O<x<7 and 0<y<1). Figures 5(a)-5(c)
show the distributions of # on the central plane y = 0 for
various . We can classify the solutions by Ninto three cate-
gories. (i) In the case of N> H ;, the inertia effect is negligi-
bly small throughout the flow field, then the flow field ap-
proximately agrees with the flow which has been given
analytically in the last subsection. (ii) In the case of
1S NS H], the inertia effect is remarkable in the region of

3112 Phys. Fluids A, Vol. 3, No. 12, Decembser 1991

T T
2 large N
u L
O / N =503 % 10~%, 150 % 192,
5.03 x 10~2, 0.159, 0.508, 1.59,

5.03, 15.9, 50.3, 159 x 102, 1.59 * 1G% |-

0.159, 0.503, 1.59, 5.03, |
159, 50.3, 1.5 x 107, 5.03 x 10%,
1.59 5 10%, 5.03 % 10%, 5.03 x 10%

-1 4 . :

i

Ot

N = L5§ x 10~%, 0.159, 1.59,
15.9, 1.5 x 107, 1.59'x 10%,

i 1 1

0 1
) 4

{c)
FIG. 6. Distributions of # in the cross section at x = mw (m is integer) for

various N. (a) H, =10, G=1; (b} H,=31.6, G=1; (¢} H, = 100,
Ga=]..

[sin x| SN ~ /%, (iii) In the case of N<1, the velocity is si-
milar to Hartmann flow.

~ Figures 6(a)-6(c) show the distributions of  in the
cross section at x = mm {m is an integer) for various .
When we define the thickness of the boundary layer as

S_J ( G+ u(mmy))dv

(33)
G + u(mm,0)

Kezuyuki Ueno 3112
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d is obtained versus H [ 'N''/? as in Fig. 7. For category (i),
& is approximately equal to 1/3, since the distribution of u
agrees with Poiseuille flow in good approximation. For cate-
gory (ii), inertia force has the same order as the Lorentz
force in the region of [sin x| SN ~ '/, Then, the ratio of the
inertia force to the viscous force in this region, that is to say,
local Reynolds number is H2N %73, and § is the order of
H 7 'N Y3 For category (iii), 8 is approximately equal to
1/H,, since the distribution of # is similar to Hartmann flow.

C. Force balance for small interaction parameter

The numerical solutions in the last subsection show that
the velocity distribution for N <1 is similar to that in Hart-
mann flow,

u=1~— (14 G) (cosh H,y/cosh H,), (34a)
p=0, (34b)
p= —2X, (34c)

which can be obtained if the term of cos 2x is dropped from
Eq. (20b). Here, we try to obtain the solutions for

N«l, H,»1, G~1, (35)

by adding some correction terms to Egs. (34) and make
clear the local force balance in the flow field and the struc-
ture of boundary layers under the assumption of laminar
flow (see Appendix C: stability of the flow for small NV).

1. Core flow

In the core region, the second term on the right-hand
side of Eq. (34a) is negligibly small. Substituting # = 1 into
Eq. (20b), we find a periodic variation term

cos 2x (36)

in the Lorentz force terms. This is a peculiar term for the sine
wave magnetic field. This force can be balanced by the pres-
sure gradient alone. Then, by adding the correction term to
Eq. (34c), the pressure is obtained as

p= — X+ }sin 2x. (37

2. Boundary layer

We consider the boundary layer on the wallaty = 1. We
introduce the stretched coordinate

n=H,(1—y) (38)
to analyze the flow field in the boundary layer. Then, Eqgs.
(20a)—-(20c) reduce to

du av

— —H,—=0, 39

ox an S

1 ( du au) dp  d%u

—|4u——-H,v— )= ——=—+ ———u(1l —cos 2x),

v \“ an ax Ty MU T

(39b)

Ip

0=—" 39
an (39¢)

In this layer, Eq. (34a) approximate to

u=1-=(14+G)exp(—17).
(39b), we can find a term

Substituting this into Eaq.

3113 Phys. Fluids A, Vol. 3, No. 12, December 1991

0 frmmmmmmv o

0.01 EIJ'"

0.01 0l
HINY?

