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Based on the numerical finding of a two-dimensional photonic material which has large complete
photonic gaps and structural uniformity, we propose a photonic plate which can be used to design
arbitrarily shaped photonic mirrors and microcavities on a wavelength scale. This paper describes a
wavelength-sized parabolic mirror that can collect light very efficiently without loss. In addition, we
present circular microcavities of tunable resonance frequencies with high values of quality factorQ.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1691484#

I. INTRODUCTION

Photonic crystals~PhC’s! are artificial photonic materials
whose periodic structure engenders photonic gaps~PG’s!,
ranges of frequencies at which light cannot propagate within
the PhC’s. Using these PG’s, PhC’s can be used to confine or
guide light within the wavelength scale. Their increased use
is anticipated for wide technological applications in the near
future.1–3 One example is an optical waveguide, which is
ordinarily formed by removing periodic elements along a
certain line. Consequently, its structure should be commen-
surate with the periodicity of the host PhC. This characteris-
tic is different from the conventional waveguides of micro-
waves, which are made of metal plates. Metals can reflect
microwaves of arbitrary incidence angle without loss. There-
fore optical materials that have both complete PG and struc-
tural flexibility in the wavelength scale are necessary to cre-
ate such an arbitrarily shaped waveguide in the optical
region.

We recently proposed a two-dimensional photonic mate-
rial: uniformly distributed photonic scatterers~UDPS’s!.4

UDPS’s are formed by randomly placing parallel dielectric
rods under the condition that distanceuRi2Rj u between the
centers ofith andjth rods,Ri andRj , is larger than a certain
valueDmin , i.e., uRi2Rj u.Dmin . When rods have sufficient
density and dielectric contrast, UDPS’s have large complete
PG’s. Our study also demonstrated the highly efficient trans-
mission of light in arbitrarily shaped waveguides that is com-
parable with wavelengthl. Such efficiency is achieved by
combining UDPS’s and smooth sidewalls made of periodic
rods. The present study shows that combined use of UDPS’s

and sidewalls, which we call a UDPS plate, enables us to
design two-dimensional curved mirrors and microcavities of
arbitrary shape whose size can be reduced to the wavelength
order.

II. UDPS PLATES

Figure 1~a! shows an example of UDPS’s plates. Peri-
odic rods of radiusa and dielectric constante512 surround a
rectangular region ofuxu,80a and 226.67a,y,0. Each
rod is represented by a white circle. Then, we fill the sur-
rounded region with UDPS’s. We generate more than one
million random sets of rod positions within the rectangular
region and place rods successively so that the distances be-
tween a rod and those already placed are always greater than
Dmin . This procedure yields extremely uniform and dense
rod distribution if the number of randomly generated rod
positions is sufficiently large. In this study, we commonly
chooseDmin54a. TransmittanceT is obtained for plane-
wave incidence of the TM or TE~E or Hi rod axis! mode
from the positivey axis by calculating the energy flow at the
line L using the multiple-scattering method.5

Average transmittances over five rod configurations in-
cluding Fig. 1~a! are shown by blue~TM! and red~TE! lines
in Fig. 1~c! as a function of size parameterV52pa/l.
Adopting the gap condition asuTu,0.01, we find the PG of
the TM mode as 0.362,V,0.508 with average penetration
depth of about 2a. The PG of the TE mode is 0.732,V
,0.782. Figure 1~a! shows distributions of total electric-field
intensity and energy flow~white arrows! for the TM mode
incidence atV50.40 (l515.71a). One can see the yellow-
red region of large intensity lying parallel to the upper side-
wall. Its periodicity equals the wavelength. Therefore thea!Electronic mail: hmiyazak@olive.apph.tohoku.ac.jp
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UDPS plate in Fig. 1~a! can be regarded as an ideal flat
mirror without loss. Detailed calculation reveals that we can
effectively replace this UDPS plate with a perfectly reflect-
ing flat mirror aty50.7a.

