-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

REAFEEBUKNSFY

Tohoku University Repository

Ab Initio Tight-binding Description of
Morphology-dependent Resonance in a Bisphere

00 OO0 OO

journal or Physical review. B

publication title

volume 62

number 12

page range 7976-7997

year 2000

URL http://hdl.handle.net/10097/35666

doi: 10.1103/PhysRevB.62.7976


https://core.ac.uk/display/235796551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PHYSICAL REVIEW B VOLUME 62, NUMBER 12 15 SEPTEMBER 2000-II

Ab initio tight-binding description of morphology-dependent resonance in a bisphere
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Morphology-dependent resonan®@DR) of the electric field in a bisphere is investigated with respect to the
electromagnetic energy stored within the spheres. The energy spectra clearly reveal the fine structure of the
bonding and antibonding branches originating from the Mie resonance of a single sphere. The electric field
distribution can directly provide information on the formation of the bonding and antibonding states. On the
basis of this detailed information, we establish #ieinitio tight-binding (TB) formalism of the MDR in a
bishpere. The single-mode TB model combined with the linearization of the phase shift clarifies the meaning
of the overlap integral. It also gives a qualitative explanation of the MDR. By dividing the Mie resonance
modes into the relevant modes and the reservoir modes and incorporating the latter perturbationally, it is shown
that the double-mode TB model can reproduce the exact numerical results fairly well.

[. INTRODUCTION phenomenological tight-binding model is shown to repro-
duce the level crossing fairly well. This work opens up a new
The study of the Mie resonance in a single sphere has possibility to describe MDR’s by the tight-binding model.
long history of research since the work of M&nd Debyé:® The phenomenological tight-binding model has also been
Detailed investigations of its features have been carried outsed very recently to reproduce the band structure of two-
both experimentally and theoreticafly.On the basis of this dimensional(2D) photonic band-gagPBG) lattices com-
research, its study has matured enough to provide us with posed of cylinderd® The PBG materials are artificially
wide range of applications such as lasing in a single sphermanufactured materials having a periodic dielectric constant.
by using extremely higl) values of the Mie resonanéé. They have attracted considerable interest because of their
The sharp resonance in a single sphere has naturally ifpotentiality to control the electromagnetic staté<° Theo-
voked an interest in the cooperative resonant scattering fromretical and experimental researches are now in progress in
a cluster of spheres. This resonance is generally called th@any areas of pure and applied physics. For example, we
morphology-dependent resonan@dDR). Extensive work have shown recently that the periodically arranged spheres in
has also been devoted to clarify the MDR'’s, mainly focusing2D show huge enhancement of the electric field near the
on a bispheré&=13 sphereg?? This enhancement is due to the evanescent field
In analogy to the quantum-mechanical formation of theand is experimentally observed by using the scanning near-
molecular orbits, it is expected that the interaction betweerfield optical microscopySNOM 22 However, the research is
spheres brings about the bonding and antibonding states biited at present to the region of lower-order Mie reso-
the electromagnetic field. These states can be expressed asances. The conventional method to describe the propagation
linear combination of the Mie resonance states of eaclof electric fields between spheres encounters serious numeri-
sphere. In fact, Fuller has observed numerically that the eleeal difficulties in the higher-order resonance region. This
tromagnetic coupling between spheres causes the narrolimitation also applies to the band-structure calculation. If, as
Mie resonance to split into distinct, relatively broad peaksshown by Lidorikiset al,® the propagation of electric fields
and dips in the forward-scattering spectrum of the bispltere. is described by the tight-binding model, one can design the
This split is more clearly observed in the recent photolumi-band structure of PBG materials over a wide range of fre-
nescence study of the photonic molectfieThe photonic quency in a handy and highly efficient way.
molecule is made from a pair of photonic dots that are To establish the tight-binding description of MDR’s an
coupled by narrow channels. By comparing the emissioraccurate knowledge of the resonance positions is indispens-
peak energies with the calculated eigenmode energies, thaple. For this purpose, the original Mie resonance of a single
found that the optical modes in photonic molecules exhibitsphere should be as sharp as possible. Lower resonances
strong similarities to those of the electronic states in diatomidave broader peaks due to the lower valueQao that the
molecules. split, if it exists, would be smeared out. In fact, Fuller's
We have also made a photoluminescence study of a bfinding of the split in the bisphere is related to the mode of
sphere and found that the coupling between spheres cause$=a39.* The split of thel = 16 mode seems not so clear com-
split of the degenerate Mie resonance motdes.clear level  pared with that ofi=39. Higher values of inevitably re-
crossing is observed between the Mie resonance modes loyire the enormous increase of the computation time for the
changing the radius of one of the spheres. These results aewaluation of expansion coefficients of the vector addition
in good agreement with the numerical results. In addition, aheoren?*=26 Although efficient recurrence relations for ex-
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pansion coefficients were successively found by Bruning andoes not give us a transparent definition of the overlap inte-
Lo, Fuller> Mackowski® and Xu?’ it is still difficult to  gral.

deal with a higher-order MDR for a general configuration of In the present work, instead, we start with an orthodox
spheres. However, this difficulty can be greatly relieved in aformulation of the problem based on the vector spherical
uniaxial system, i.e., a linear chain of spheres. To obtain th&@armonics expansion and derive a simple and handy tight-
precise information of MDR’s, therefore, we concentrate onPinding equation that clarifies the meaning of the overlap
the simplest system, i.e., a bisphere. Still, this simple Syste,i,qltegral. In addition, it gives almost all the qualitative expla-

does not lose any essential feature of the MDR’s as showRations of the characteristic features of MDR's in a bisphere.
by the work of Fuller2 It should be noted that in our approach the overlap integral

Another difficulty in the study of MDR'’s has its origin in &N be evaluated exactly. In this sense, the present formalism

the history of research. The MDR’s are traditionally investi- @ be called thab initio tight-binding m_"d?'- .
gated from the viewpoint of scattering cross sections. The To take a further step toward a quantitaiive understanding

scattering cross section is usually governed by the Iowergnc MDR'’s we have to deal with the peak broadening, i.e., the
9 y 9 Y energy dissipation. The energy dissipation is observed to in-

o_rder resonances. The h|gher_—0fder resonance appears ag g,se significantly in a bisphefeThis is due to the inter-
tiny but very sharp peak or dip in the scattering SPECUMy, ction of the relevant mode.g.,| = 39) with the lower dis-

Use of the backwar@rada) cross section seems to be prom- gjnative resonance modes of the neighboring sphere. Since
ising because higher-order resonances appear as rather iz control of the energy dissipation in the multisphere sys-
tense peaks or dipsHowever, even in this case, lower-order e is of great interest, it is desirable to include the effect of
resonances still dominate the spectrum. dissipation via lower resonance modes in the tight-binding
In this respect, recent photoluminescence studies Ofgrmalism.
MDR'’s deserve special attention. The photoluminescence in- Now, the lower resonance modes are not only dissipative
tensity is proportional to the field intensity within spheres.but they have an enormous amount of freedom. This situa-
The field intensity can be measured by the internal electrotion reminds us of the reservoir modes in the theory of pro-
magnetic energy. The internal energy is given as a sum géction operator for the evolution of the density mattixn
the bilinear product of the expansion coefficients in terms othe projection operator theory, the whole system is divided
the vector spherical harmonics. In contrast, the total scatteinto the relevant system and the reservoir, and the reservoir
ing cross section is linear owing to the optical theofem. modes are treated perturbationally. In the present paper,
Therefore, the bilinear dependence of the internal energy itherefore, we follow this procedure and take into account the
expected to suppress the contribution from lower-order resgower resonance modes perturbationally. _
nances and enables us to observe clearly the split of higher- This paper is organized as follows: In Sec. Il, we describe
order Mie resonances. In addition, the internal energy plays §'€ Pisphere system and derive the basic equation to deter-
crucial role in lasing because it gives a direct measure of thain€ the internal fields. We also give the expressions of the
quality factorQ. Thus, the first goal of our paper is to deter- Nt€rnal energy and scattering cross sections. Section il is
mine accurately the positions of MDR's by using the internaldevoted to the, presentation and interpretation of various fea-
energy spectra. tures of MDR_ s _such as the dependence of_the internal en-
We also present the electric field distribution within each€9Y On the incidence angle and on the distance between
sphere?® This visualizes the bonding and antibonding spheres. Some of the MDR peaks are chosen to study the

states directly. In addition, it would yield salient information int.ernal field distribution. A." the result§ in Sec. I are ob-
on the more efficient excitation of dye molecules within [&in€d by the exact numerical calculation of the basic equa-
spheres by the incident field. Interpretations of various fealion. In Sec. IV, we present the single-mode tight-binding

tures of the internal field are based on the analysis of normdPMTB) model and discuss qualitatively the various proper-
modes of the Mie resonance in a single sphere. ties of MDR'’s presented in Sec. Ill. The SMTB model is

Our second goal is to establish thb initio tight-binding extended to the double-mode version in Sec. V to classify

formalism of MDR'’s. So far, all the analyses have phenom-eaCh mode into two groups: the relevant mode and the res-

enologically introduced the transfer or overlap integrals be&VOIr mode. Then, the reservoir modes are perturbationally

tween spheres. This is in analogy to the tight-binding deincorporated in the double-mode tight-bindir@MTB)

scription of the band structure in insulators angmodel. Various quantities are numerically evaluated and
semiconductor& Rigorously speaking, however, this anal- compared with the results presented in Sec. IIl. Section VI is

ogy does not hold because the Mie resonance states are rfitvoted to further discussion and summary.

bound within the spherk® The electromagnetic field outside

the sphere decays asr Ifor r—oo. This extended behavior Il. MODEL AND FORMULATION

does not guarantee the convergence of the overlap integral

between the resonance states of the neighboring spheres.Let us consider two nonmagnetic spheres onzhgis at

Therefore, the key to this problem is a working definition of R; andR, separated by a distandén the vacuum as shown

the overlap integral. in Fig. 1. Each sphere has a radajsand a uniform dielectric
Combined use of the variational principle and the Green’sonstante; . A linearly polarized plane wave impinges upon

function gives one possibility. The variational method can bethe spheres with its amplitudg, and wave vectok,. The

extended to the scattering problem via the use of the Greeniwave vectok is parallel to thexz plane and makes an angle

function3® The Green'’s function formalism has already beené with the z axis. E, is parallel either to thexz plane &z

established by several authdts33 This approach, however, polarization or to they axis (y polarization.
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pendix A. We also give in Appendix B the explicit expres-
sion and symmetry relations c{)ti;ﬁ]} for the incident plane
wave.

The scattered field from one sphere is the additional inci-
dent field for the other sphere. To satisfy the boundary con-
dition on the surface of each sphere, therefore, we expand the
scattered field from th¢th sphere in terms of the VSH’s of
the ith sphere. This is done by using the following vector
addition theorem:

>N

&
Efm(h(™ kot 6} ¢))
d i 7.8 ji
= Z 2 E) q(Jp!kOri10i1¢i)Ap:q;I,m(kOvR )r
y=M.N p=1q=—
(2.2
Ri . .
Where RI=R,— R;. The expansion coefficients

Ap i, m(ko, R are obtalned either by a direct evaluation of
the ngner 31 symbol€® or by the recurrence relation of
Mackowski® They are summarized in Appendix C. In the
case of a bisphere along tkexis, the summation overin
Eqg. (2.2 is limited to onlyg=m.

