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By extending the concept of a photonic lattice~PL!, we have studied the one-dimensional multiphotonic
lattice ~MPL! composed of a sequence of different types of PL’s. Each PL plays the role of either a well or a
barrier for the electric field due to the difference of photonic band gaps. As a result, bound states of the electric
field appear near the band edges, which are strikingly reminiscent of electrons or holes in semiconductor
quantum wells. This analogy is confirmed by studying the Stark localization of electric field in the MPL
composed of alternate stacks of well-like and barrierlike PL’s.

PACS number~s!: 42.50.Hz, 41.20.Jb, 73.20.Fz, 77.55.1f

The recent proposal and subsequent investigation of pho-
tonic lattices~PL’s! have opened up an exciting field of re-
search in quantum electrodynamics@1,2#. A one-dimensional
~1D! PL, for example, is composed of alternate stacks of
dielectric slabs having different dielectric constant and thick-
ness. Periodic modulation of the propagation of the electro-
magnetic field within the PL yields photonic band gaps at the
center and the edges of the Brillouin zone@3,4#. Research on
PL’s seems to be oriented in several directions: one is to find
2D and 3D PL’s having complete band gaps. By introducing
defects into these systems, one finds within the band gaps the
isolated defect modes that can be utilized to manufacture
semiconductor microlasers with almost perfect quantum ef-
ficiency and extremely low threshold@1–3#. Another direc-
tion of research is to study Anderson localization of photons
in the PL’s@5#. This is also a fascinating problem since pho-
tons in the PL of linear optical elements have no interaction
with each other so that one can study Anderson localization
without many-body effects. Atomic injection into the PL’s
@6# is also interesting in that the spontaneous emission from
the injected atoms is strongly suppressed if the emitted pho-
ton energy falls within the band gaps of the PL’s. This en-
ables us to control the lifetime of the excited atoms, making
it possible to very accurately determine their energy levels.
One can also use the atomic injection to control the photon
states of PL’s and to create new states such as squeezed or
Schrödinger cat states@7#.

The band gaps of the PL appear as a result of the periodic
modulation of the dielectric constant@8#. This is in close
analogy with semiconductor multiple quantum wells
~MQW’s! or superlattices@9# in which electron or hole wave
functions are modulated by the periodic sequence of barriers
and wells, yielding mini-bands. Because of the recent devel-
opment of microfabrication technology, the quantum well
~QW! offers an enormous field of fundamental as well as
applied research into resonant tunneling@10#, Bloch oscilla-
tion @11#, and Stark localization@12# of the electron and hole
in 1D MQW’s by a static electric field, 2D electron gas at the
interface and 1D quantum wires@13# and 0D quantum dots
and their application to single-electron transistors@14#. It
would be interesting to mimic a variety of these phenomena
by the electromagnetic field in PL’s.

A key step in this direction is to note the importance of
the band gaps and the dispersion relation. In MQW’s much
of the interesting properties relies on the band offset and the
quadratic dispersion of the electrons or holes. In this respect,
a direct way to relate the PL’s with the MQW’s is to regard
each dielectric slab in the PL as a constituent atomic layer of
a MQW such as Ga, AlxGa12x or As layers. This correspon-
dence has already been pointed out by Yeh, Yariv, and Hong
@15# and the concept of photonic band gaps has been known
for a long time as stop bands in the theory of the optical
properties of thin-film multilayer dielectric stacks@16#. Ac-
cording to this correspondence, the photonic version of the
MQW is a sequence of finite-size 1D PL’s, each of which has
a different photonic band structure. This system may be
called a MPL or a photonic superlattice. Because of the
band-gap difference of the constituent PL’s, each PL may
play the role of a well or a barrier for the electromagnetic
field propagating within the multiphotonic lattice~MPL!. In
addition, the frequency dispersion of each PL near the band-
gap region is quadratic. In this paper, we study the bound
states of the electromagnetic field near the band-gap region
of the well in the MPL and show that it is well described by
the envelope function formalism used in semiconductor QW
theory. In addition, it is shown that the Stark localization of
the electromagnetic field can be realized in the MPL’s.

