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A computational method for the spinodal decomposition is presented on the basis of a nonlinear
theory proposed by Langer, Bar-on, and Miller [Phys. Rev. A 11, 1417 (1975)] (LBM) with an applica-
tion of Suzuki’s [Prog. Theor. Phys. 56, 77 (1976); 56, 477 (1976); 57, 380 (1977); Adv. Chem. Phys. 46,
195 (1981); J. Stat. Phys. 49, 977 (1987)] general scaling theory for transient phenomena. The results
were compared with experimental observations for a typical polymer-blend system with respect to the
experimentally accessible quantities such as the structure factor and the single-point distribution func-
tion. The main features observed in scattering experiments were reproduced by this method. The in-
equality 8> 3a was found in the numerical analyses when fitting the power-law relations expressed by
qm <t~ *and S,, «t? to the time variations of the dominant Fourier component of concentration fluctua-
tions ¢q,, and the corresponding structure factor S,,. It is shown that the LBM theory can be used to de-
scribe the phase-separation behavior up to intermediate stages.

PACS number(s): 64.60.Cn, 61.41.+e¢, 64.70.Ja

1. INTRODUCTION

The dynamics of ordering processes by spinodal
decomposition has been the subject of many theoretical
and experimental investigations in the field of small mole-
cules concerning binary alloys, fluid mixtures, and inor-
ganic glasses [1]. In recent years, such studies have also
become popular in the field of polymer-blend systems [2].
This is due to the high viscosity of polymeric systems as-
sociated with the connectivity of monomers, which slows
down the dynamics and enables us to probe the phase-
separation behavior over wide time scales. According to
experimental observations [3-5], the process of spinodal
decompositions occurring in polymer blends can be quali-
tatively classified into three time regimes: (i) the early
stage, where the spatial concentration fluctuations in-
crease in amplitude while preserving the same wave-
length; (ii) the intermediate stage, where both the ampli-
tude and the wavelength increase with time; and (iii) the
late stage, where the amplitude reaches the equilibrium
value and only the wavelength grows with time.

For the early stage, the validity of the linear Cahn-
Hilliard-Cook [6] theory has been examined with many
experimental studies for polymer blends [7], and also
with the Monte Carlo simulation method for the kinetic
Ising model [8]. However, the theory does not account
for intrinsically nonlinear effects in the later stages such
as coarsening. There are several theoretical explanations
of late-stage behavior such as the coarsening of domains
with sharp interfaces [9], and the vaporization-
condensation mechanism [10]. The domain growth in the
late stage has been also studied by numerical [11] and
Monte Carlo simulation methods [12]. The time depen-
dence of the characteristic domain size was shown to
satisfy a power law in the late stage. For polymeric sys-
tems [13], similar behavior was found in a detailed nu-
merical study for three dimensions, starting from a full
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Flory-Higgins—de Gennes—type free energy and numeri-
cally integrating the time-evolution equation of the order
parameter. These results are consistent with a modified
Lifshitz-Slyozov law [14].

On the other hand, in the intermediate stage the non-
linear effects that are ignored in the Cahn-Hilliard-Cook
theory are known to become important, and the time
dependence of the characteristic quantities shows
different behavior than in the early and late stages. Many
theories have attempted to incorporate nonlinear effects
into a theory of spinodal decomposition. Langer and co-
workers [15,16] have presented successful theories to
date. In particular, Langer, Bar-on, and Miller’s [16]
(LBM) theory quantitatively accounts for the nonlinear
effects by assuming a form for the two-point distribution
function. However, there exist some difficulties limiting
the applicability of the LBM theory to the analysis of the
dynamics of phase separation experiments. One of them
is a cumbersome calculation for the moments of the order
parameter. To solve a generalized diffusion equation in
the theory, a sum of two Gaussians was chosen for a
single-point distribution function under the assumption
that the distribution of the order parameter in the inter-
mediate stage can be considered as a double-peaked func-
tion. However, this assumption has no theoretical basis
and the distribution cannot be precisely expressed by the
sum of two Gaussian functions during spinodal decompo-
sition. Another problem is that there remain a number of
time-dependent parameters to be determined when the
double Gaussian approximation is adopted. This in-
volves solving a group of complicated moment equations
iterately.