Since the present work focuses on the internal field, we
derive an equation relating the internal field to the incident
plane wave. The boundary condition combined with the vec-

tor addition theorem yields the following basic equation for
apb:

>X
(Eo,ko)

0
/

FIG. 1. Bisphere aligned along ttzeaxis. Each sphere has the
radiusa; and the dielectric constamt . Spheres are centeredRy{

af(cotdP—i)ajm—i

andR, separated by a distance A plane electromagnetic field of & SN | m p,m
amplitudeE, is incident with the wave vectdd. kg lies on thexz T
plane and makes an anglewith the z axis. E is either within the X (Ko Rji)aj,y
xz plane &z polarization) or parallel to they axis (y polarization). p.m
=8, (2.3

The internal, scattered, and incident fields of tib

sphereE", E, andE™®, are expanded by the vector spheri- Here, cos”, aj#,, andc| %,
cal harmonlcs(VSH s) {Ef ‘mi Of the spheré. By writing r; equation
=r—R;=(r;,6;,¢;) in sphencal coordinates, they are given

are introduced to symmetrize the

as ajh="D"a/%,
w oS LBEB (i Eiyﬁ=_icﬁ
E"(ri) = 2 E ar'mE (1Kl 0;, i), bm™ " g, e
B=M,N (=1 m=—I
(2.1a | <pis
. Cotéi'ﬁzi(l— W)‘ (2.4)
_ |
ES(r.)= bi"PEL..(h{Y) Koy, 6, 1), - i
" BEMN Izl mZi B Kol 61 1) The functions=D|* and ~D|** are defined as
(2.1 ,
=DM =kih{P(koay)j| (kiai) —koh(™ (koay)ji(kiay),
| = (2.58
EMC(r)= . 2 Z ClAE (1 Kol 6 i) o y y _
A=M.N [=1 m=-| 51 Dy =kiji(koai)ji (kiaj) —kojj (koay)ji(kia),
(2.19 (2.50
Here, ko=|ko| andk;= ek, are the wave numbers in the <piN_ N
vacuum and within the spherei, respectively. D= [koti (koai) g (ki)
Efn(f.kr,0,¢) is a VSH of the transverse electr@E) —ki&l (Koay) ¥ (kiay) 1/(a?koki),  (2.50
mode for3=M or the transverse magneti€M) mode for
B=N.%® The functionf = f(kr) is either the spherical Bessel ZDIN= kot (koay) ¥/ (Kia;)
function j,(kr) or the spherical Hankel function of the first ) 5
kind h{Y(kr). The definition of the VSH's is given in Ap- —kiy (ko) ¢ (kiay) 1/(aikoki),  (2.50
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whereé (2)=zhY(z), ¢4(2)=zji(2), and the prime denotes forward, and backward(rada) cross sectionsCiya,
the differentiation with respect to the argument. The scatterCorwarg, 8nd Cpackward: Crotal 1S given from the optical

ing coefficientb:;ﬁ] is given by theorem as
bi =~ ko8 “D} i 26 Cona=~ —z 3 S 101+1) RelBYA(C})°).
. maiks T8 Tm ' ’
The quantityﬁi"g represents the phase shift of the spheri- (2.11)

cal outgoing wave of modeA|) from theith spheré and e thatC,4 is equal to the extinction coefficient when

plays an importan.t role in the present analysis. To clarify itSpere is no absorption within the Spher€s,,,,aq is defined
meaning we consider the case of a single sphere. Then, Eoéy

(2.3) and(2.6) yield
2

i i C:rl’fg‘ Crorwarg= lim 427T|_; |2 |E(I’,0,d)=0)|2, (2.12
a:ﬁ:_lTDi"ék—az’ (2.7a e mal|Eg

whereE, is the amplitude of the incident plane wave ahd
. 1 i ' is the incidence angleCy cwarqiS given by Eq.(2.12) with
—ch = E(eZ'fﬂ’ -1)¢h. the replacement ob— 7 — 6. The asymptotic form of the
scattering field yields

(2.7b
As seen|bjf| becomes maximum when &f=0. There- Cforward:_j_z S (=) explike-R))
fore, cot*=0 gives the Mie resonance positions of a single koaz| [1'mi

sphere. In general, the sharp Mie resonance occurs when Y o my, 2

koa;<I+1/2 andI>1. In this region,j, shows exponential x| bi:N ;m+b]'m . 'bm) +1> (-
decay and1|(1) increases exponentially. For general values of J sin hm,i

ko, therefore, we havgé~D|?|>|~D|*#|. At the Mie reso- 2

0 C = Il - . iN™Yim i mYim
nance, however; D|"’= <D} is satisfied so that~D| | xexpliks R)| bym—— +bim— :
reduces significantly. This results in an enormous increase of

a};ﬁ and gives huge enhancement of the internal field as seen (2.13

from Eq.(2.78. Here, ks=Kkor/|r| and r is the point of observation. It is

In the present work, we use the internal enethto find - commonly recognized thaly,ciwarg varies more drastically
out the positions of MDR'’s. The expressionldfis obtained at the Mie resonance thaBy,, or C; g
ota orwara -

by integrating the energy density within the bisphere volume

regionV; andVy: Ill. RESULTS OF THE EXACT NUMERICAL

1 CALCULATION
U=g- 2 f drilei [ E(r) [+ i H(r)|] _ _ _ _
bV In this section, we give the exact numerical results of

1 . MDR'’s in a bisphere based on E@.3). To study the MDR
iy > &ilal )2 (kay . (2.8)  in detail we focus on the case of polystylene spheres with
T m a;=a,=2.5 um ande;=&,=(1.59Y. Other cases are de-

noted wherever necessary. In principle, the Mie resonance is

Here, T, is given by labeled by a set of four indice®, |, m, andn. The natural

I(1+1) number| characterizes the famous ringlike pattern of the
f|(kiai)=m[lg,+1(kiai)+(2I+1)g|(kiai) electric field along the circumference of the sphere, i.e.,
whispering gallerfWG). n is also a natural number indexing
+(1+1)g,_1(ka)], (2.9  the radial behavior of the field. The distribution of the elec-
tric field along the radial axis becomes broader for higher
with g,(ka) defined as The Mie resonance of modehas (2 +1)-fold degeneracy.

Each degenerate state is labeledrbyith —I<m=<I|. The

Ka)= ad 2i2(k incident plane wave along the axis can only excite the
ai(ka)= 0 rrejickr) modesm= *1. In the single sphere, we can always choose
the direction of incidence as tleaxis. Therefore, the index
a3[j,2(ka)—j|1(ka)j|+1(ka) for 1=1, mis usually omitted. Thus, the WG mode of a single sphere
2| j2(ka)+ne(ka)j(ka) for 1=0, :ngitfgy denoted as, e.g., 39TE1l f6=M (TE), | =39,
(2.10

wheren, is the spherical Neumann function of order 0. A. U and C's of a single sphere

Most of the traditional work deals with the far-field be-  Before studying MDR’s in a bisphere, let us compare the
havior, i.e., scattering cross sections. To compare their res®cattering cross sections with the internal energy of a single
nant behavior with that o) we also calculate the total, sphere. Instead df, we use the size parametS=kya;. In
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3 T T

E ] =3 = =g = 2
E(a) C Cf d(x10'3) ] 10° . 4 ,az 2'5”,'" €, 8,2 (1-59),
* 3 / total v /\_ 10* | (d) 6=90° ;
1 o Cbackwari ‘
: ] 1 f , . ;
0.5 ;_ \L\ \V\ 10* % (C) 9=45°
0 L : 3 F
o _ (b) 38TM1 (39TE1 39TMI1 40TE11; E
E” 1000 | ; i 1
< F E &) . )
g 100 [ _— ] gloo . (b) 6=10 ]
: 34TE2 ]
0l 33TM2 34TM2 _
1 F J\s0tE3 sorM3 BITEY] | [317M3] _
27.5 28 285 29 1L
S 100 |

FIG. 2. (a) Scattering cross section8ya, Ciorward,» and
Chackwarg @nd (b) internal electromagnetic enerdy of a single
sphere versus the size parameéerkya. The radius and the dielec-
tric constant are chosen as=2.5 um ande = (1.59Y. The scatter-
ing cross sections are normalized by the cross-sectional area of th
sphere.Ciorwarg iS Multiplied by 10°2 for the guide to eyes. The 128 282 584 536 5338 39
internal energy is also normalized by the vacuum electromagnetic S
energy within the spher&)$"9'®=2as. Each peak in the energy
spectrum is labeled, in principle, by four indicdsg,m,n), butm o o o o
is usually omitted because of the degeneracy. The modal number ance angley=0°(a), 10°(b), 45%(c) and 901d). The polarization

each peak in the scattering cross sections can be identified b tHS chosen to lie on thaz plane. U is normalized by the vacuum
p 9 Y "Sectromagnetic energy within the bisphetgdouble— aysinale

corresponding sharp or broad peak in the energy spectrum. Note the . . ) -
P 9 P P 9y sp gaf. The Mie resonance positions of a single sphere are indicated

linear and logarithmic scales of the vertical axis(@ and (b). ;ysthe arrows in(a)

honor of the work by Fullet? we mainly focus on the range
of 27.5<S<29, which contains the following WG tical axis. As seen from the figure, the Mie resonance of
modes: 39TE1l $=28.12142), 39TM1 $=28.59165), Smallern has sharper peak, typical width beidds~ l_(T6 .
40TE1 (S=28.78350), 34TM2 $=28.38742), 35TE2 for n=1. In addition, all the peaks sho_w the L_orent2|an line _
(S=28.66183), 30TM3 $=28.10955), 31TE3 $ shape. These two features are associated with the quadratic
—=28.55154), 31TM3 $=28.83720). All of the spectra in dependence dfl onaf, in Eq.(2.8). At the Mie resonance,
this subsection are calculated wits | ,,,=60, which guar- @ huge increase fom occurs due to the decrease oDf .
antees sufficient numerical convergence $et 29. Near the resonant size parame8y,, “Df is linearized as
Figure 2a) shows the normalized cross sectidbg,,  ~Df*S—S +iAS, . This expansion gives the Lorentzian
Crorward, and Cpackwarg for 27.5<S=kpa;=<29. We ob- line shape centered &= Sﬁn with full width at half maxi-
serve four sharp peaks 1), four slightly broad peaksn(  mum (FWHM) 2ASf’, . The comparison betwee®'s andU
=2), and four broad peaksi¢3). As seen from the figure, in Fig. 2 obviously shows the superiority bf to C’s in the
Ctotal @nd Crorwarg resemble each other, b@orwarg IS study of Mie resonances.
much larger tharC,,,;. This means that the total scattering
is mostly governed by the strong forward scattering. It is to
be noticed that their variations are small, i.e.,
ACiotal/ Crotar=12% and ACiorward! Crorwara~20%. In Let us study the case of identical two spheres in contact.
contrast Cp.ckwarg SHOWS @ large variation. This large varia- Figure 3 shows a series of energy spectra for four cases of
tion can be used to identify the position of the Mie reso-incidence angleg=0°, 10°, 45°, and 90° with the common
nance. However, the common feature of these three crog¢z polarization. All the spectra are normalized by the
sections is that the spectrum is dominated by the lower-orderacuum electromagnetic energy of the bisphet§®!®'
resonances as pointed out in Sec. I. =2a3. Numerical convergence of the spectra is achieved for
Figure Zb) shows the internal energy spectrn U is  I<I,,,=59. Before specifying the characteristic feature of
normalized by the vacuum electromagnetic energy within aach spectrum, it would be helpful to point out two general
sphereU5"9'"*=1a3. Note the logarithmic scale of the ver- rules of the mode split in bispherél) the interaction be-

10 |

FIG. 3. Internal energyJ vs size parameteB=kya, at inci-

B. Bispheres in contact
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tween spheres is limited only between modes of the same 7 S R LR
as seen from Eq(2.3), and (2) no degeneracy is removed 3
betweenm and —m as shown in Appendix B. Therefore, the
total number of peaks originating from a certdimode is at
most 2(+1) in the range &|m|<I|. These peaks are
grouped into the bonding and antibonding branches.

