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In a thin dielectric liquid layer, electroconvection can be generated by means of charge injection to
the liquid under a vertical electric field. When a parameter which gives the critical condition of the
onset of convection is rapidly increased up to some value across the critical point, a propagating
transition of the system from the quiescent state to the convecting state is expected to appear. We
have tried to show such propagating transitions in two different models. One for a bipolar-injection
type with free-free boundaries was analyzed with use of the amplitude-equation approach of Newell
and Whitehead, and the other for a unipolar-injection type with rigid-rigid boundaries was numeri-
cally analyzed. Both cases have shown propagating transitions of convecting state with definite ve-

locities.

I. INTRODUCTION .

In a thin dielectric liquid layer where space charge is
formed, electroconvection may be generated in a super-
critical condition. In such a system, nonlinear diffusion
of the convecting state might be expected. In other con-
vecting systems the Rayleigh-Bénard convection was
analyzed by Newell and Whitehead.! Their method is
applicable to investigate the structures of convection and
its diffusional properties near the critical point. Cross®
and Greenside and Coughran® have shown the convective
textures of laterally large Rayleigh-Bénard cells using the
amplitude equation approach. In Couette-Taylor flow
Ahlers and Cannell* have experimentally shown that the
propagation velocity of the vortex front could be ex-
plained from an amplitude equation. On the other hand,
electroconvection has been studied by Atten, Lacroix, and
their co-workers.’~7 The electric current versus voltage
relations including hysteresis have been explained by a
mean-field approximation of a quasilinear type. The
structures of convecting cells were discussed by modal sta-
bility analysis.®

When a parameter which gives the critical condition is
rapidly increased up to some value across the critical
point, a convecting state will be generated somewhere and
finally occupy the whole space of the liquid layer. If the
initial inhomogeneity is very small, the growing feature of
the convecting state might take a form of a propagating
wave front. This is the main motivation of this study.
The author has tried to show such propagating transitions
in two systems, by analytical and numerical techniques.
One model is a bipolar injection type with free-free boun-
daries, and the other a unipolar injection type with rigid-
rigid boundaries.

II. A BIPOLAR INJECTION TYPE
WITH FREE-FREE BOUNDARIES

A. Model specifications

When a dielectric Newtonian liquid layer held between
z=d /2 and z = —d /2 is subjected to a bipolar ion injec-
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tion at z = *d /2, the liquid shall show a transition of the
state by increasing the parameter giving the critical condi-
tion. We chose the following symmetrical model against
the z=0 plane to see the transitional feature of the
charged fluid analytically. The detailed specifications of
the model is as follows. The boundary conditions are, at
z=-—d/2,

®=V,/2, n,=nyg w=0, Dw=0,

andatz=—-d/2, (2.1)

®&=—Vy/2, n_=ny w=0, Dw=0,

where ®, n, and n_ denote the electric potential, the
positive ion density, and the negative ion density, respec-
tively, and the flow velocity u=(u,v,w). D represents
0/0z. The mobility and the diffusion coefficient of each
ion are u and K in the amplitude, respectively, because of
the symmetrical arrangement. The balance equations for
both ion densities become

on '
—+V[n (WE+u)—KVn_ ]=—an n_,

or (2.2)

on

a—;‘_+V'[n_(—uE-+¥u)—KVn_]= —anygn_, (2.3)

where E denotes the electric field given by

V:E=q/e and E=—-V®. (2.4)

a is the recombination coefficient, and g the space charge
density

g=(n,_—n_)e. (2.5)

The following two conditions definitely characterize the
model:
(1) the weak recombination condition (WR)

E
a2 (Eg=V,/d), (2.6)

n()d

(2) the weak injection condition (WI)
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eandd?

e

Ej>> 2.7

The first condition means that the injected ion densities
hardly decrease by recombination in the transit time,
though the space charge is produced by recombination.
The second condition means that the external electric field
is so strong that the field induced by the space charge is
negligibly small. In this case ionic drift velocities are usu-
ally much larger than the diffusional velocities so that the
ionic diffusion terms should be neglected.

B. Analysis

1. Stationary state

At the limit of a—0, the stationary state (u; =0, sub-
script s shows the stationary solution) gives g;=0. In the
WR condition we do not take into consideration the terms
of O(a?) but O(a). Moreover the z dependences of n
and n_; are very small in the WI condition, so they could
be approximated by linear functions of z. Therefore the
right-hand side (rhs) of Eq. (2.2), which is the same as
(2.3), can be replaced by an(z). The stationary solutions
become

niy=taz+b, Es=—e-£—zz+E0, (2.8)

where
a=—and/uE, ,
b=no—anid/2uE, .