In this paper we present a method for calculations
based on LBM theory by applying a general scaling
theory of transient phenomena proposed by Suzuki [17],
and compare with experimental results for the phase sep-
aration of a typical polymer blend system at a real time
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scale. The quantities computed in this study are experi-
mentally accessible, such as the structure factor and the
single-point distribution function. Suzuki’s scaling
theory is based on a generalized scale transformation of
time and is useful for the discussion of relaxations in
nonequilibrium systems near an unstable point. Recent-
ly, this theory has been applied by Kawasaki, Yalabik,
and Gunton [18] to a system with a nonconserved order
parameter to study the growth of fluctuations in a
quenched time-dependent Ginzburg-Landau (TDGL)
model. We will show that the characteristic features ob-
served in the intermediate stage can be reproduced with
the LBM approximation scheme.

II. THEORETICAL BACKGROUND

We assume here that the coarse-grained free-energy
functional F[c] for a given concentration c(r,t) has the
Ginzburg-Landau form

F=1[d*[f()+K|Ve(r|?] (1a)

=%fd3r

—y(c—c0)2+§(c—c0)“+xlw(r>|2

(1b)

where f(c) is the free-energy density for a uniform sys-
tem. We consider here a simple case that the free energy
f(c) is symmetrical about ¢ =c, where ¢ is the average
concentration, and has positive parameters ¥ and g
denoting the instability and nonlinearity of a system, re-
spectively. Recent works [11-13,19] have also shown
that Eq. (1) is a satisfactory expression as the form of
functional F(c) for a description of spinodal decomposi-
tion that takes place in the unstable region. The last term
of Eq. (1) represents a contribution from the concentra-
tion gradient with a coefficient K. Correspondingly, the
final form of the LBM theory for the spinodal decomposi-
tion is represented by the following equation of motion
for the structure factor S(q,?) [16]:

3S(g,t) _ ) 3% f
ot 2Mq Kq + la 2 c=cq
1 | d*f (u*)
6 aC4 c=cgy <u2) a
+(2MRT /V)q?, )

where M is mobility, g is the wave number, T is the tem-
perature, V is the molar volume, and R is the gas con-
stant. The order parameter u is related to concentration
¢ through u =c —c,. The quantities (azf/acz)czc0 and
(8*f /8c4)czco correspond to the parameters ¥ and g in
Eq. (1), respectively. Using the dimensionless variable X
defined by
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6(3%f /dc?), -
(3*f /0c*)

C"C

X=u/u,, u,= , (3)

Eq. (2) is reduced to
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+(2MRT /V)q? . 4)

In order to make further calculations, it is necessary to
evaluate the time dependence of the terms (X*) and
(X?). For argument on the relaxation and fluctuation in
nonequilibrium systems near an unstable point, the recent
work of Suzuki [17] on simple stochastic models with
small nonlinear couplings seems particularly interesting.
The results obtained from Suzuki’s theory are considered
to give an appropriate form of the distribution function
required in the calculation based on the LBM theory, and
the functional form will be easily determined once free-
energy density is given.