At #=0°, the incident wave can only excite=*1.
Hence, Fig. 8) shows the mode split of4,l,=1,n) only.
As seen, 39TE1 and 40TE1 modes are almost symmetrically
split, but the upper peak is broader than the lower @rde
that the broad small peak &=28.03 is the upper peak of
mode 34TE2). In contrast, mode 39TM1 shows the asym- 7)) P R N
metric split with almost the same width. In this respect, it is 28 282 284 286 288 29
worth pointing out that the lower peak of mode 35TE2 ap- S
pears as a. small peak just below the uppelf pea!< of mode FIG. 4. Total scattering cross secti@p,, in correspondence to
39TM1. This fact suggests that the asymmetric split of modgnhe energy spectra in Fig. T .. is normalized by the cross-
39TM1 iS attributed to the interaction W|th 35TE2. Th|S sectional area 0fasing|e Sphere.
point will be clarified in Sec. V by the double-mode tight-
binding model. As was observed by Fuller, all the peaks are Figure 4 show<,, for the corresponding values éfin
much broadened compared with the peaks of the singl&ig- 3. At #=0°, the split ofn=1 modes can be identified
sphere in Fig. &). Obviously, this broadening is due to the by the sharp peaks in the broad background structure? At
interaction with more dissipative modes of lower =10°, however, the fine structure duerte-1 modes can be

The energy spectrum @t=10° in Fig. 3b) becomes very hardly recognized because of their small amplltudes._Thls is
complicated, showing a lot of spiky or tiny peaks betweend/SO the case fof=45° ar_wdaf 90°. The spectra consist of
the upper and lower peaks of=* 1. These peaks are due sha_rp peaks, ea_ch of which is Ioc_ated at the M|_e resonance
to the presence ah++1 components in the incident plane posmonS{fn and is accompanied with very small ripples. The

wave though main components are stil= = 1. The expres- broad peak a5=28.55 is identified as mode 31TE3 from

sion ofci”g in Appendix B shows thaftci’ﬁl decreases with Fig. 2(b). We conclude, therefore, that the energy spectrum

he i m f o C ently. th K of is more suitable for the study of MDR’s in a bisphere than
the increasingm| for small 6. Consequently, the peak of scattering spectra.

higher |m| is expected to become smaller. As seen in the
upper branch of mode 39TE1, the peak intensity decreases as C. Internal field of bisphere in contact
it approaches the Mie resonance of a single sphere. There-

fore, the inner peak corresponds to highen. Now, the
inner peak position means the smaller split. Thus, we con

clude that the interaction of moden| decreases with in- portional to the field intensity. Detailed knowledge of the

cre\?vsr:_r:g|$|. ¢ look licated. it in feature | internal field distribution gives valuable information to im-
l€ the Spectrum 10oks complicated, IS main 1eature 1, /e the efficiency of lasing in bisphere. It is also intriguing

still preserved, that is, modes 39TE1 and 40TE1 have UpP&f confirm directly that the lower and upper branches corre-
broad peaks and lower sharp peaks while mode 39TM1 hag,ond to the bonding and antibonding states of the Mie reso-
sharp peaks on both sides. The broad peak 8ea28.7 is  pance. In addition, we expect to observe a variety of
the upper branch of mode 35TE2. Note that the upper branchydependent field patterns for off-axis incidence. Some of
of mode 39TM1 shows a more complicated line shape thathem would be different from the famous image of WG
other branches. This is again due to the overlap with thenodes.
lower branch of mode 35TE2. In Figs. 5a) to 5(f), we display the internal field distribu-
The energy spectrum changes drastically when we intions by picking out some of the peaks in the energy spectra
creased to §=45°. As seen in Fig. @), modes ofn=1  of Fig. 3. The incident wave igz polarized. All the figures
appear as a dense collection of very sharp peaks around tig@/e the contour maps of the electric fidlE(r)| over the
Mie resonance size parameﬁfl. Peaks of highen are  range of—a,;<x,y=<a,; and —a;<z=3a,. The interpreta-
very similar to those of a single sphere, but they are accomton of the field distribution is based on the analysis of nor-
panied with tiny ripples. These features are preserved even atal modes in a single sphere. Details are described in Ap-
0=85° (not shown. At §=90°, however, one side of the pendix D, where special attention is paid to the maxima of
branches of all thex=1 modes disappears. We observe inthe field distribution along the circumference. Results are
Fig. 3(d) only the upper branch of TE modes and the lowersummarized in Tables | and II.
branch of the 39TM1 mode. This probably holds for higher Figure 5a) corresponds to the bonding peak of mode
values ofn as well, but is not clearly seen because of the39TE1 atS=28.05862 in Fig. &). The famous WG ring-
large peak width. These characteristic changebl dfy the like pattern is seen in each sphere within yteeplane. Note
incidence angled are also observed for the polarization  that the electric field is maximum at the contact point of the
incidence except that a=90° the presence of the upper spheres. This is in contrast to the antibonding peak of mode
and lower branches of=1 modes is reversed. 39TEL1 in Fig. %b) at S=28.186 99, where the electric field

The internal field distribution plays an important role in
the analysis of the emission process from the bisphere, be-
cause the emission from, say, doped dye molecules is pro-
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(a)

6=0" %
$=28.05862
ml=1 &

6 =0°
S=28.52694
Iml=1

4 B ot
4.40x1072 4EK1.42x10? 2.97x107 S EIK1.42x107 550x10% 4 EK150x10°

Z
(b)

S=28.18699 _

Iml=1

)

[ \
,,,,,,,,

3.18x102 4EI<3.92x10 7.99x10™ < E < 3.92x10" 372x102 4EK9.52x10' 0.18x10° <Ek4.98<10

FIG. 5. Distribution of the electric fiel¢E| within the xz and theyz planes as<x,y<a,—asz=<23a) at some of the MDR peaks of
the energy spectra in Fig. 8) and(b) are the bonding and antibonding states of 39TE1 in Fig). ®hile (c) and(d) are those of 39TM1.

(e) is picked out from the antibonding branch of 39TM16at 10° in Fig. 3b). (f) is from 39TE1 at¥=45° in Fig. 3¢). The darker region
corresponds to the higher field.

vanishes at the contact point. Thus, the contour map of ththe same ringlike pattern. As explained in Appendix D, this
internal field indeed can display the bonding and antibondings evidence of evem. We can determine the value of by
states of bisphere. referring to Tables | and Il. FoB=N, the internal field is
The bonding and antibonding states of mode 39TM1 atominated by the radial componeRt. From Table I,F,
#=0° are shown, respectively, in Fig(dh (S=28.52694) depends or¥ as P["(cos#). From Table II,|P"(cos6)| has
and Fig. %d) (S=28.61964). While the characteristic ring- | —m+1 maxima in the range of € <. Each sphere of
like pattern can be seen within th& plane of the antibond- Fig. 5) has 38 spots along the circumference ofsthe0 or
ing state in Fig. &), it is not so clear in the bonding state in y>0 region. This should be equal to-m+1=40—m.
Fig. 5(c). This reason is unknown at present. An interestingThus, we concluden=2. In some cases, it is difficult to
point of Fig. §d) is that the contour map within thez plane  identify m from the contour maps within th&z and yz
seems to imply the bonding state. This reason will be clariplanes. In this casen can be determined from the contour
fied in the next section from the tight-binding model com- map within thexy plane because the number of spots within
bined with the symmetry properties of normal modes in athe xy plane is 2n from Table I.
single sphere. Finally, in Fig. 5f) we show the contour maps of one of
Figure Je) is the contour map of the peak &  the peaks aS=28.59165 in the bonding branch of mode
=28.61919 in the antibonding branch of mode 39TMdat 39TM1 at §=45°. It is hard to determine whether it is the
=10°. It is remarkable that both contour maps show almosbonding or antibonding state because the contact point has
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TABLE Il. Number of maxima of |P["|, |mP["/sing|, and
[P 96| for O< O<r.

Function Maximum 0=

0,7
[P l—-m+1 0
|mP"/sin ¢ [—m+1 0
[aP[" 3 6] [—m+2 0

fMaximum form=0.

PHuge maximum form=1. While it is O otherwise, peaks ne&r
=0 or 7 are very large

“Very sharp peak fom=1 only.

D. Bisphere apart

Finally, we study the dependence of the energy spectrum
on the distancal between spheres. Figurdap shows the
energy spectra a#=0° for three cases af. d=0.1 um, 0.2
um, and 0.3um. A drastic decrease of the split is observed
with the increasingl. Simultaneously, the bonding and anti-
bonding peaks become sharper. The decrease of the split is
plotted in Fig. §b) as a function ofl for 39TE1 and 39TM1
modes. The bonding and antibonding peaks are clearly dis-
tinguishable for smalt. As d increases, both peaks merge
into an exponentially decreasing straight line. This exponen-
tial decrease cannot be explained from the asymptotic behav-
ior of the electric field outside the spheres. The field outside
is described by the spherical Hankel functibft)(kor). If
we take the distance between the center of each sphere as the
characteristic length=2a;, we havekyr =2kya; =2S~56
>1=39. Thereforeh(*) behaves as i)' "* expkor)/kqr,

i.e., we found no evidence of the exponential dependence on
d. This point is deeply related to the physical meaning of the
overlap integral and will be clarified in the next section.

IV. SINGLE-MODE TIGHT-BINDING METHOD

- Information on the MDR'’s of a bisphere in the previous
794x10% 4EK127x1G 721X10° 4EK3127%10 section is utilized to establish the tight-binding description of

. the MDR in the following sections. As a first step, we
FIG. 5. (Continued. present in this section its simplest form, i.e., single-mode

. . : tight-binding(SMTB) model. Though simple, it gives almost
almost no amplitude. This usually happens for higher values S . e
AR all the qualitative explanations of the characteristic features

of m. In fact, the number of spots tells us that=18 in Fig. of MDR's in bisphere
?rgz.wzgi:rr?rii‘i;gt%dn gng} 2t ;gﬁezog;?eﬁﬂgtinrgggf In analogy to the treatment of resonariéevels in the
between spheres is proportional thJ) the magnitude of the s l;ﬁorringa—Kohn—Rostoker(KKR) band theory of transition

; phe prop . ne mag P etals®® we extract a part of Eq2.3) relevant to the mode
the highem gives a smaller split. This is the reason why we

observe a series of spiky peaks converging to the Mie resoQf concern, B,1,m,n). This gives the following set of equa-