To illustrate the importance of the upper sidewall, Fig.
1~b! shows an example of incomplete UDPS plates in which
the upper sidewall is removed from Fig. 1~a! and UDPS’s are
filled in. Average transmittance of the TM mode over five
cases including Fig. 1~b! is shown in Fig. 1~c! by the green
line. As shown, the gap position and depth are almost iden-
tical to the blue line, indicating that gap structure is indepen-
dent of the presence of the upper sidewall. However, the
reflected electric field differs completely. We show in Fig.
1~b! the distributions of total electric-field intensity and en-
ergy flow atV50.40. The irregular presence of large inten-
sity regions is shown by the yellow or red dots in front of the
incomplete UDPS plate. This distribution demonstrates that
the smoothness of sidewalls is an essential prerequisite for
the UDPS plate to work as an ideal mirror. A recent indepen-
dent report has indicated the importance of sidewalls for ef-
ficient transmission in the waveguide of PhC’s.6

III. UDPS MICROMIRRORS AND CAVITIES

Figure 1 illustrates the simple procedure for producing a
UDPS plate of arbitrary shape: first decide the sidewall
shape; then fill the surrounding region with UDPS’s.

FIG. 1. ~Color! ~a!, ~b! Examples of UPDS plates. In~a!, dielectric rods of
radiusa ande512 are arranged periodically within the vacuum as sidewalls
along the rectangular region ofuxu,80a and226.67a,y,0, whereas the
upper sidewall is removed in~b!. Their periods are 4.0a and 4.44a along the
x andy axes, respectively. The rectangle interior is filled with rods satisfying
the condition that rod distance be larger thanDmin54a. Volume fractionsVf

are 0.174 and 0.164 in~a! and~b!, respectively. Distributions are also shown
of the total electric field intensity and energy flow~white arrows! at V50.40
for the TM mode incidence of the plane wave from the positivey axis.
Intensity increases from blue to red with maxima of 4.73 and 7.53 in~a! and
~b!, respectively.~c! Transmittance as a function of size parameterV
52pa/l at the lineL of length 5.67a placed aty5228.17a. The plane
wave of the TM or TE mode is incident from the positivey axis. Transmit-
tance is the average of five configurations including~a! or ~b!.

FIG. 2. ~Color! ~a! Parabola mirror made of the UDPS plate.~b! Transmit-
tance of the TM mode at lineL. Plane wave of the TM mode is incident
from the positivey axis. Rods are placed along the rectangular region of
uxu,44.80a and 220a,y,30.13a. The lower and right or left sidewalls
are made with period 4.07a and 4.59a, respectively. The upper sidewall is
formed by putting rods with period 4a along the parabolay5x2/4f with f
516.67a. The volume fractionVf is 0.189. In addition,~a! shows the dis-
tribution of scattered field intensity atV50.45 in the regionuxu,66.67a and
240a,y,93.33a with maximum intensity of 24.67.
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Thereby, if we place periodic rods along a curve, we can
produce a curved mirror of arbitrary shape and dimension.
Figure 2~a! shows such an example in which the upper side-
wall consists of equidistant rods~period54a) on the pa-
rabola y5x2/(4 f ) with f 516.67a. Here, we relaxed the
UDPS conditionDmin,uRI2Rj u at right and left corners of
upper sidewalls for simplicity of construction. Figure 2~b!
shows the TM mode transmittance of plane wave incidence
from positive y axis. Obviously, we observe the same PG
with that in Fig. 1~c!. Distribution of scattered electric field
intensity atV50.45 is also plotted in Fig. 2~a!. The incident
plane wave from positivey axis is collected reasonably well
at the focal point (x50, y5 f ) of a parabolic mirror in the
geometrical optics. This fact indicates that the UDPS plate in
Fig. 2~a! can be regarded as an almost ideal parabolic mirror.

Structural flexibility of the UDPS plate allows formation
of a two-dimensional microcavity7 of arbitrary shape with
great ease. Figures 3~a!–~c! show circular cavities of inner
and outer radiusRin and Rout between which we fill the
UDPS’s. The red line in Fig. 3~d! is a plot of normalized

electromagnetic energyU stored within the cavity in Figs.
3~a! or ~b! for plane wave incidence of the TM mode from
the positive y axis. Sharp peaks appear atV50.405 86,
0.407 02, 0.430 54, 0.483 18, and 0.485 80 within PG’s.
These states are resonance states of the cavity. Correspond-
ing values of quality factorQ at these peaks are 1.493107,
1.373107, 2.563107, 2.953106, and 3.773106.

Figures 3~a! and~b! also show distributions of total elec-
tric field intensity and energy flow atV50.405 86 and
0.430 54, respectively. The intensity distribution inside the
cavity, shown in Fig. 3~a!, has fourfold symmetry indicating
that this peak corresponds to the state with azimuthal quan-
tum numberm52, whereas that in Fig. 3~b! represents the
state withm50. The peak atV50.407 02 also shows four-
fold symmetry, but its distribution is rotated byp/4 from that
in Fig. 3~a!. This rotation is also evident for peaks at
V50.483 18 and 0.485 80, which represent the resonance
states withm53. We can also observe smooth energy flow
around the outer circle. This flow smoothness indicates that
the outer sidewall plays the role of a circular mirror.