Let us consider a 1D MPL composed of ab PL sand-
wiched by twoa PL’s. Thea ~b! PL is composed of stacks
of alternating slabs having dielectric constants$«a ,«b%
($«c ,«d%) and thicknesses$da ,db% ($dc ,dd%). The system is
in vacuum and the electromagnetic field is incident normally
from the left-hand side. It should be noted here that the pho-
tonic band structure generally depends on the direction of the
propagation of the electromagnetic field because of the in-
herent transverse vector nature of the photon field@2#. Since
we are interested in the analogy between photons and elec-
trons or holes, we will concentrate in this paper on the case
of normal incidence. This reduces the vector nature of the
photon field to the scalar one. We choosea and b to be
composed of 20 pairs of dielectric slabs having$«a53,
«b51, da5db51 cm% and 10 pairs of slabs having$«c54,
«d51, dc5dd51 cm%, respectively. The upper band edge of
the lowest band gap ofa andb turns out to beva

056.3225
GHz andvb

055.8733 GHz. Therefore,a andb PL’s are ex-
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pected to play the role of a barrier and a well for the electric
field of frequencyv betweenvb

0 andva
0 , respectively. The

electric field of the frequencyv inside the system is obtained
by the method of optical matrix transfer for multilayer thin
films @16#. By scanningv betweenvb

0 andva
0 , we find that

a perfect transmission occurs atv155.9426 GHz,
v256.1171 GHz, andv356.3149 GHz. Figure 1 shows the
absolute amplitude of the total electric fieldE(x) for v1 as a
function of positionx inside the system. The left end of the
system is taken as the origin ofx. We have also shown in the
bottom of each figure the schematic shape of«(x) as an array
of the vertical white bars. As seen from the figure, this mode
is a symmetric ground-state mode within theb region and
decays exponentially in thea regions. This form ofE(x)
could never be observed if one replacesb by a uniform di-
electric slab. One should also note that the envelope of this
ground-state mode is very similar to that of electron or hole
wave functions in the single QW.

While the present system can be treated exactly by the
matrix transfer method, it would be worthwhile to deal the
problem within the framework of the envelope function for-
malism in the QW theory@17#. Within single photonic lat-
tice, say,a, the Maxwell’s equations can be written as

H~x!E~x!52
c2

«~x!

]2

]x2
E~x!5v2E~x!, ~1!

where«(x) is the dielectric constant with periodd5da1db .
Since«(x) is periodic, the solution to Eq.~1! with the eigen-
frequencyv5vn(k) satisfies the Bloch theorem

En
k~x1d!5exp~ ikd!En

k~x!, ~2!

wheren is the band index andk is the wave number. When
the PL is finite, the electric field within the PL can be ex-
panded, in general, in terms of$En

k(x)% and the Fourier

transform of the expansion coefficients$An(k)% defines the
envelope functionFn(x) for each band indexn. It is easy to
show thatFn(x) satisfies the following equation within the
one-band approximation@18#:

$vn~k2k0⇒2 id/dx!2v%Fn~x!50, ~3!

where k0 gives the maximum or minimum ofvn(k). The
vn(k) of the a andb PL’s near the band edgek05p/d is
expressed as a quadratic function ofq5k2k0 as
vn(k)5v n

01Knq
2/2. In the present case we have

Ka513.6086 GHz cm2 and Kb510.1215 GHz cm2. Hence
F(x) satisfies exactly the same equation for the electron
wave function of the QW. To connectFa(x) andFb(x) at
the interfacesx0, we make use of the similarity between the
present case and that of the QW and adoptFa(x0)5Fb(x0)
andKaFa8 (x0)5KbFb8 (x0). We also assume thea PL’s to be
semi-infinite.

The results of calculation using the envelope function for-
malism givev1

app55.9524 GHz, in excellent agreement
with that of the numerical calculation. Forv2 we obtain
v 2
app56.1763 GHz, in not as good agreement because of the

deviation ofvn(k) from the quadratic form. The dotted line
of Fig. 1 shows the envelope function normalized to the
maximum amplitude of the exact calculation. The boundaries
betweena andb are taken to be at 39.5 and 59.5 cm.

Thus we have shown that each PL serves as a well or a
barrier for the electric field just like those for electrons or
holes in the MQW. We call these a photon well and a photon
barrier hereafter. It would then be an interesting problem to
see if the Stark localization of the electric field could occur
in the MPL’s similarly to the case of MQW’s under the static
electric field @12#. The Stark localization of the electron or
hole occurs when the electrostatic potential dropDV be-
tween the adjacent wells exceeds the interactionJ between
them. The degree of localization is mainly determined by
t5DV/J @19#. Larger values oft destroy the coherent trans-
fer of the electron or hole through the MQW and result in the
stronger Stark localization.