The main idea of Suzuki’s scaling theory [17] is to
divide the whole range of time into three regions: (i) the
initial region, in which linear approximation is valid; (ii)
the scaling region, in which nonlinearity plays an essen-
tial role and the scaling law holds; and (iii) the final re-
gion, in which the system approaches the equilibrium
state. The three regions can be considered to correspond
qualitatively to the three stages of phase separation men-
tioned above at the beginning and there are no distinct
boundaries between these time domains. More explicitly,
we show the scaling theory in the following nonlinear
Fokker-Planck equation:

oP(X,t) _ | _ 9 i

+
o1 aXL(X) EaXZ

P(X,t), (5)

where € is the smallness parameter denoting the strength
of random force. The first term on the right-hand side of
Eq. (5) represents the drift part, while the second term
represents the diffusion part. L (X) can be obtained by
—df /dc, in this case L (X)=yX —gX?3. In the initial re-
gion, the nonlinearity of the system is not important (see
Appendix), so that Eq. (5) can be linearized as

_9 3

aX(';/X)-i-eaX2

oP(X,t) _
at

P(X,t) . (6)

If we assume that the initial distribution function has the
Gaussian form P(X,0)=(27eo,) "%exp[ —X%(2e0,) ]
with a variance o, solution of Eq. (6) is obtained as

XZ
" 2eo(r)

P, (X,t)= exp , (N

V2meo(t)

with o(t)=(oy+o)exp(2yt)—0o,; o0,;=1/(2y). For
large ¢ in the initial region this solution has the following
scaling form:

P(sc)(X t)=

1
int 4 \/ 27T exp ’ (8)

XZ
27

where r=¢€(oy+ 0 )exp(2y1).
In the scaling region, the diffusion term in Eq (5) can
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be neglected asymptotically (see Appendix), so that Eq.
(5) is reduced to the following simplified equation in a
scaling form:

%Psc + ;}L (X)P,. =0 . ©)
Equation (9) can be solved rigorously. One of the main
features of the scaling theory is that it enables a deter-
mination of a general solution for Eq. (9), so that it may
be connected smoothly with the dominant scaling solu-
tion [Eq. (8)] in the initial region. Thus the following
scaling solution was obtained:

P(X,t)~P (X,t)

— __Hz(X) ,

Vmex [ 27 +1nH(x)l

__ 1
Vonr

=32
1—Ex21—e 72
Y ,

2

X
xp 2r[1—(g/y)X%(1—e ~21)]

where H (X) is defined by
H(X)=exp [f"y/L(yuy
a9

The value of a is determined so as to satisfy H'(0)=1.

III. RESULTS AND DISCUSSION

In order to examine the new computational method,
we have performed numerical studies and have compared
the computed results with the phase-separation experi-
ments on the well-investigated polystyrene (PS) and poly
(vinyl methyl ether) (PVME) blend. For the system stud-
ied by Hashimoto et al. [3,4], apparent diffusivity D,,,,
dominant wave number at =0 g,(0), and
(2f/ 8c2)c=c0 are known. The experiments were carried

out on the critical composition (80% PVME by volume)
with a temperature jump from 65 to 98.2°C. For this
composition the blend has a spinodal temperature
T,=95.8°C. Using these quantities, the mobility M and
the coefficient of concentration gradient K can
be determined by M =—D,,, /(3’f/dc?)._. and

app
K =—(8f/3c?), -, /44, (0)].  Consequently, the
values of M, K, and (3*f /9c? )e =co at a given temperature

are used as the input for the numerical studies.

Figure 1 shows the time variation of the quantity
1—(X*)/{(X?) computed from Eq. (10). Since the ratio
of g/y is essential in the use of Suzuki’s scaling theory
[17], we have taken g /¥y =1 to emphasize the importance
of nonlinear effects, and chose the values of ¥ and € in
such a way that the time region in which 1—(X*) /(X?)
rapidly reduces from almost 1 to 0.3 was taken to meet
the intermediate stage (from 10 to 40 min). With the
present computational method, the quantity
1—(X*)/{X?) deviated significantly from 1, showing a
contrast with the linearized Cahn-Hilliard-Cook theory
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FIG. 1. The time variation of the quantity 1—{X*)/{X?)
computed for y =g=0.1 and e=5X10"°.

in which its value is essentially equal to 1.