. i F18 328 -
nance of a single sphere. tions forajy, andajy,:
_ TABLE 1. 6 an+d b de_pende_nce of norm+al fielﬁfm in a af(coté,l’ﬁ—i) —iagAﬁﬁ| m(ko1R21) Elll,r/TB1
single sphere. f,(¢) is given by f. (¢)= expimd¢) 2 BB N . VZB } ]
*(—1)#"'elexp(~ime). 1 ,o;=1 or 2 for thexz or they polariza- —iatAlmim(ko, R ?) az(cotsi " —i) alz,'r/rg\
tion, andl ;=1 or 2 for =N or M, respectively. ~15
CI,’m
m  Mode F, Fy Fg = EZ,B)' (4.2
I,m
m=0 N(TM) P, P 196 -
M (TE) _ _ P, 196 This approximation is called the SMTB model. Before deal-
m>0 N(TM) fi(¢)P" fi(4)aP™as f-(#)mPTsing NG with Eq. (4.1), we comment on the evaluation of
M(TE) — i (¢)mPYsing  f(4)aPMIa0 AfE, . In the preceding section, we have used the Mack-

owski recurrence relatiofsto caIcuIateAf;g; p.m DECaUSE we
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4 Lo~ . ~
(@ 10 al,ﬁ:i (COté\IZVB_I)Cll,’rﬁli-’_IAﬁ’rﬁ:l,m(kO’Rﬂ)Clz,’rﬁ
1000 | "™ aq {(cotg P —i)(cotd —i) + [AfiR m(ko,R*H I
= (4.2a
100 | . ~ ~
. ] 25 _ 1 (cots| P—i)ePE+iIALE (Ko, R CHE
"M a2 {(cotoP—i)(cots?P—i) + [APE, (ko . RPH1Z
: I (4.2b
1 . . . :
= 1000 [ d=0.2pm ] where we have used the relatioAf’, (ko,R™
§ 3 =AML (ko,R?Y. This form of solution shows explicitly
2 2 that the coefficient matrix oti;ﬁ represents the response
] function whose pole gives the position of MDR in a bisphere
. within the SMTB modef® Note that the resonance positions
] are inherent in the system, i.e., they are independent of the

excitation pattern:

(cots—i)(cotd?#—i)+[AFE (ko,R?)]2=0.
4.3

This is an implicit equation for the resonance wave number
ko, but no solutions are found for reak, since
APE, (Ko, R?) is generally complex. Therefore, we have to
seek a reak, that gives a minimum for the left-hand side of
Eq. (4.3. However, if we make the analytical continuation to
the complex plane, the real and imaginary parts of the com-
(b) L I B B N plex k, give the resonance wave number and the resonance
2 width, respectively. We adopt this procedure below in an
: approximate way.

0.01 . ] To simplify the analysis we focus on the identical spheres,
i.e., a;=a,=a, e,=8,=¢, and 8°=6#=sf. Accord-
ingly, Egs.(4.2) are simplified as

. ~15, =2, ~18 =2,
’ 1 | qfﬁqﬁ C|,r€1_c|,r€1 ]

0.001 v A= 522] conf— i AP oo i TIAPP
A ad . ] M 2a%| cotd] —i —iAT 1 CO] —iHIATY
] (4.49

28 28.2 284 g 28.6 28.8 29

39,1|

)

W

3

0

— e

o W
=}
2

lspeak

=18, 72, ~18_72,
MNP NN EPUIPIE BN EPEP BT '5.2’[;:1 Cl,r[’r;]—i_cl,ﬁ _ Cl,r{r;]_cl,rf]
0 01 02 03 04 05 M 2a%| cotdf —i—iAfE, L cotd—i+iALE L]
d (4.4b

FIG. 6. (a) Internal energy spectra @&=0° for three cases of where we use the abbreviatiohﬁhﬁYm=Aﬁ’n€|Ym(k0,R21).
distanced between the spherest=0.1 um, d=0.2 um, andd Therefore, the MDR’s of a bisphere within the SMTB model
=0.3 um. (b) Shift of peak positiorS,.,cat #=0° from the Mie  are given by the solutions of
resonance positiosf"n as a function of the distance for 39TE1

and 39TM1 modes. Note the logarithmic vertical scalékin Cot6F= i (1tA|B’;f;|,m . (4.5
Since our aim is to give a simple expression of the MDR
need the whole sets @f,‘?’m’;p,m. In the tight-binding formal-  positions, we make further approximations. Firstly, from Ap-

ism, in contrast, we need to evaludxé’h{p’m only for a few  pendix C,Af‘rﬁ;,'m is approximately given fol>1 and|
sets of (3,7,1,p,m). This can, in principle, be done by using >ko|R%| by
the explicit expression oﬁﬁh{pym in terms of the Wigner 3- 8.8 ) m
symbols$” as given in Appendix C. However, the evaluation Al m=1 (=17 A gl (4.6

of the Wigners 3} symbol needs careful numerical treat- \where A m1.m is defined in Appendix C. Second, we ap-
ment because it is expressed as a sum of many terms coproximate 00@8 as follows: At the Mie resonancaén,
taining factorials of large numbers. In this respect, it is mucfbotfzo is satisfied. For higher-order resonances,&tot
convenient and reliable to use the recurrence relation discO\hanges sign very rapidly within the narrow region around
ered by Bruning and L3 Details are summarized in Appen- SI,B Therefore. we linearize Cdi as

dix C. We also derive in AppendiC a simple estimation " ’

formula ofA,BhZ.p m for I,p>1 based on the maximum term s-sf
. LR B n
approximation. cotéy = —5 4.7
The solution to Eq(4.1) is given as APy
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where A{gn (>0) gives the Mie resonance width of mode This means that the split decreases exponentially with the

(,B,I,m,nj in a single sphere. They are obtained from Egs.ncreasingd in qualitative agreement with the results in Fig.
(2.4 and(2.5) as 6(b). _ _ _ o
The fourth problem deals with the internal field distribu-
. ., Y . 2 tion of the bonding and antibonding states. The preceding
m _LKii(koa)jj (ka) —kojj (koa)ji(ka)] (4.89 section gave direct evidence that the lower and higher

Ln (s—l)jf(ka) ' branches are the bonding and antibonding states, respec-
tively. This is a natural consequence from the energetical
/ _ / 2 consideration because a higher dielectric constant gives a
AN = [kih(ka) l@(k?a) kgw' (ka) ¢ (kod)] - stronger attractive potential for the electric field. However,
M (e=1){(ako) T (ka)]“+1(1+1)[ ¢y (ka)]7} this does not necessarily mean that all the bonding states are

(4.80  approximately given as[Ff.(ry)+Ff(r2)1/\2. Here,

where k _3ﬁ Ja and k=sk,. Substitution of Eqs(4.6) Fﬁm(ri) is the normal field of the spheragiven in Appendix
0~ n - 0- .

and(4.7) into'Eq (4.5 yields an approximate formula of the D. Let us consider, for example, the caselafm=-even.
L L Then, the term of lower sign in Eq4.9) gives the lower
MDR position within the SMTB model: 9 d4.9 g

resonance. The lower sign corresponds to the second term in
Egs. (4.4). Neglecting the first term, we hawagf=—2a2" .

— _iAB — I+ B ,m ,m
S—Sﬁ,}n AfE(=1) mAI,n|AI,m;|ym(S1€n)|' (4.9 Thus, the bonding modes are given b&Fﬁm(rl)
—Fﬁm(rz)]/\/f. Now, the main component of the normal

whereA i m(SFn) = Ay mi m(ko=Sn/a,R*). Note that the 014" 3 single sphere has parity-()' "™ 1= —1 with z

upper and lower signs correspond, respectively, to the de-, _, except for three cases given in Appendix D. There-
nominator of the first and second terms in E4.4). This

formula gives a qualitative guide to analyze a variety of phefore, whenl +m is even, the electric field of each sphere has
the same sign at the contact point. This gives a large ampli-
nomena observed in the MDR of the bisphere in Sec. lll. Th g P g ¢ P

: ; . , . "Qude at the contact point in agreement with the intuitive in-
important point of this formula is that the overlap integral iS tghetation of the bonding states. Note in this respect the
explicitly IS given ,byAﬁnlAlvmilym(an”' . observation in Fig. &) that while thexz in-plane contour

Let us first estimate the magnitude of split between they,ggests an antibinding state, the contour withinythelane
bonding and antibonding modes within the SMTB model.5ks like the bonding state. This corresponds to one of the
From Eq. (4.9, the split is given by Af[Ami m(S’W)]-  three cases in Appendix D.
Numerical evaluation generally shows>A}",, while Finally, we discuss the peculiar excitation pattern of the
|A it m(SE <AL mi m(SW)|. For example, atl=39  energy spectrum a=90° in Fig. 3d). This is explained as
and m=1 we have A]\=14591x10° and follows: for 90° incidence, we have|£=c?%. Therefore,
(Azll\{lgl;giggggloiorv\/h”% A;\,lm;hm:n%l%fr 21 632%3?32 the second term of Eq4.4) vanishes. This leads taj#

. - I,m;l,m— Y- =2 =1 =2 H = o

- 68128.439% (73 167.6858) for S—M. Here, the values —2im*Cim (=Cim). Itis easy to show that,, at 6=90
in the parentheses are given by the maximum term approxj/@nishes when—m-+1p,+1, is even. Here),q=1 or 2

mation in Appendix C. Thus, we haVeA?,I'1|A|,m;|,m| for xz polarization _ory polarizati0n~ellr;dl gjg or 2 for B
~0.1317 (0.1415) and &YA, 1 n|=0.0806(0.0869, in =N O M, respectively. Thereforeq f,=aj’;=0 when|
agreement with the observed values of 0.1284 for mode M+ !poit!s IS even. For example, the case of the T™M
39TE1 and 0.0927 for mode 39TML. mode andxz polarization givesl o +15=2. Thus, 3%
The second problem is tha dependence of the split. We zaﬁ;‘;:o for evenl—m. Now, the first term of Eq(4.4)
have concluded in Sec. Il that the split is smaller for |argefcorrésponds to the upper sign of E4.9). This gives the
|m|. This conclusion is drawn from the behavior of the en-antibonding modes for eveh—m. Therefore, the upper
ergy spectra and the contour maps of the internal field. Equaranch of the TM modes becomes silent for this type of
tion (4.9 now gives direct evidence for this, that is, excitation.
|ALm1m(SEr)| decreases with increasirign| as shown in Thus, the SMTB model provides us with enough of a
Appendix C. qualitative understanding of the MDR. However, a compari-
The third problem is the dependence of the split on theson with the exact numerical results of Sec. Il reveals that
distanced between spheres. Since the split is given bythe SMTB model is insufficient for the quantitative descrip-
2A,B|A|,m;,,m(an)|, it is enough to check the dependence oftion of the MDR. Figure 7 shows the internal energy spectra
|Al miml on d. In the maximum term approximation, of the exact calculation and the SMTB model at 10° inci-
|Al m1.m| is proportional to hg})[gén(2+d/a)]. For the dence. We can see that the actual width of each peak is much
present values of parameters, | {21/2)> Sﬂﬂ,n(2+d/a) is br(_)ader than tho_se of the SMTB model. In addition, a large
satisfied so thah$? behaves as exponentially decreasingShift of the bonding branch is observed for mode 39TM1.
function. By using its asymptotic form, EGC14), it is easy These problems drive us to improve the SMTB model, as

to show that will be described in the next section.
V. DOUBLE-MODE TIGHT-BINDING MODEL
d[ [41+1)? vz
|A mit.ml = exp =S — -1 . (4.10 The problem of the SMTB model can be easily overcome
a 4S'B,n by extending the number of relevant modgkl(m,n). This
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(2) 39TE1

1000

Exact

100 |

FRER] SMTB 1

FIG. 7. Internal energy spectra of bisphere @r39TE1 andb)
39TM1 regions. Parameters are the same with those in Hiy.a8
0=10° with the xz polarization. The upper part of each figure
represents the result of the exact calculation by takipg=59.
The lower part is obtained by the SMTB model calculation.