—

FIG. 7. The thickness of boundary layer 8. /\, the numerical solutions for
H, = 10, G = 1; O, the numerical solutions for H, = 31.6, G=1; [, the
numerical solutions for H, = 100, G = 1; — - —, Poiseuille flow; ----, Hart-
mann flow for H, = 10, 31.6, and 100.

[1—(1+ G)exp(—mn)]cos2x (40)

in the Lorentz force terms. This is a peculiar term for the sine
wave magnetic field.

The force shown by the first term in brackets of Eq. (40)
is the same as the force shown by Eq. (36); it can then be
balanced by the pressure gradient. On the other hand, the
force shown by the second term in brackets causes the alter-
nation of velocity. We assume the solutions for the velocity
in the form

u=1-— (14 G)exp(—17)+ Nu,(x,7),
v=H ;] 'Nv, (x,7), ‘
where 1, and v, are unit order periodic functions that satisfy
flu, dx =0 and fv, dx = 0. Substituting Egs. (37) and
(41) into Egs. (39), and neglecting small-order terms, we
obtain ‘ .

du, v,

Ix n

(41a)
(41b)

=0, (42a)

a
[1—(14G) exp(—m] %— (1 + &) exp( — ),

= — (1 4+ G) exp( — %) cos 2x. (42b)
If we require a boundary condition

v, =0 : (43)
on the wall 57 = 0, the solutions are obtained as

u, (x,7) = [(1 + G)/2G | exp( — ) sin 2x,  (44a)

v, (%) = [(1+G)/G][1—exp( —7n)] cos 2x.
(44b)

Both the second term of Eq. (41a) and u, contain the factor
exp[ —H,(1—y) ], that is to say, the boundary layer has a
thickness of the order H [ '. The former is formed on the
balance between viscous force and the component of Lorentz
force independent of x. On the other hand, the latter is
formed on the balance between inertia force and the periodic
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component of Lorentz force. The latter type of boundary
layer is peculiar to the alternating magnetic field.

3. Sublayer

Equations (42) do not have enough degrees of freedom
to satisfy all the boundary conditions. In fact, #, does not
vanish on the wall. This fact suggests the existence of a sub-
layer adjacent to the wall. Then, we stretch the coordinate
further:

§=N""p=H,N"'*(1-p). (45)
Equations (20a)—(20c) reduce to
Gu Hi v (462)
& NV
Ly e, 20)
N\ 3 NV 3
dp 1 3%
e S S — (1 — cos 2x), 46b
ax TNt ( ) (46b)
dp
0=—=. 46¢
3 (46¢)
We assume the solutions for this sublayer in the form
u= —G+ N1+ G)¢
Z
+N(— (1+6) % IJGG sin 2x.
+u, (x,§)) " (47a)
v=H} ‘N""z( 1 +G §cost+v,,(x,§))
‘ (47b)

where the terms containing #, or v, are the correction terms
for:the sublayer and the other terms are the Taylor expan-
sion of Eqs. (41). Here, u; and v, are dassumed to be unit

order periodic functions, and #, must tend to zeroas £ — 0.

Substituting Egs. (37) and (47) into Eqs. (46), and neglect-
ing small-order terms, we obtain

3 :
by 90 o, (482)

dx ac
a d?

e Rl A2y (48b)
ax ac*

The boundary conditions are represented as
(14 G)/2G ] sin 2x + u, =0, (492)
Ub = 0, (4‘9b)

on the wall § = 0. The correction u,, is caused by #, through
the condition (49a), and formed on the balance between
inertia force and viscous force.

The forms of Eqs. (48b) and (49a) agree with the mo-
mentum equation and the boundary condition for the flow
field on an oscillating plane wall, though the inertia term of
the momentum equation is time derivative for that prob-
lem."! This fact means that #, is similar to the boundary
layer on an oscillatirig plane wall dynamlcally

The solutions for G'> O are found as
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u, (%,8) = [ — (1 + GYW2G ] exp( — G V)
Xsin{2x 4+ G4, (502)
vy (x:,6) = [ (14 G)/2G ] [sin 2x — exp( — G V%)
xsin(2x + G 2) — cos 2x + exp( — "2")
Xceos(2x + GV 1. (SOb):

The thickness of the sublayer is the order of H [ ‘N V2 If
higher-order approximations of u, v, and p are desired, the
above procedure can be extended according to the method of
composite asymptotic expansion. '

IV. APPLICATION TO AN INDUCTION GENERATOR

The resulis of analysis in the channel are applied to an
MHD induction generator that has an idealized stator
shown in Fig. 8. The insulator wall is assumed to be thin
enough and the winding of the stator is idealized into a cur-
rent sheet, which has infinite conductivity in the z’ direction
but no current in the x’ direction. The electromagnet iron
placed outside above the current sheet is assumed to have
infinite magnetic permeability and no current.