In Fig. 2 we show the time evolution of the structure
factor computed from Eq. (4). The general trend ob-
served from experiments in the intermediate stage (see
Fig 4(c) in Ref. [3]) is reproduced in this figure: the max-
imum appears in the structure factor after the onset of
spinodal decomposition, the structure factor maximum
S,, increases and the dominant wave number g,, shifts to-
ward smaller values with lapse of time. It is found in our
numerical studies that the value of g,,(0) which is related
to parameter K strongly affects the peak position of the
computed profiles. The values of g,,(0) obtained from
the analyses of early-stage data based on the linearized
theory are generally much larger than those from the ex-
trapolation of the observed g,, at t=0. We have used the
extrapolated value for g,,(0) in the present study for
fitting experimental scattering intensity. This was found
to give a better agreement with experiments.

It is well known that nonlinear growth from the inter-
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FIG. 2. The time evolution of the structure factor S(g,t)
computed from Eq. (4) for the intermediate stage of phase sepa-
ration.
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FIG. 3. The log-log plots of the computed dominant wave
number ¢,, and the corresponding structure factor S,, against
time (dashed lines). The straight lines are the best fits to the
data, giving the values of 0.223 for a and 1.45 for .

mediate stage can be better explained in terms of the time
evolution of g,, and S,, by power laws gq,, ()=t~ % and
S, (1)« t? where the exponents a and B are used as a
measure to characterize the proceeding of phase separa-
tion. Figure 3 shows the calculated evolutions of g,, and
S,, corresponding to the result of Fig. 2. The power-law
relations are shown to be approximately satisfied for both
of the quantities over a time range from 5 to 50 min. The
values of exponents a and f3 are found to be 0.223 and
1.45, respectively. By varying the values of quantities
such as M, K, and (azf/8c2)6=co, we obtained the ex-

ponents a in a range from 0.16 to 0.23 and B from1.2 to
3.1, satisfying the inequality 8> 3a. The values of a ob-
tained in this study are in good agreement with those ob-
served experimentally [4] and that predicted by the LBM
theory [16], but smaller than those predicted by the
Binder-Stauffer [9] and Lifshitz-Slyozov [10] theories for
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FIG. 4. The temporal evolution of the single-point distribu-
tion function P(X,?) based on Suzuki’s scaling theory with
y=g=0.1 and e=5X10">. (a) =10 min (7=3.2X1073), (b)
t=15 min (7=9.5X1073), (c) t=20 min (7=0.027), (d) t=25
min (7=0.074), (e) t=30 min (7=0.20), (f) t=35 min (7=0.55),
(g) =40 min (7=1.5), (h) =45 min (7=4.0).
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the late stage. This confirms that our computed results
describe well the behavior of the phase separation occur-
ring in the intermediate stage.

Figure 4 shows the temporal evolution of the distribu-
tion function calculated by Eq. (10). P(X,t) starts with a
Gaussian function centered at X=0, then broadens and
eventually develops into two symmetrical peaks that rap-
idly separate from one another. The symmetry of P(X,t)
is attributable to the symmetric form of the free-energy
density f(c¢) in Eq. (1). Onset time ¢, is defined by the
time at which the double peaks just begin to appear, and
this is indicated by curve (f) in Fig. 4. The two macro-
phases are expected to form after t;,. The profiles of
P(X,t) are consistent with those obtained experimentally
from digital imaging analysis for a PS-PVME blend by
Tanaka and Nishi [20] and that from the computer simu-
lation of the TDGL equation by Petschek and Metiu [19].

IV. CONCLUSIONS

In summary, we have shown a simplified computation-
al method that combines the LBM theory with Suzuki’s
general scaling theory. The main features observed from
scattering experiments of phase separation were repro-
duced by the present method. The values of the ex-
ponents for the power laws indicate that the computed
results only describe the behavior of the intermediate
stage of spinodal decomposition where the concentration
fluctuations have not yet reached equilibrium state. By
applying Suzuki’s theory, the single-point distribution
function can be evaluated theoretically from the non-
linear Fokker-Planck equation, and the computed results
are in good agreement with those obtained from scatter-
ing and digital imaging analysis experiments and from
computer simulations of the TDGL equation.
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APPENDIX

Here we report the brief separation procedure de-
scribed in Suzuki’s scaling theory. As mentioned in the
text, the time region is divided into three regimes: (i) ini-
tial or linear regime; (ii) nonlinear, drift or scaling re-
gime; and (iii) final regime.