2 T T T T T T T

FIG. 8. Peak split of the Mie resonance in bisphere obtained by
the SMTB model for 3&1<40 in the range of 275S<29. Pa-
rameters are the same with those in Fig) 3The large filled circles
and crosses represent, respectively, the TM and TE Mie resonance
positions of a single sphere. Each group of smaller symbols sur-
rounding the large one shows the MDR peak positions of mode 0
=m<9. The modem=0 ( closest to the large symbohas the
largest split and the mode=9 (furthest from the large symbpol
has the smallest split.

SMTB model to the double-mode tight-bindind@MTB)
model.

A. Preliminaries

Let us check the split of other modes in the bisphere
within the SMTB model before going directly to the DMTB
model. Figure 8 shows the bonding and antibonding
branches for 3&I=<40 within the range 275S<29.
Modes of up tom=9 are calculated. Large circles and
crosses indicate the position of the Mie resonance of TM and
TE modes, respectively. Small symbols surrounding large
ones are the bonding and antibonding MDR modes of the
bisphere. They are arranged in order from left to rightras
increases from 0 to 9. Modes bf 38,39,40 aren=1 while
those ofl =34,35 and =30,31 aren=2 andn=3, respec-
tively.

As seen in the figure, the 34TE2 upper branch is very
close inSto the 39TEL lower branch. Therefore, their inter-
action is expected to be large. 30TM3 branches also overlap
with 39TE1. Because of the higher valuergfhowever, the
effect of mode 30TM3 on 39TE1 would not be significant. In
addition, we will see in the next subsection that the interac-
tion between modes of differegit is much smaller than that
of the sameB. Therefore, mode 30TM3 is expected at most
to broaden the peaks of mode 39TE1 because of its dissipa-

is called the multimode tight-binding model. For example, ative feature. This is also expected for the effect of mode

straightforward extension of E¢4.1) to include the modes

31TE3 on 39TM1. However, mode 35TE2 needs special at-

in the range 1%1=<54 reproduces the results of the exacttention. This mode is not so dissipative compared with the

calculation fairly well with less computation time. However,

when it is limited to 34<1<44, the energy spectrum turns

modes ofn= 3. In addition, its bonding branch overlaps with
the antibonding branch of mode 39TM1. Therefore, these

out to be spiky like that in Fig. 7. It would, therefore, be two branches are almost degenerate with each other. As in
necessary to clarify the role of each mode, i.e., whether iuantum mechanics, the degeneracy requires special treat-

would broaden or shift the relevant peak. With this knowl-

edge we can reduce the number of the relevant modes

ment because even a small interaction gives a large split.
ahus, mode 35TE2 is expected to have significant influence

much as possible. In this section, we study the effect of eachn mode 39TM1 although their interaction is small because
mode on resonances 39TE1 and 39TM1 by extending thef different g3.
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B. Double-mode tight-binding model model is a straightforward extension of the SMTB model.
We have simply to take account of two modes,I;m,n)
To understand the influence of other modes on resonancesmd (8’,1’,m,n’) in Eq. (2.3). For the bisphere composed of
39TE1 and 39TM1 we use the DMTB model. The DMTB identical spheres, this procedure yields

cotsf—i 0 —IABR (R —iA%E L (R [ 3l oL

0 cowf/ —i Al (R —IATEL (R LA,
SIABSA(RD) APEL (R cots—i 0 we| | we ©F

SIADE (R AL (R 0 cotsf, —i alnl T

where we omit the common argumeky in the coefficient interaction with the dissipative modes of lower order. In
A’s. other words, they contribute mainly to the imaginary part of
While the analytical solution to E5.1) can be obtained, the poles of the response function.
it is not so simple and transparent as in the case of the SMTB Thus, the DMTB model enables us to classify each mode
model. Instead, we use the energy spectrum=at0® with  into two types. The first type is a mode that affects signifi-
the xz polarization to pick out the peak positions of the cantly both the peak position and the peak width of the rel-
bonding and antibonding modes of 39TE1 and 39TML1. Ingyant mode, resonance 35TE2 on 39TM1 or 34TE2 on
the calculation, we fixg,1,m,n) at modes 39TE1 or 39TM1  39TE1. These modes should be treated on equal footing with
and change other modes over the range 6BG<45. The  the relevant mode. The second type of mode gives only the
summation ovemis taken in the range ofEm<10for TE  heak shift or the peak broadening without changing the en-
modes and &m<=9 for TM modes. Note the absence of grgy spectrum considerably. It is expected that the second
modem=0 for TE modes becausg’},_,=0 for odd values type can be treated perturbationally as a reservoir mode,
of Ipo1+14. The peak positions in the energy spectrum arewhile the first one should be included as a relevant mode into
shown, respectively, in Figs(& and 9b) for modes 39TE1  the system.
and 39TML. In principle, the outermost peaks in the horizon- | the perturbational treatment, the dynamics of the reser-
tal line of Figs. 9 correspond, respectively, to the-1 mode  yojr modes is irrelevant. In other words, we can neglect their
of resonance 39TEl and thm=0 mode of resonance g gdependence and evaluate their contributions at a certain
39TM1. However, we are unable to exclude tiny peaks du‘?/alue of S say, at the Mie resonancﬁgn of the relevant
to other modes because of the use of energy spectra. The de. In fact, we found that this static treatment reproduces

lpf%lz)sfaprt)sar#\;legulgrly, _e.?:._, th; leftmost point in the line o airly well the peak shift and the peak broadening due to the
B orine modes in Fig. @). modes of second type. The static treatment of the reservoir

AS seen from the figures, mode_s_ of differghithave al- modes will be used in the next subsection to reduce the com-
most no influence on the peak position of the relevant mOdgutation time significantly

except for the cases of modes 35TE2 on 39TM1 and 34TE
on 39TEL. This reflects the fact tha”? , | for BB’ is

,m;l7,

much smaller than that fgg8= B'. Therefore, we concentrate C. Improvement of DMTB: Perturbational inclusion
on the cases oB=B’. Generally speaking, highém| has of reservoir modes

less influence than lowem| since|Af’nf;/,,’m| decreases with To include the effect of the reservoir modes it is conve-
increasing|m|. Peaks of mode 39TE1 are shifted to thenient to rewrite the basic equatio2.3) in the following
higher side due to the interaction with modes<30<34.  matrix form:
This is also the case for 3@’ <38. The upshift is the larg-
est forl’=34. On the other hand, =35 gives the down-
shift. Modes ofl’ =40 generally give the downshift and their ~ B ~p -~
effect decreases with the increasilig This tendency also Pﬁmaﬁm’Lz lzl Qﬁrﬁl’,maﬁ,m_cﬁm' (5.2
holds for the case of mode 39TM1 in Fig(b?. pren

We have also studied the peak broadening of modes
39TE1 and 39TM1 due to the intgraction with othe( mc’deSHere, we define the (22) matricesPf, and Qlﬁ,ﬁ_;, as
It turns out that the modes of differeit have negligible ’ mEm
influence except for the case of mode 35TE2 on 39TML1. In
the cases of the sam@ we found that the modek <35 2 18 . 2.8
broaden both the br:)]ﬁding and antibonding modes while pg _ aj(cotd ~i) —iaiAfin m(ko,R*)
higherl’ has a negligible influence on the peak width. There- ~ "™ | —ia3Af:, | (ko,R*) as(cots??—i), |’
fore, the broadening of the relevant mode occurs via the (5.39
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(a) 39TE1 Let us next introduce the (22) matr|xUI m» Which diago-
ag FIML T LIl nallzesPLm.
o fmodesttsl i iiiin tiriiiien 1
T S OSSN SOTTP OO SOOI UPnPlm(Ufm =D (5.9
e e By applying the transformatiofb.5) to Eq. (5.2), we obtain
36 ] : :
oy EEEERES SINNRISE EREELI L
S R LR SRR Dfmalnt > 2 ULQME, (Uf D Yaf =&,
30- iee 8 8 o o @ .o 400 8 0 0 0 00 B ﬁ’ |(#|)
= e X F ot SV (5.6
44 ITE ~ - - -
42 fmodese s s o rr il _ whereaf  and'&’, are given in terms o, andc/, as
40F AR DSOS IS _ _ 5 ~
fryd ?xxxxxxx x x xxxxixxxxxx.é a’ﬁmzuﬁmaﬁm, a?mzuﬁmcﬁm. (57)
360 Foiiiweea e e e PP R
VN T AR A R At this point, we divide the whole modes into the relevant
s f o omiiiiiinoomiiioiin mode (3,1) and the reservoir modesy(p). Since the reser-
B R A DA STt B voir modes are treated perturbationally, the summation of the
————3%'05 BIg 33135 3.2 second term in Eq(5.6) for the reservoir mode ,p) is
peak restrlcted only over the relevant modqs (I"). Therefore,
m IS given in terms ofa/g
(b) 39TM1
a4 f PITg T TTIE agm—(Dg,mrlﬁgm—(Dg,m)*lUg,m
42 F S P T o
: srimiodes’ ) ~ar
op SR R ; X 22 Qi VUi el . (5.8
‘ ] P : ,
SOl TP s Il B eip) ' e{l}
;2 _ ' K Substitution of Eq(5.8) into Eq.(5.6) for the relevant modes
s (B.1) yields a closed set of equations foe} :
30 E-

R EE Ag ~ b g~pa
ME Dfnafnt 2 X URQfm o(U ) tafl = .
0L B'e{Br I'(#1)
a0k (5.9
N R L L S , A
6k Here, we defindf,,, Qf:2, ., and&’, as
34 L
TR fin= 24 UEn QL (U (D)™

i 7558 T v
Spe XU QU L, (5.108

FIG. 9. Peak shift ofa) 39TE1 and(b) 39TM1 modes due to
the interaction with other TE and TM modes. Peak positions are Q, melsm | m m E Qf o m(Udm) 1D )t
found from the internal energy spectra calculated by the DMTB
model atd=10° with thexz polarization. Parameters are the same

with those in Fig. 8). The range ofm is 1=m=<10 for the TE ><U“/ Qp m;l’,m’ (5.10h
mode and &m=<9 for the TM mode. Outer peaks on the horizon-
tal line correspond to the lowan. Crosses in the figures indicate y 1 ~1%
the peak position of 39TE1 and 39TM1 modes obtained by the ‘ﬂgm ‘38’“ 2 U 'm Pm(UP m (D m 9
SMTB model. (5.100
QP# . a] o, for the reservoir mode is obtained by substituting the
il solution of Eq.(5.9) into Eq.(5.8). This model is called the
0 ZABB (Ko R2Y) perturbed DMTB model.
- il ) The perturbational treatment of the reservoir modes sig-
'azA| o’ m (Ko,R?) 0 nificantly reduces the size of equation. In fact, we need only

two relevant modes to reproduce the characteristic features
(5.3 of the energy spectra for resonances 39TE1 and 39TM1 as
will be shown in the next subsection. We can also adopt the
static treatment of the reservoir modes when the ran@of
ALs olp narrow. In this treatmen®’s andQ’s of Eqgs.(5.3) having at
=B I m ~8 _ ,m .. .
Am=| ~2p P (5.4)  least one reservoir index are evaluated at the Mie resonance
a'm c m of one of the relevant modes. The static treatment of reser-

The vectorsaf , andcf , in Eq. (5.2) are given as

CI,m
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voir modes further reduces the computation time by two or- (a) 39TE1
ders of magnitude. Of course, the static treatment is not suit- [ ' ' " 9=10° 1
able for a wide range o 1000 ¢ 3

reservoir modes are chosen to covers¥<54 and vy bd/\]\\

=M,N. The static treatment of the reservoir modes neces- S Z n .

sarily limits the range ofS. Hence, we treat modes 39TE1 g 1000 6=0° -

and 39TM1 separately. The Mie resonance position of modes i ]

39TE1 and 39TM1 are, respectively, given b

=28.12142 and5=28.591 65. An additional relevant mode

is 34TE2 for 39TE1 and 35TE2 for 39TML1. It is, of course, r

possible to include more relevant modes. In this paper, how- 10 |

ever, we try to clarify the validity of the perturbed DMTB b Perturbed

model and its limitation as well. DMTB
The energy spectrum obtained by the perturbed DMTB 28 5805 281 58.15 082

model is compared with that of the exact calculation in Fig.