To study the Stark localization of the electric field in the
MPL’s we adopt a system composed of six photon wells
$b1,b2,...,b6% and five photon barriers$a1,a2,...,a5% sand-
wiched by substrate photon barriersgL andgR , as shown in
Fig. 2. For simplicity, all the dielectric slabs have the com-
mon thickness of 1 cm. Each length ofan andbm is 10 cm
and that forgL andgR is 20 cm. As for«(x) we take«51 for
every right-hand side slab of pairs inan , bm , gL , andgR .
Those of the left-hand side slabs in the photon wells~barri-
ers! start with« w

1 (« b
1) for b1~a1! and end with« w

6 (« b
5) for

b6~a5! with a step decrease ofD«w(D«b). The dielectric
constant«L and«R of the left-hand side slabs ofgL andgR
are chosen so that the field is trapped within the MPL. The
system is in vacuum and the incident light comes in normal
from the left-hand side.

In the numerical calculation, we adopt common values of
«w
155.0, « b

154.0, and«L5«R53.0 and choose two cases of
D«w andD«b : D«w5D, «b50.05 andD «w5D, «b50.2. In
both cases the transmission spectra show several sharp peaks
betweenv55.4970 and 6.3225 GHz, which are the upper
band edge ofgL ~5gR! andb1, respectively. Figures 2~a! and
2~b! show the electric fielduE(x) u of the third lowest bound

FIG. 1. Absolute amplitudeuE(x)u of the electric field of the
symmetric bound state in the MPL composed of a well-likeb PL
sandwiched by two barrier-likea PL’s. uE(x)u is normalized to the
amplitude of the light incident from the left-hand side. Vertical lines
represent the interfaces betweena andb PL’s and the dotted line
shows the envelope functionF(x) normalized to the maximum am-
plitude of the exact numerical calculation. Below the zero line of
the figure we plot a schematic shape of«(x) as an array of the white
vertical bars. The base white part gives the region of«51 and short
or long vertical white bars represent slabs with«53 or 4, respec-
tively.
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state forD«w5D, «b50.05 andD«w5D, «b50.2, respec-
tively. As can be seen from the figure, the electric field tends
to localize around the third photon wellb3 asD«w andD«b
are increased. This behavior can be explained from the anal-
ogy to the Stark localization of electrons in the MQW. The
decrease of«w

n or « b
n generally pushes up the upper band-

edge frequencyv n
0 @3,15#. This increase ofv n

0 has qualita-
tively the same effect as the increase of the potential bottom
in the MQW due to the static electric field. In the MPL,DV
is given by the difference ofv n

0 between the adjacent wells
or barriers.DV for wells ~barriers! is estimated on average to
be 14.7 and~16.7 MHz! and 62.7 and~70.5 MHz! in Figs.
2~a! and 2~b!, respectively. The interactionJ between the
adjacent photon wells is roughly given by 9.5 MHz for a
system of double photon wells, each composed of five pairs
of slabs with«a55.0, «b51.0, andda5db51 cm separated
by a photon barrier of five pairs of slabs with«a54.0, «b
51.0, andda5db51 cm. By assumingJ to be almost con-
stant within the present choice of parameters,t5DV/J is
given as 1.5;1.7 and 6.6;7.4 for Figs. 2~a! and 2~b!, re-
spectively. Thus we can see that the increase ofD«w andD«b
results in the stronger Stark localization as a result of the
increase oft.

One might think that the localized nature of the bound
states is mostly due to the substrate photon barriersgL and
gR . The calculation of the same system withoutgL andgR ,
however, shows qualitatively the same behavior, though the
lowest state atb1 is missing and the amplitude of the electric
field of each bound state is much reduced. It should further
be noticed that when the number of the pair slabs is de-
creased from 5 to 1 in the same system withoutgL andgR ,
the internal electric field shows almost no evidence of local-
ization @20#. Therefore, the Stark localization of the present
system is attributed to the presence of the band edge of each
photon well and barrier. We would also like to point out that
the amplitude of the internal electric field of the first two
lowest bound states is much reduced for the right incidence
of light because of the asymmetry of the present system@20#.