If x (¢) is an intensive macrovariable defined by

x()=X()/Q , (A1)

where () is the system size, we can separate it into two

parts as
x()=y(t)+z(1), (A2)

where y (¢) denotes the most probable path of x (#), and
z(t) is the remaining fluctuating part. Then the above
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three regimes (i) (iii) are classified as follows:

0(Q~!%) in the initial regime
O(1) in the scaling regime
0(Q7'?) in the final regime .

z(t)=

That is, the fluctuating part z(¢) differs in scaling behav-
ior with respect to the system size in each regime when
the system starts from (or near) the unstable point. This
will be the simplest criterion for the classification of the
above three regimes.

In the initial regime, the intrinsic fluctuation is very
small (of order ) for a large 2, and consequently a ran-
dom force acting on the system plays an essential role in
this regime. Otherwise, the system does not change its
state under the unstable equilibrium initial condition.
Furthermore, the nonlinearity of the system is not impor-
tant in this regime because the deviation of x (¢) from the
unstable point is small. Therefore, the temporal evolu-
tion of x (z) in this initial regime is Gaussian and its dis-
tribution function satisfies the linear Fokker-Planck equa-
tion expressed by Eq. (6) in the text.

The fluctuating part z (¢) of Eq. (7) in the text is given
by

z(t)x<[ea(2)]'? or o(t)xe 22(z), (A3)

and it becomes larger and larger as the time increases, al-
though it is of order Q7 !/2 for a small z. When ¢ in-
creases to the order

t=~t;=2y) In[Q/(0y+0,)] (A4)

the fluctuating part z(¢) becomes of order unity [i.e.,
z(t)~O0(1)], and thus the system is in the scaling regime
for t ~t,. Namely, the linear, Gaussian approximation
breaks down in the time regime. However, the Gaussian
approximation predicts qualitatively what happens in the
scaling regime. In fact, it shows that the fluctuation (or
variance) is anomalously enchanced up to order unity (or
Q=e€"!) in the scaling regime. Note that this anomalous
fluctuation of order unity is maximum from the definition
of the fluctuation [cf. the fluctuation (x2),=(x2)
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—{x)?=(x?) <(maximum value of x)>=0(1)]. Thus,
the scaling behavior of z(¢) in the scaling regime is con-
cluded to be z(¢)=0(1). This will be used effectively in
the non-Gaussian scaling regime.

In the scaling regime, the fluctuating part z (¢) becomes
of order unity, namely it satisfies the scaling property

z(t)=0(1) (AS)

(i.e., invariant for scaling of the size). This indicates that
the distribution function is very broad and consequently
that the diffusion effect is neglected effectively for a large
system size (). Therefore, the distribution of x is
governed asymptotically by the drift equation in the scal-
ing regime. More explicitly, the following Kramers-
Moyal equation was discussed in Suzuki’s theory:

eé%t—)=—7{ x,e—é% P(x,t), (A6)
where
FH(x,p)= [ (1—e Py (x,r)dr
2("1"_1pc(x) (A7)
and
e, (x)= [ r'w(x,rdr (A8)

with the transition probability w (x,7). Assuming that all
c,(x) are of order unity as usual, the scaling property of
the nth term of the right-hand side of Eq. (A6) is of order
Q7 "*! in the scaling regime because all derivatives of
P (x,t) with respect to x are of order unity from the scal-
ing property. Thus the first drift term is dominant in the
scaling regime. That is, P(x,t) satisfies asymptotically
the following drift equation, which has the same form as
Eq. (9) in the text:
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