10 at #=0° and 10° with thexz polarization. In the per-

turbed DMTB model, the summation ovaris taken for O (b) 39TM1

<m=20 at #=10°. Compared with the SMTB model, sig- 1000 '

nificant improvement is observed for both the peak shift and ‘

the peak broadening. In particular, the perturbed DMTB -

model reproduces fairly well the asymmetric broadening of 100 ¢

the bonding and antibonding modes of resonance 39TE1 at i

0=10°. It also gives the peculiar line shape of the antibond- -

ing branch of 39TM1 at#=10°. Note the difference of a 10+

. 100 |
D. Numerical results

In this subsection, we give the numerical results of vari-
ous quantities obtained by the perturbed DMTB model. The

Perturbed

10l

DMTB

double

100 1

Exact(x10)

B0

Exact(x10)

Perturbed DMTB

small peak belovs=28.05 atf=0° in Fig. 10a). This peak 2

is associated with the antibonding mode of resonance 34TE2. 2

While 34TE2 is treated as the relevant mode, our main con- QO 1t : : o=0°
cern is mode 39TE1. In other words, other modes that inter- )

act strongly with mode 34TE2 are treated as the reservoir 100 I

modes. This is the reason why this small peak is not well
reproduced. The same is true for mode 35TE2, which ap-
pears as a shoulder below the antibonding peak of mode
39TM1 at§=0°. 10 &

In contrast to the internal energy spectrum, the total scat- b
tering cross sectiof,,;, does not agree well with the exact :
results as shown in Fig. 11 for the 39TE1 region. While the Loz 5353 53¢ 3365
positions of sharp peaks and dips coincide with those of the
exact results, its magnitude is greatly reduced. This is be-
cause we take no account of the moges23 that would

Exact(x10)

Perturbed DMTB

FIG. 10. Internal energy spectra of tte 39TE1 region andb)
39TM1 region obtained by the exact calculation and by the per-

ha\lle 2. Iargizcontrlbutlon tﬁ‘t"ﬁa" K distributi f 39TE1turbed DMTB model. Parameters are the same with those in Fig. 3.
n Hgs. we compare the peak distribution o The energy spectra of the exact results are multiplied by 10 as a
and 39TM1 modes obtained by the perturbed DMTB mOdebuide for the eye.

and by the exact calculation. The incidence angle is choseh

at #=0°,10°,45°,80°, and 90°. Some of the peaks obtained . ) )

by the perturbed DMTB model are missing from the exact It would be interesting to study the level-crossing phe-

results. These peaks disappear because of either too muBAMenon induced by the change of the second raatiughe

broadening or too low a peak intensity. Except for thesdwo spheres are in contact amd is kept at 2.5um. The

peaks, the agreement with the exact results is satisfactory.results are plotted in Fig. 14 &=0°. The filled circles and
The perturbed DMTB model can also be used to analyzéhe crosses show the peak positions at each ragiusy the

the dependence of the peak positions on the distaripe- ~ exact calculation and by the perturbed DMTB model, respec-

tween spheres. Figure 13 plots the peak positions in th#ively. The vertical axis isS=koa;. Note that the smaller

39TE1 and 39TM1 regions fo#=0° incidence. The per- value ofa, pushes up the resonance wave number of the

turbed DMTB model gives an exponential dependence of theéecond spherky= S’ /a, so that the Mie resonance of the

peak positions on the distandan excellent agreement with second sphere appears at higlser koa1=SF,na1/a2. The

the exact results. level crossing of the 39TE1 and 39TM1 modes shows a
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3 T ; . s « Exact
- 39TE1" 8=10°" 3 (a) 3TET o Perturbed DNTB
O - b LA AL AL L R L AL R B
2.6 — Exact — L mooooediie Y
24 F 3 r _an°
5 L ] FOOGD . uemagge -Z® 0 000
2L 3 e
2 _ Perturbed DMTB _ :oocm . FEOOO © @@@@zg;gs%?@y@ @ ® © 060 _
_ 1.8 /0o 3 looam a)@@@@@@@me_so@GJX@Z@ ® © 000
5 :
08 1.6 3 I 39TE‘i o 8=0° HOOQD m@@@@@@@mg-égg@@% ©® 00000 |
3 E ] i 9=45" xz
g [OOLD P00 O GO OISO © @ © OC0 -
] Exact 3 : -10°
25 E_ 3 rOQQm - mca@@@@@@@@@@@om-
s 0=10° xz
E 3 p2eiecyl OO O O 0 OIEHEROSO G @ @ ©® 000
3 i 6=07
2 F g oo - [ o A
; | PertubedDMTB A R
s T ) ) ] 28 28.05  28.1 28.15 282
28 28.05 28.1 28.15 282
S S peak
(<]
FIG. 11. Comparison of the normalized total scattering cross
sectionsCiq, in the 39TEL region between the exact results and (b) 39TM1 : Eé?gﬁrbed DNTB
those obtained by the perturbed DMTB model. Parameters are the ————— T
same with those in Fig. 10. 6=90° y
. @SRO0E0R O O O 009
rather complicated behavior owing to the presence of modes L w000 6 o o @@@@..9290 X ]
34TE2 and 35TE2. This complicated level-crossing phenom-
enon involving modes 34TE2 and 35TE2 is reproduced by P ©0r0 0 0 9 00 oemmE:
the perturbed DMTB model whea, is close toa;. How- o o o o 5 emm ‘“ ool
ever, some of the peaks are missing in the perturbed DMTB I iy
model. If one wants to achieve better agreement, one would L 0000 0 66
simply extend the DMTB model to the multimode tight-
binding model. For example, the multimode tight-binding T®o0 0 0 0
calculation  including 12 relevant  modes, | oo o o
=31,34,35,38,39,40 angg=N,M is enough to reproduce
almost all the features of the level crossing shown in Fig. 14. L @00 © 0 o
Finally, we compare the internal field distribution. We
pick out some of the peaks in the energy spectra obtained by "o ; . .

the perturbed DMTB model. Their mode numimeg can be
identified by a direct comparison af;ﬁ,. Then, we evaluate
the electric field by the perturbed DMTB model, using a pair Peak

of mg and —my. It turns out that the single use of, fails to FIG. 12. Peak positions of the exact results and those obtained
give the characteristic feature of the exact contour maps ®%y the perturbed DMTB model for various incidence angles and
cept for the case ob=0° incidence. This is due to the pojarizations in théa) 39TE1 region andb) 39TM1 region in(b).
interference of the electric fields between differemtom-  Exact results and those by the perturbed DMTB model are, respec-
ponents. Therefore, we sum up the field contribution over afively, denoted by the small filled circles and the empty large
appropriate range ofm including my. Figures 1%a) and circles. They are grouped and put on the same horizontal line ac-
15(b), respectively, show the contour maps of the internakording to the incidence angle and the polarization indicated just
field at the bonding and antibonding peaks of mode 39TEXhbove each line. Parameters of the spheres are the same with those
for 6=0° incidence. Figure 16) corresponds to the case of in Fig. 3.
Fig. 5(f) (39TE1H=45° my=18). Here, we take the sum

overmin the range 18&m=23. A comparison with the exact

results reveals that the essential features of the contour maps While the DMTB model fails to give the correct peak
are reproduced well such as the bonding and antibindingositions, it provides us with a powerful tool to analyze the
states of the electric field at the contact point. It is commonlypeculiar line shape of the antibonding state of mode 39TM1
observed that the central part of each sphere has lower eleat §=10°. In addition, it gives a qualitative explanation of
tric field than that of the exact result. This is simply becausehe peak shift of modes 39TE1 and 39TM1 due to the inter-
we take no account of the lower resonance modes, li.e., action with other modes. Let us first consider the former
<23 are neglected. These modes have a larger electric fielchse. We choose modes 39TM1 and 35TE2 and calculate the
in the inner part of the spheres. energy spectrum a#=10° with thexz polarization by the

28.56 S 28.6 28.64

VI. DISCUSSION AND SUMMARY



PRB 62 AB INITIO TIGHT-BINDING DESCRIPTION O . .. 7991

282 T r r . T ™ behavior, i.e., it is very similar to that of the SMTB model in
Y e Exact ] Fig. 7(b) though it is shifted to the lower side. The antibond-
WISE ey Perturbed DNTB voe ] ing branch, on the other hand, consists of sharp and broad
XxX'xXXX'XXxi:;§;§=§§§§.§mmxx_Wx: peaks. In particular, peaks arouSiek 28.62 are missing. This
281 F y (WO h behavior is due to the level crossing between the bonding
[ Xxx-xx ] modes of 35TE2 and the antibonding modes of 39TML1.
28.05 £¥ i Clear evidence of their coexistence is seenrfor 2 in the
fe ] region of 28.6=S<28.64. The lower broad peak and the
o8 ;_XXXXXXXX . (a) 39TE1 regioﬁ upper sharp peak correspond, respectively, to e 2
3 F , , , s L modes of resonances 35TE2 and 39TM1 mscreases, the
© [ ' e e s s 3 4] bonding peak of mode 35TE2 shifts to the higher side while
2865 - y el ] that of 39TM1 moves downward. These peaks are almost
X .XX{’ 1 degenerate ah=4 or 5. Due to the interaction, both peaks
286 ° e ] have almost the same width. This peak width is determined
1 Xxxx.xxxx-xxii:ﬁ?iﬂﬁf*'******x*""""‘x' ] by the dissipation due to 35TE2 mode. The disappearance of
28.56 L X_XXXX' ] peaks aroun®=28.62 is nothing but the repulsion between
FX" o o e e * the almost-degenerate peaks. Thus, the origin of the peculiar
[ .« o ] behavior of the antibonding branch is attributed to the level
8521 ¢ ° (b) 39TM1 reglon crossing with the mode 35TE2.
0 01 03 03 03 0.5 To discuss the peak shift of3(l,m,n) mode due to the
d(um) interaction with (8',1’,m,n’) mode we decouple Eqé5.1)
as follows:
FIG. 13. Peak positions vs distandebetween spheres fag)
39TE1 and(b) 39TM1 modes a®y=0°. Filled circles and crosses COt5B— i —iABB _
: I,m;l,m [ 77A ’
represent, respectively, the exact results and those by the perturbed i tml
DMTB model. Parameters are the same as those in Fig. 6. Aﬁ nfl - COt5ﬁ —i—i ”/Av -
DMTB model. The summation ovem is taken for Gsm alb+a?t
=<10. The results are shown in Fig. 16 by the thick line. The X )
individual contribution from 2m<7 is also plotted by the aI ,B + na 28"
thin line multiplied by an appropriate factor as a guide for
the eye. As is seen, the bonding branch shows no peculiar B+C B
=l~ip ~op (6.1a
e Exact G m ™ G m
‘ x Pertur|bed'DMTBl ‘
2825 [ ¥ Tt e ] cotsf' ~ i +iALT) m A
! (a) 39TE1 region® | 58 5
[ s ; ] |A|,mlm coté,,—|+|nA|,m|,
28.14 | 39TE1 i
[ o ] AE 32k
i 1 X
28.04 R . 4. . ] (aﬁrﬁ 7]5-|2rﬁ )
I 3 . / i
2793 '_WEZ C e . ] ( s )
£ B - et - o PP (6.1b
- nCIZ,B

m L L ! ! ! ,' ¢ 4
2877 [ %, (b) 39TM1 region
2867 _ e Here, nf(—l)'*"*'ﬁ*'ﬁ’ and arguments iA's are com-
B! monly given by ko,R?Y). In the decoupling procedure, we
use the symmetry property @f's with respect to the inver-
1 sion R>—R2?! in Appendix C. From the viewpoint of the
. response function, it is enough to study the complex zeros of
] the determinant of coefficient matrices in E¢8.1). Let us
, : . ] focus on the case @8’ = B. To simplify the analysis all the
249 2.495 a (2-5m) 2.505 251 parameters except for ot are evaluated at the Mie reso-
H nancesfn. This evaluation is denoted by the superscript 0.
FIG. 14. Level crossing as a function of the radius of the secondl'hen, the determinant of E¢6.1a gives
spherea, at #=0° for the(a) 39TE1 region andb) 39TM1 region.