We take a closed circuit shown in Fig. 8. Since the wall
and the current sheet are thin enough and the permeability of
the electromagnet iron is infinity, Ampére’s law is reduced to -

. A’
/)f)—-ds w(fidx’) ufJ;dx’,
KL Fe=b—0

where J  is the 2" component of the sheet current density in
the current sheet. Since we can take the closed circnit arbx-
trarily, we obtain

J;=-——(B*)f=k‘“= ! (‘% ) . (51)
y ax’ AV Sy—n-oe
In the current sheet_, the relatlcm
El == — (#'B}), ., = UB,sin(2mx'/1), (52)

must be satisfied according to OChm’s law, where E /, is the 2’
component of the electric field in the current sheet.

Electromagnet iron

Current sheet

3 TInsulator wall

RNERNNINNNN NS

Fluid

FIG. 8. Configuration of an idealized stator.
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FIG. 9. A half of the nondimensional flow rate ¥,,,. O. the numerical solu-
tions; ~ - —, the analytical solutlon for N- oo} ----, the analytical solution for
N<«L.

The electrical power output per unit volume P .., the

Ohmic loss per unit volume P, the friction loss per unit
volume P ¢;., and the mechanical power input per unit vo-
lume P/ ., are given by

P = f (—JLEL)dx,

e
f“°=/1hff "L[( )

(31)’ )Z]dx’ dy ’

ech = 1 f (' + U)P,Ady,
Ah Jo

(53)

v 811’)2
(3x + ay’

respectively. Using the above quantities, the conservation of
energy is provided as

P' ech ~“I)elec +P6hm '+Pf"ric' (54)

When we can assume A — o and K—0, Egs. (53) re-
duce to

Pl =0, UL (By/V2)*GY,,,

) B 2 1 T .
Powm =0, U3 (—7%) %f J- u*(1 — cos 2x)dx dy,
0 Jo

‘ (55)
. B} 1 YT Ou\?
Pie =01Ug (’E) T fo L (5;) dx dy,

2 B, 2
Pr'r\ech=aLU0 T (\yw+G)?

v2

where we use the relations of Eqs. (15), (19), (20), (51),
and (52). Though P/, and P{, are always positive, the
signs of P/, and P/ .., can be changed with respect to G.
The system works as a generator for G> 0, while it works as
apump for G« — ¥,,. ,

We can define the generator efficiency 7.4 as -
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neﬂ'-Pelec/Pr’nech = \wa/(lI/m + G), (56)
and the power factor F as
FZE [.fg ( '"Jr’:sEés)dx’]z _ K2A4\I]fu
(S2J2dx'Y(SEE2dx) 14+ K*A92°
' (57)

where the value of KA? has not been prescribed under the
assumption A — e and K— 0. The power factor F'is required
to be alarge value in an actual induction generator, since the
winding loss is greatly dependent on F.

The generator characteristics Pl.c, Plicchs Merrs and F
are expressed by simple relations with ¥,,. Figure 9 shows
¥, vs N by using the results of Sec. II1. The nondimensional
flow rate ¥, slightly change with A, although the flow field
remarkably changed with N. Then, we can conclude that the
inertia effect to the generator characteristics is very small if
A is sufficiently large and K is sufficiently small.
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APPENDIX A: ELECTRIC POTENTIAL ON THE
CONDUCTOR WALLS

The walls at 2’ = 4 b are perfect conductors, therefore

E +u'XxB =0
must be satisfied according to Ohm’s law. Since
v = (— U,0,0)and B' = (B,B},0) on the walls, the par-
allel components of the electric field are

E,=0, E,=0. (A1)

Therefore, the inner surface of each conductor wall is an
equipotential surface of the electric field.
We introduce a coordinate system shown by

X"=x'4+A/72, y'=—y, z'= 2. (A2)
Considering the symmetry and the periodicity with x’, the

velocity u” and the magnetic flux density B” on the x"y"z"
coordinate system are shown as
u” (x",y",z") = epu' (x',y',2),

e;"B” (.x",y”,z”) — e;'B’(x’,y’,Z’), (A3)
where e; and e}’ are fundamental vectors. Therefore both the
x'y'z' and the x"y"z" coordinate systems are equivalent. This
fact suggests that we cannot distinguish the wall at 2’ = b
(z" = — b) fromthewallatz’ = — b (z” = b). Then, both
conductor walls must have the same electric potential.