FIG. 3. ~Color! ~a!–~c! Circular cavities of inner radiusRin and outer radiusRout . Rin513.33a, Rout540a, and Vf50.169 in ~a! and ~b! while Rin

55.66a, Rout532.33a, andVf50.171 in ~c!. The plane wave of the TM mode is incident from the positivey axis. Also shown are distributions of total
electric field intensity and energy flow at~a! V50.405 86,~b! V50.430 54, and~c! V50.455 27. Maximum field intensity is~a! 9.193103, ~b! 3.443106, and
~c! 1.423106. ~d! Normalized energyU stored within cavities for the TM mode incidence. Red and green lines correspond to cavity~a! or ~b! and ~c!,
respectively.
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Resonance frequencies of the present circular cavity can
be obtained approximately from the condition that the elec-
tric field vanishes at the inner boundaryR5Rin . Corre-
sponding size parameters are given in terms of the zeroes of
the Bessel functionJm( j mk)50 (m>0, k>1) as Vmk

5 j mka/Rin . For Rin513.33a, we have nondegenerate level
Vm50,k5250.4140, and two doubly degenerate levels
Vm52,k5150.3852 and Vm53,k5150.4785 within PG’s.
These values concur well with those in Fig. 3~d!. To achieve
better agreement, we simply reduce the cavity radiusRin by
the order of rod radiusa, which is consistent with the posi-
tion of perfectly reflecting flat mirror in Fig. 1~a!. The lift of
degeneracy is caused by local nonuniformity of rod distribu-
tion in the UDPS’s. The resonant field has exponentially de-
caying amplitude within the UDPS region. Because the field
distributions atV50.405 86 and 0.407 02 differ byp/4 rota-
tion, they are influenced by the difference of the rod distri-
bution within the UDPS’s, as shown in Fig. 3~a!.

From a practical point of view, it is desirable to use
single mode cavity with, say, them50 andk51 mode. Such
a single mode cavity can be designed easily using a UDPS
cavity. If this mode is chosen to appear in the middle of a PG
at, e.g.,V50.425, the cavity radius is determined asRin

55.66a becausej m50,k5152.405 andRin5 j mka/Vmk . A
cavity of this size is plotted in Fig. 3~c!, where UDPS plate
thickness (Rout2Rin) is identical to that of Figs. 3~a! and
~b!. Corresponding normalized internal energy is shown by
the green line in Fig. 3~d! for plane wave incidence of the
TM mode from positivey axis. As shown in that figure, only
a single sharp peak appears atV50.455 27 with Q
58.303106, shifted 7% from the predicted position. We
also show in Fig. 3~c! the corresponding distributions of total
electric field intensity and energy flow.

We will briefly discuss the origin of PG’s in UDPS’s.
PG’s are formed either by coherent interference of scattered
waves from periodic rods like Bragg diffraction in x rays or
by bonding and antibonding states of Mie resonance within
each rod that are similar to electronic band gaps in semicon-
ductors. The latter are formed by local interaction. Therefore
they are not as easily smeared out by fluctuations in position
and radius of rods as in the former case. Therefore we con-

clude that PG’s of UDPS’s result from interaction of Mie
resonance states. However, an important difference exists be-
tween electrons and photons: resonance wave functions of
photons are not localized exponentially. Rather, they decay
in inverse power and have a long-range nature. This long-
range nature of wave functions is responsible for formation
of PG’s in UDPS’s which do not require even a short-range
order. Consequently, UDPS’s can acquire tremendous struc-
tural flexibility that is free from either long-range or short-
range ordering.

IV. SUMMARY

We have proposed a two-dimensional photonic material
called a UDPS plate. It is a combination of smooth sidewalls
and UDPS filling material. The UDPS plate allows the de-
sign of arbitrarily curved mirrors of wavelength size and cir-
cular microcavity of requested resonance frequencies. Be-
cause the UDPS cavity shape is not limited to that of a circle,
the UDPS plate provides an intriguing research field of vari-
ous microcavities of complicated shapes. A detailed discus-
sion of various characteristics of UDPS plates will be under-
taken in future studies.
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