28.56 |

2846 [

The spheres are in contact and the radius of the first sphere is fixed 77A|°m,|, mAIO, i
ata,=2.5 um. Both spheres have the same dielectric constant cotsf =i+ iAIO,m;I,m_ 5 ’0 "
=g,=(1.59%. Filled circles represent the exact results and crosses cot( oy, )" —i—i 7]A|/,m;|/,m

show the results by the perturbed DMTB model. (6.2
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6=0° 6 =0’

0.0<EI<1.10x10% 0.0<IEI<1.10x102 0.0<EK2.12x10" 00<1EIS212><10‘

zZ
A

0.0<4EK1.37x10* 0.0<4EK1.37x10?

FIG. 15. Distribution of the electric fieltE| within thexz and theyz planes a<x,y<a, —as<z=23a) at some of the MDR peaks of
the energy spectra by the perturbed DMTB model. The field distributions are also calculated by the perturbed DMTB model. The incident
field is polarized within thexz plane. The darker region corresponds to the higher fie)dand (b) are the bonding and antibonding states
of the 39TE1 mode aff=0°. The peak for(c) is chosen from a dense collection of peaks centering at the Mie resonance of mode 39TE1
at #=45°. (a), (b), and(c) correspond respectively @), (b), and(f) in Fig. 5.

This equation is further simplified by the linearization of I(1+1) |A|° " |2
cotf, Eq. (4.7), and the following relation from Eq¢C?)  ASf,=- s IO l 'nL 5 .
and (C16) of Appendix C: ( ) 001(5|f )P=i+ (=L)AL Ll
(6.4b
N e 0D
vmtm=(=1) (1" 42) " mtr.m Replacement of £ 1) *™— — (—1)'*™ gives the solution to
Eq. (6.1D.
=i(—1)*m I(1+1) A ol 6.3 Obviously, the peak shift hinges on the sign of the real
- (17 +1) " mtrmi ' and imaginary parts oAS{,. The denominator oAS’, is

Here, the last approximation holds foyl’>1 and |+’ generally governed by coﬁ )°. The Mie resonance posi-

> 2ak,. Thus, the MDR position of £,1,m,n) mode within tions of moded’=40 are much higher than those of posi-

the DMTB model is given by tions 39TE1 and 39TML1. In this case, c@‘foo gives a large
positive value and dominates the denominator
S=S,—iAl + (=D)AL A il +ASE, Thus, AS, becomes negative and the peaks of modes

(6.4a 39TE1 and 39TM1 move downward. In addition, the peak
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The application of the present formalism to a cluster of

10° r spheres such as triangular or tetrahedral configurations is
. r straightforward. Also we can apply the present formalism to
10 r the photonic band-structure calculation of the higher-order
10° r resonance in 1D, 2D, and 3D systems. These applications are
2 r now in progress.
= r
S 1000 |
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FIG. 16. Energy spectrum of 39TMI35TE2 modes obtained
by the DMTB model. The incidence angle is chose@atL0° with
the xz in-plane polarization. Thick line shows the energy summed  The vector spherical harmoni¢gSH’s) EiBm(fl kr,6,9)

over 0=m=10. The contribution from eact is plotted by thin  4a solutions of the Maxwell equation suitable for the spheri-
line with an appropriate scale factor as a guide for the eyes. cal boundary conditiof3® They are defined by

APPENDIX A: VECTOR SPHERICAL HARMONICS

d

shift decreases rapidly with the increasirigbecause of the
e e
siné a0

huge increase of coiﬁl)o. Model’=38, on the other hand,
has a Mie resonance &=27.458 76 and 27.928 36 so that

cot(éﬁ’)0 gives a large negative value. Therefo,r:‘ﬁﬁyn be- f,(kr)

comes positive and pushes up the peak positions. This is also E{f'm(ﬁ kr, 0,¢):er'k—l (I+1)Y, m(6,0)
the case forl’=34, which has a Mie resonance & '

=27.97029 and 28.387 42. In this approximation, therefore, 1 d

the peak shift due to modeB(,I’,m,n’) is mainly deter- + Wm[kfﬁ(kf)]
mined by the denominator afSf,. The decrease akSf’;

with the increase ofm| is due to its numeratdi , |2 d im
Peak width is determined Hy- A, +Im(ASE,)[. Within | @55 Coging) V1m0 4),
the present approximation, m@én) is always negative and (Alb)
broadens the peak. However, its magnitude is too small to
account for the exact results. To analyze the peak broadenvheref,(kr) is either the spherical Bessel functipikr) or
ing, therefore, we have to use at least the perturbed DMTBhe spherical Hankel function of the first kimrﬂl)(kr). EI’\,/lm
model. _ _ ~andE},, are, respectively, called the transverse ele¢Fie)
In summary, we have studied the MDR's of a bisphere inmode and the transverse magnéfiv) mode. These VSH's
detail from the viewpoint of the electromagnetic energyfgrm a complete set of the Maxwell equations in a uniform

stored in the bisphere. Compared with the scattering crosgie|ectric mediumEf, satisfies the following orthogonal re-
sections, we observe a series of clear resonances in the 'f?n}’[ion with respect to and b
o]

ternal energy spectrum. The energy spectrum is composed

the bonding and antibonding branches originating from the

Mie resonance of each sphere. These branches are composed f dQ[Efm(ﬁ Kr,0,0)]*E] o(fp.kr,0,¢)
of sharp peaks owing to the removal of the degeneracy with

respect tan. For highem, the split between the bonding and [(1+1)

antibonding modes becomes smaller. The bonding and anti- = 5I,p6m,q5ﬁ,y(2|T1)

bonding states are visualized in a series of contour maps of
the internal electric field. The analysis of the energy spec-
trum is based on thab initio tight-binding formalism. The
present formalism provides us with a simple interpretation of
the overlap integral in the photonic version. The SMTB (A2)
model gives a qualitative explanation of various characteris-

tics of the energy spectra. We also present the perturbed In the definition of the VSH's, we use the spherical har-
DMTB model, which incorporates the dissipative nature ofmonic Y, ,,. Y, , is defined with the associated Legendre
the lower-order resonance modes. Almost all the charactefunction P{". There are two types of definition f&|", i.e.,
istic features are reproduced by the perturbed DMTB modelHobson’s definition and Ferrers’s definitidhin the present

EM(f1 kr, 6,¢)=f,(kr)

) Yim(6, ),
(Ala)

(21+1)|f,(kr)|? for B=M,
1[4 1(kD)|2+(1+1)|f,_y(kr)|?> for B=N.
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paper, we adopt Ferrers’s definition. To avoid confusion we alf =(— 1)m+|/3+|polai’€|. (B4)

give below their explicit form: . o _ _
This shows the degeneracy of the internal energy with re-

" +1(-m! spect tom and —m because it depends only ¢ai;fn|2. The
Yim(0,)=(—1) \/ A (myh i cod) relation (B3) will also be used in Appendix D to classify the

normal states of Mie resonance in a single sphere.

Xexpgimeo) (—m<I<m), (A3)

whereP! is given form=0 as APPENDIX C: VECTOR ADDITION THEOREM

(1—x2)m2 gl+m The vector addition theorem has been treated in a variety

PM(x)= — (1) (A4)  of work~?®In this paper we use the coefficieAf; , , in
21! dx two ways. One is for the exact numerical calculation and the
P for m<0 is defined viaP; ™ by other is for the tight-binding calculation.
In the exact calculation, we need the whole seﬁ@fxﬁ;p,m
m (I+m)! for 1=<I, p<I|axand|m|<I .. This can be done by a very
Pr(X)=(— 1)m(| —m) Py (x). (A5)  efficient recurrence relation derived Mackowski based on the

scalar addition theorer?.Since we use, , instead ofP" in
Mackowski's original paper, we quote his results briefly in
the former part of this appendix with the appropriate modi-
fication due to the different definition o¢\| m:p.m- Readers

The explicit form of the expansion coefﬁme«:ﬁm forthe  should refer to the original paper for detailed derivation of
plane-wave electromagnetic field in E@.10 was derived his recurrence relation.

APPENDIX B: VSH EXPANSION OF PLANE
ELECTROMAGNETIC WAVE

by several authord?® We give below their explicit expres- I the tight-binding calculation, eaok!s;  can be cal-
sion in terms of the spherical harmonics. culated in terms of the Wigner 3-symbol " Again, the
coefficients involving the Wigner 3-symbols are efficiently
N \/(I—m+ 2)(I=m+1)_ . N obtained by the recurrence relation found by Bruning and
Cim= |+ 1) 21+3)(21+1) i+1m-1(K) Lo.? This is briefly summarized in the latter part of this ap-
pendix.
(I+m)(l+m-— 1) We start with the scalar addition theorem for the axial
—(+1 (2l+1)(21—1) '~1m- ﬂk)}EO translation fromR; to R;, both of which lie on the axis:
{ \/(I+m+2 y(I+m+1) : h (ko ) Y1 m( 65, )
(21+3)(21+1) Feamsa(k) .
\/( a—m=D) = 2, ip(ko")Ypm(01.6) Cpmin(ko.R"),
+(|+1) (2|+1 (2| ) 1m+1(k) E0 (Cl)
\/(I+m+1 )(I—m+1) . whereR''=R;—R; is parallel or antiparallel to the axis. It
(21+3)(21+1) i 1m(K) is straightforward to derive the following recurrence relation
for C m.p.m:
(I+m)(I—m)
+(1+1) 2+1)2-1) (k) |E } (B1) c _Jr+ (21— \/(I+m 1)(I-m—1)
R PmLmT N (1+my(I—m) | 1)(21-3)
Here, k=k/|k| andEq = 3(E§=iEY). ¢/, can be immedi-
ately obtained from the above formula by changifg < C N [ (p+m)(p—m) c
—Hg=3(H3*iH}), Ej—H3 and multiplying i on the p.m;l=2,m (2p+1)(2p—1) “P~imi-1m
right- hand side.
A simple relation exists betweenf , andcf _ . Suppose _ L Jetm+D)(p—m+1) )
thatk lies on thexz plane and all the components Bf are (2p+3)(2p+1) —Prrmizimp
real. Then, it is easy to show by using E&1) that (C2a
B —(_ 1\ +loo B Vx B _ 1\l +mtig~B \x
m_( v I(Cl,m) SR ( Y B(CIYm)(éZ) Cp,t(m+1);m+1,t(m+1)
where | ,,, is either 1 or 2 corresponding to thez or y _ \/2m+3{ (ptm+1)(pt+tm)
polarization, and z is 1 or 2 for =N or B=M, respec- 2m+2\ V (2p+1)(2p—1) ~P-Le=mm=m
tively. From these two relations we have
(p-m+1)(p—m) _ ot
cf _m=(=1)™ et poicf (B3) TN @pr3)zpr D) Coriemmen|. (€20