APPENDIX B: IMPROVED MAC METHOD

For finite'A and K0, we have following equations ac-
cording to the MAC method:
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ar

2 2
=——‘3—p+ 1 (—I;a’f+a'f)
dx  HXI\A* dx*  &* /-

N 1 ¢) £
—2y B1
) ( c?y ax) dy’ (BL)
do ( 6‘v )
3J+N'
: ay Hz Az axl ayz
o6 1 a¢) £y
] TR A S 2 W A B2
+ (" o A% ax (B2)
d* , ., 9%
+ A 2L
It ay*
S N T WOE IR XY AT T
N\ s TN\ Ty
b2 oful L, 3y 2)
9% dy A2 ax) ay
+£[z(ué£__1_v,_5'£)_§£]
dy dy  A* Ox) dx
](1 3D BZD) D
w1 2., B3
HZN\A* gx* * W At (B3)
where
5”+5“’ (B4)
dx.

Although D is tdentically zero due to the continuity equa-
tion, it is retained as a correction term in order to prevent the
accumulation of numerical errors.

If we take A — « in the above equations, Eqs (B2) and
(B3) reduce to dp/dy =0 and J%p/dy* = 0, respectively,
and then it becomes impossible to solve the problem.

In order to avoid this difficulty, we integrate Bq. (B3)
from y =0 to y = 1. Considering the boundary condition
Eq. (31), we have -

g;i X pay
1
ek (e rg)e
2
+ Z(Bigy)ym
L T
HleA2 G;w +7\1‘78§ch ’ (B9
where W, = foudy. And then, taking A—w and

¢ =ysinx, Egs. (Bl) and (B5) reduce to Eqgs. (30) and
(29}, respectively.

Since Eq. (B2) reduces to dp/dy = -0 for A— o0, we
have lost the relation which decides v. I this case, we can
introduce an assumption as
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( BG}
By integrating Eq. (B4) with y under this assumption, we
have

dx
and Eq. (28).

(B7)

APPENDIX C: STABILITY OF THE FLOW FOR SMALL &#

In the case of small Nand large H,, Reynolds number is
so large that the assumption of laminar flow in Sec. III C .
might be uncertain, though it is known that the existence of
the magnetic field stabilizes the flow in general.

On considering the linear stability problem for ¥ €1,
.31, and K €1, we may notice the following three factors .
for this problem: (i) The undisturbed flow has exponential
boundary layers; (ii} the undisturbed flow is not strictly a
parallel low; and (iii) the disturbances are directly affected
by the magnetic field. ‘

The boundary layer on a flat plate with constant suction
has similar factors to (i) and (ii). However, according to the
analysis of Hughes and Reid,'* the effect of (ii) is not do-
minant for the stability of the flow. On the other hand, Hart-
mann flow under 2 uniform transverse magnetic field has the
same factors as (1) and (iii). But, according to the analysis of
Lock,' the effect of (iii) is not essential for that flow. The
dominating factor for stabilizing the flow field is (i) in both
problems.

If the effect of the factors (ii) and (iii) is neglected on
the analogy of the results of Hughes and Reid and Lock, the
critical Reynolds number may be a value as large as that in
their cases. Then we suppose

R~ 50 000, (C1)

where R = p, U;8/n, is the Reynolds number based on the
thickness & of the boundary layer. In the present problem,
since § = A /H,,, laminar flow may be possible for

N> H,A/50000. (€C2)

In Sec. IT1, we have assumed A -+ oo in order to simplify
the problem. We do not know the minimum A for which the
analysis in Sec. II1 C is still valid, but we anticipate the la-
minar flow can be realized if the condition (C2) is satisfied.
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