The important parameters of the MPL’s are the band-edge
frequencyvn

0 and the coefficientK n
0 of the quadratic disper-

sion of each PL near the band edge. To get a better simula-
tion of the Stark localization, it is desirable to have a linear
variation ofv n

0 and a common value ofKn . For this purpose
one can change the spacing of each of the dielectric slabs
linearly instead of their dielectric constants. This would be
quite favorable for the experiments. One can also introduce
another type of PL whose unit cell is composed of three
dielectric slabs. This will widen the choice of parameters.
The connection rule of the envelope functions at the inter-
faces deserves further study since even in the MQW’s this
problem is still under study@21#.

Having made a correspondence between the MPL’s and
the MQW’s, it would be interesting to simulate a variety of
phenomena observed in the MQW’s by using the MPL’s. In
the MQW’s, for example, various cases of heterojunctions
are under study@9#, but the problem is always accompanied
by the uncertainties of the actual value of the band offset. In
the MPL’s this is not the case, since the band gap can always
be determined accurately by the numerical calculation. One
can also study the transient response of the pulse injection
into the MPL’s @20,22#. It is easily verified that the time
dependence of the envelope function is described by an
equation analogous to the time-dependent Schro¨dinger equa-
tion in the QW. The input pulse may be considered as a wave
packet of electrons or holes so that the Bloch oscillation@11#
of the input pulse is expected. In addition, one could expect
the periodic emission of pulses from the system during the
Bloch oscillation. The time dependence of the envelope
function in the double photon well can also be used to study
the tunneling problem of electrons in the MQW@10#. An-
other interesting problem is to introduce the interaction be-
tween the bound states either by the injection of atoms or by
the use of nonlinear dielectric slabs@23#. The idea of MPL’s
may be extended to 1D photon wires or 0D photon dots in
analogy to the quantum wires and quantum dots. Since the
vector nature of the electromagnetic field is especially impor-
tant in these cases@2#, it would be interesting to see whether
the present analogy still survives for these cases@22#. Fi-
nally, it would be very intriguing to study the true particle-
like character of photons in the MPL’s, since the present
study uses only the wavelike character of photons.

There would be at least three possibilities of realizing the
MPL’s from the thin-film multilayer structures. One is the
rugate filter in which the refractive index is modulated sinu-

FIG. 2. Absolute amplitudesuE(x)u of the electric field of the
third bound state in the two types of MPL’s composed of six photon
wells and five photon barriers.uE(x)u is normalized to the ampli-
tude of the light incident from the left-hand side. The white rectan-
gular boxes in the upper coordinate show the well regions. For
values of parameters in~a! and~b! see the text. Below the zero line
of the figure we plot a schematic shape of«(x) as an array of the
white vertical bars. The base white part gives the region of«51 and
the left and right ten white bars represent the slabs with«53. In the
middle region of six photon wells or five photon barriers« starts
from 5 or 4 and decrease with~a! D«w5D, «b50.05 and ~b!
D«w5D, «b50.1, respectively.
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soidally @24#. If the modulation differs spatially this would
serve as a MPL. The second one is a MQW semiconductor
laser sandwiched by the distributed Bragg reflector~DBR!
@25#. While the DBR is literally a PL, the central MQW may
not be considered as a PL because of its small size compared
with the wavelength of the relevant electric field. This would
rather be classified as a Fabry-Pe´rot resonator. The third one
is a high transmission comblike filter in which various PL’s
of finite size are stacked in one direction@26#. While the
comblike filter is introduced as a multipurpose wideband fil-
ter, it can be considered as the MPL considered in this paper
if we limit our attention to the frequency region near the
band edges.

In summary, we have introduced a MPL and have shown

that each PL plays the role of either a well or a barrier for
electromagnetic field due to the difference of the photonic
band gaps. We have pointed out that there is a striking anal-
ogy of the MPL’s to the semiconductor MQW’s if one con-
siders the envelope function of the electromagnetic field
within the MPL’s. This analogy was further confirmed by the
evidence of the Stark localization of the electric field in the
MPL’s. Various possibilities of research using the MPL’s
have been suggested.

This work is supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Science and Cul-
ture, Japan.
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