By applylng the relations(B3) for cf,, and (C7¢ for  Note thatC, ., vanishes whet or p is smaller tharjm|.
Al o m(ko,R) to Eq.(2.3), we have The initial values ofC .9 o are given by the formula
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Cp,0:00= (— €0s8;)P\2p+1hP(ko[RI|).  (C3)
From the set of equation$C2) and (C3) we calculate
Cp.m:i.m in the following manner. First we use Eq&C2b)
and (C3) to calculate{Cp, +y.m,+mt for O=ms=l,, and 0
<ps<lnaxt1. The remaining coefficients af€, .| m} for
|=|m|. These are obtained by first setting= =+ (1—1) in

Eq. (C29. Then, the first term vanishes and we obtain By i m(Ko,R) = — 2imkeZ(—1)MiP~!
p.m;l,m(Ko,

C p.E(—1)l,+(1—-1) - OnceC p.E(—1);1,+(1-1) is obtained, Eqg.
(CZa) successively yields the whole set €, . m} for |

=|m|. In addition, it is easy to confirm the following sym-

metry properties o . m:

Cp,m;l,m(kOaRji):(_1)|+pcl,fm;p,7m(kOaRJ—i)
:(_1)|+pcp,m;l,m(kOaRij)

:Cp,—m;l,—m(koiRji)- (C9

The vector addition coeﬁicients can be immediately ob-

tained fromCp .. m- SlnceAI mom=Al o m and LS
=Almp.m» We write A5 o.m as follows:

Ap,m;l,m(kOuR)

for y=2,
A%:r’%;l,mwo,R):[B

for y#pB. €9

p,m;l,m(kOvR)

Then,Ap m:im @andB, 1 m are given in terms o€, ., as

Ap,m;l,m(koaRji)

0 jl\/(p+m+1)(p m+1)

= i
Cpamitm(ko. R+ 07 (2p+3)(2p+1)

KoZji [ (p+m)(p—m)
p (2p+1)(2p—1)

XCp+l,m;I,m(k01Rji)+

ch—l,m;l,m(ka“)y (CG@
B ko RIN=ikoZi — 1 C k. Rl
p,m;l,m( 0> )_l 0 jim p,m;I,m( 0> )!
(Céb)
where Z;; is the z component ofR'". By using the above
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2 (—i)n

Ap it m(ko,R)=(=1)MP~!

2p(p+1
X[1(I+1)+p(p+1)—n(n+1)]
xa(m,l;—m,p;n)h{"(k,Z), (C8a
2p+1
2p(p+1)

X > (=i)"a(m,l;—m,p;n)h{P(k,Z).

(C8b

Here, n runs over|l—p|, [I-p|+2,...|+p, anda(m,l;
—m,p;n) are given in terms of the Wigner Bsymbof as

a(m,l;—

I+
=(2n+1)\/E|_

m,p;n)

m)! (p—m)!/l, p, n
m)! (p+m)!lo, 0, 0

I p, n
X .
m -m, O (€9
According to Bruning and Loa,=a(m,l;—m,p;n) sat-
isfies the following recurrence relatidn:
Ynan— (Yn-1t '}’n—2_4m2)an—2+ Yn-38n-4=0,
(C10
wherey, is given by
_Ld+p+ 1)2— 2][r12—(| -p)?] c11

The recurrence relatioqC10 is obtained by settinq=1
+p+2 and lettinga,,,,,=0. This yieldsa;,, , when
combined with the following expression fay, :

(2h1(2p)![(1+p)!]?
p'I'(p+m)!(I—m)!l(2p+2I)!"

p= (C12

The successive use of EGC10 gives the whole set dfa,}
immediately.

The expressiorfC12 contains a factorial of very large
number such as 156!10?7%. To evaluate the product of fac-
torials of such large numbers it is very convenient to use the
well-known theorem:

formulas and the relatiofC4) for C, . m, we arrive at the
following relations forA; . m:

Ap,m;l,m(kO:Rji) =(- 1)|+pAp,m;I,m(kOaRij) (C7a)

p(p+1) . N!= N,on= (C13
=(-1) i) N-mp-mko.RY) jﬂl P : kzl
(C7b Here,{p;} are prime numbers arfa] is the Gauss function,
which gives the smallest integer not greater than
=Ap—mi,—m(ko,RI"). (C79 A simple estimation formula forA; i m and By i m

would be very convenient for the practical calculation of the
transfer integral between modes,p,m) and (8,1,m). We
give below a handy formula valid for,p>1 andkyz<I
+p. In this case, the term afi=I+p in Egs. (C8) is the
largest becausk{"(kyZ) is an exponentially growing func-
tion of n. Its asymptotic form is given by

Relations forB, . n are obtained by multiplying{ 1) on
the right-hand side of Eq$C7).

The coefficient®\, .| m andB, n;.m can also be obtained
in terms of the Wigner 3- symbols. ForR=(0,0Z) with
Z>0, they are given as
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h (ke2) exd (n+1/2)(a—tanhy)] 14 the normal mode depends ¢ m, and the polarization of
n(Kof)=—1 : the incident light. Thus, the internal field is now given as a
n+1/2)sechwtanhx '
_ _ ( ) _ sum of various normal fieIdEﬁm. They are combined so
Here, « is defined by the equatiokR,Z=(n+ 1/2)/coshr.  that the same WG pattern is reproduced when the incidence
By using the Stirling formuldN!=27NNe N fora,, ,in  direction is chosen as a nemaxis.
Eq. (C12), it is straightforward to derive the following for-  Though dependent on the nature of the incident light, the
mula for Ap m;1,m andBp ;i m* normal modes are a very convenient concept. They show that
o1 1\ +ma(D) the actual degeneracy of the Mie resonancktid because
Ap.mit.m(ko,1)= = 21(= 1) iy (koZ) m runs from O througH. Other combinations of VSH’s or-

[ (+p) thogonal toF{’,, are not excited. In additior&{, is the ob-
X m servable field pattern as in the case of on-axis incidence. This
is especially important for the bisphere case. The bisphere

I'pP (C153 configuration gives the interaction betweléﬁn of different

spheres. This interaction depends wn Therefore, the I(
+1)-fold degeneracy is removed. This results in a collection
of peaks in the bonding and antibonding branches of the

(p+m)P* (1 —m)' =™

By m;i,m(Ko,r)=—2i TkOZ(—1)'+”‘h|($)l[,(k02) energy spectrum. Each peak, therefore, corresponds to the
P bonding and antibonding combinations Efm in each
\/W sphere. To interpret the internal field state in the bisphere we
X Tprmd—m) need the characteristic field pattern Rﬁm.
We are interested in the field pattern along the circumfer-
I'pP ence of the sphere. Therefore, we list up in Table |alend

o —.  (C15b ¢ dependence of each component of the normal niftie
(p+m)" (1 =m) They are obtained straightforwardly from Eg&1l) and
This is called the maximum term approximation. Substitu-(B4). It should be noted the, is usually much larger than

tion of Eq.(C14) into (C15) yields FqorF, ifit exists. To draw the field pattern we also list in
. . Table Il the number of maxima fdiP"|, [mP["/sin4|, and
Apmitm=1 (= 1) Ap it |gP["/ 36| in the range & <. In addition, we note that

o aamel within the xy planeP["=0 andmP}"/sin =0 for odd|—m
Bpmim=(~1) SGm)(Bp,mi .- (€18 while 9P"/96=0 for evenl —m. Combined use of Tables |
By using the maximum term approximation, it is easy toand Il gives the characteristic field pattern. Below we de-
show that|Ap . m|>[Bp miml and that|/A, | | is a de-  scribe this procedure, taking the casegof N andxz polar-

creasing function ofm|. ized incident light as an example.
When 8=N and the polarization is within thgz plane,
APPENDIX D: NORMAL MODE OF THE MIE we havel o+ 15=2. Thereforef . (¢) andf.(¢) in Table
RESONANCE | are, respectively, given by 2 cosf) and 2 sin(m¢). Let

. . ) . us deal first with the case oh=0. In this case, the main
The Mie resonance of a single sphere is determined by thg

o _ > : Y Y'Component isF, with a P, dependence ow. |P|| has 2
condition cogf=0. This condition gives the resonance size maxima along the circumference. Thus, the field patterns

parameteSﬁn. The indexn denotes the radial behavior of ithin the xz and yz planes are commonly given by the
the internal electric field. Thus, the Mie resonance is Iabeleqing”ke 2l spots.

by (8,1,n). Now, the internal field is generally given as a | et us next consider the casemf>0. Table | shows that
linear combination of the VSH'EF (i) ,kr,0,4). At the  the field pattern within they plane is given by cosig irre-
Mie resonancek is given by+e S /a. Here,e anda are the  spective of the values df-m. Thus, we have & ringlike
dielectric constant and the radius of the sphere. Thereforgpots within thexy plane. The field pattern within thez
VHS is labeled by g,1,m,n) at the Mie resonance. What is, plane =0 or ) is dominated byF, with a P]" depen-

then, the role ofm? . o dence ond. Therefore, it consists of 2¢m+1) ringlike
To clarify the role ofm let us consider the incidence of a spots.

plane wave along the axis. Appendix C shows that it has  On the other hand, the field pattern within the plane
only m==1 components. Therefore, the internal field is (4= 7/2 or 37/2) is different whermis even or odd. When
given by the linear combination &, andEf _,. The coef-  mis even, sinng vanishes so that the main componenjs
ficients of the linear combination are determined by the symyjith P" dependence om. Thus, the field pattern is very
metry relation ofc . ; . This gives the famous WG pattern. similar to that within thexz plane. Whemmis odd,F, andF,
For off-axis incidence, the plane wave has nonzero comyanish andF , dominates with anPJ"/ sin# dependence on

ponents fom= + 1. Therefore, the internal field is given as ¢ _Therefore, the field pattern is governed by the huge peaks
a sum of various VHS's. To simplify this summation we cannear9=0 and, and 2(—m+ 1) ringlike spots lose their

use the symmetry relatiofB4) betweeref, andaf’_,. We  contrast. Other cases can be treated in the same way.
introduce a normal fiel(ﬂiﬁm, which is a linear combination Note that whenm is even thexz andyz in-plane field

of Eﬁm and Eé,m according to the relatiofB4). Note that  patterns are very similar to each other for any mode and any
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polarization. This universal feature can be verified frommains unchanged. On the basis of these facts and the identi-
Tables | and II. fication of the main components of normal field in Table 1, it
Finally, we study the parity of the main component of theis straightforward to show that the parity of the main com-
normal mode under the inversion bf>—z, i.e., 6— 7— 6. ponent withz— — z is generally given by £ 1) *™** except
The normal field depends o in three ways: P[",  for the following three case$l) yz in-plane contour of TM
mP/sing, and JdP["/d6. Since P|" satisfies P{"(—x)  modes with oddm for xz polarization incidence(2) xz in-
=(—1)""™P"(x), the parity of P[" andmP["/sin# is +1  plane contour of TM modes for polarization incidence, and
while dP["/36 is —1 whenl —mis even. In addition; andé  (3) yz in-plane contour of TM modes with evem for y
components change sign with——z while that of ¢ re-  polarization incidence.
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