Here the WI condition was used. The anj replacements
are now justified since b>>|a | by means of the WR
condition.

2. Near the critical point

Let us consider small variations around the stationary
state. They are denoted by variables with primes as fol-
lows.

E=E,+E', u=u',
n,=n,s+ny, n_=n_g+n_,

(2.9)
P+=P4s+pPrs pys=2b, pl=n'y +n"_,

p_=p_s+p_, p_s=2az, p_=n"y—n"_.

The balance equations of ion densities (2.2) and (2.3) then
become

30’
—§T+ +V-(p_suE +p su+p_ pE.+p  uE +p’iu)

=—2anep’y , (2.10)

dp_
—git—+v'(p+s/*"El+P—su+P,+ﬂEs +p+nE +p_u)=0,

(2.1D

where terms of O (a?) and second order of variations mul-
tiplied by a were all neglected. Moreover we neglect the
terms of second order of variations including the electric
field due to the space charge caused by the WI condition.
Then u is governed by the Navier-Stokes equation

i
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FIG. 1. Nonlinear diffusion obtained from Eq. (2.31). The
convecting state was initiated at the side walls and propagated
to the inner region. The figures show the time lapse downward
with time step AT=0.25.
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%‘tl+(ﬂ><u)=—V{£-+%u'll +‘L¢IE02+VA“
P P
and
V-u=0. (2.12)

Before rewriting Egs. (2.10) and (2.11) we assume the
form of the neutral solution wy or gq as

(We'is= . W*e —i#%)sin(nz /d) .

MAKOTO SUZUKI
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p'__o=2nf)sin98in % ](Wei’{"l‘_'_ W*e—ié'x) ,
(2.14)
2mn ) '
Dp'y o= ——>cosOsin 123 ’(We”5"+W*e k)

Therefore Eq. (2.11) can be rewritten in the WR and WI
conditions near the critical point as

%_‘—u'vq __Bw:—‘}/q . (2.15)
Then p’_, should take the same form. Therefore n_, and
n'_g are given by where
2 252
' . . TuU’E
n'yo= |ngycos o7 = +nysing |(We'#= 4 W*e—i#=) 7/=—'u~——g~ ,
d 2angd
(2.16)
(2.13) 2ane
Then ~ pE,
Re = 3.5
CHARGE DENSITY
SE?EMG.L;NEG. 4 0.5 0.8 0.25 0.30 0.35 O0.40
Eﬁ T=0
O 0.446
> 0.889
' e
O 200
O
3,994
4,437

FIG. 2. Relaxation of convecting state below the critical point, electric Reynolds number R, =3.5 <3.926. Positive charges were

injected at the bottom. After the space charge was modulated at the left side, the convection was generated temporarily and relaxed
afterward.
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and which was found from Eq. (2.10) after linearization at the
: steady condition. The equation set (2.12) and (2.15) is re-
duced to a single equation by twice taking the curl and

cotf— — mEy taking its dot product with Z, the unit vector in the z
2anyd ’ direction, and applying the operator (3/9¢ +7v)
|
d d g 2 EO 2 d N
2 2y |Aaw—Eviw=—"2Vu 2 : Q , 2.17
[at vA 3 +7v |Aw lew p‘VI(u Vg)+ Y +7 |[2:(VXV X( ><u))]. ( )

where g =Eyf8. According to Newell and Whitehead, we begin with the following modified neutral solutions:

Re = 5.0

STREAM LINE CHARGE DENSITY
0.0 0.2 0.4 0.6 0.8 0.25 0.30 0.35 O0.40

L =0

0.446

O | _ | L 0.889
OO o | | — 1.776
OD O - 2.663
CBO | . | 3.550
mo O x 5.324

PPN~

SN/

0.0 0.2 0.4 0.6 0.8 0.25 0.30 0.35 0.40

FIG. 3. Propagation of convecting state above the critical point, R, =5.0> 3.926.
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wo=[W(X,Y,T)e'* =+ W*(X,Y,T)e ~#=sin | 7= | ,
(2.18)
do=—2[W(X,Y, T + W*(X,Y,T)e ~#=Jsin | = | , fow=kyx+k,p
vEo d
where the amplitude W is a slowly varying function of time and position. The appropriate scaling is
X=ex, Y=ey, T=¢%. (2.19)
With this transformation the operators reduce to
9 8 9
at "ot "€ T |
(2.20)
Jd d d
Vlr—>V1,r+€V]y, Vie= ax’ dy » Vig= [aX’ 3y |-
We expand the dependent variables and the operators as a power series in ¢,
f=6f0+€2f1+63f2+ T, f=(ll,v,w,q,P) B
(2.21)
L =Lo+eL 1+ELo+ " .
Then Eq. (2.17) becomes
2 2 Eo 2
(ZLo+eL 1+ L Nwo+ew, +€ wz):——76(V11+26V,I-V1g9)[u0-Vq0+e(u1-qu+uo-Vq1)]
+e€ ga;+yv{§><$><[(Qoxuo)+e(01><uo)+e(ﬂo><u1)]-2}, (2.22)
d 2 a 2 8o _»
= |- - Vi——Vi.>»
Zo [at Al Frand p 'l
8 2 a a 2 8o
=2 |=— - —v|= Vi — |V Vi, 2.23
f]y a vV 3z +v Vlat +’}/] P 1= Vig ( )
o |13 _v2| |2 9 2_ &
fz—Hat v at-f—y v at+y v Vi
a 2 2 d d [ ]2 82 2
2— — ——4v | . —— ,
+ 1 at +v vV* |V aT v ot +v VLz' VIQ” P le

where g =g+ €’g, and $=V11+6V1 #,0/0z. The linear
balance, . (W, =0, gives the neutral solutions. The neu-
tral condition is that

42 ﬁz
+d2 .

1
g=pvy—;5

Y (2.24)

At the critical point the wave number is k, =7 /d and
go=4m’pvy/d*. (2.25)

Here we note that our analysis is valid near the critical
point; then Eq. (2.25) justifies neglecting the ionic dif-

fusion terms in (2.2) and (2.3).

The first nonlinear response generates second harmon-
ics. However, we can find . {W,=0 at the critical con-
dition. The second harmonic responses denoted by f @
are as follows:

2
W —u P =P =0,

due to (2.12),
(2.26)

g =— 270

! ’}/2Eod

WW*sin [3”—2 ] :

d
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due to (2.15).

The other modes do not give secular responses in W, so
that they do not affect the analysis to this stage. The
O (€?) balance of (2.22) yields

2m7gok?

$0W2=—j2W0+ 2 52 WW*WO"‘"'
pyd

(2.27)

where the ellipses represents terms of higher harmonics,

with the boundary conditions
W,=0, D*W,=0, D*W,=0. (2.28)

The second term of the rhs of (2.27) which involves the
natural eigenfunction of £, should be produced from
£, W, at 3/3t—0

27°gok;
py’d®
where .Z , means ., at 3/dt—0. Finally we obtain
2
AW _ 23 uz/
oX

ZWw= w2 |

—n2 2y *
3T =BACX—-WW*)/W ,

A =2vy /(y +2mv/d?) ,
Bl=ng,/py¥dXy +2n?*v/d?) ,
C2=d2’)/2/2772 ,

(2.30)

Re = 7.5

STREAM LINE
0.0 0.2 0.4 0.6 0.8

(2.29)
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where X =g,/g0=(8 —80)/80- Equation (2.30) can be

normalized as
aw’ a*w
aT' a X12

where W'=W /cVX, X'=XBCVX /A, and T'=TB>C%.

Equation (2.31) has the definite propagation velocity of

2.0 which was numerically obtained as in Fig. 1. Thus the
propagation velocity v, for (2.30) is given by 2ABCVX.

=(1—-WwW™*)w', (2.31)

C. Example

For a dielectric liquid we choose Pyralene 1500 with the
following constants:

p=10° kg/m?,
7n=0.02 kg/m-s ,
p=1.6X%X 10~° m?/v-s ,
d =0.005m,
€=5.3x10"" F/m .

The parameters satisfying WR and WI conditions are

VORTICITY
-0.4 -0.2 0.0 0.2 0.4

o}

FIG. 4. Propagation of convecting state above the critical point, R, =7.5.
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Ey=4.7x10°V/m ,
ne=3.1x10"m=3,
a=2.4x10"Y m3/s,
y=148 1/s,
go=4.7Xx10°% kg/m3s? .

Then
A?=3.6X10"°% B?=510, C*>=2.8x1072

so that
| W | =0.167V'X and v, =0.045V'X

in m/s.

III. A UNIPOLAR INJECTION TYPE
WITH RIGID-RIGID BOUNDARIES

A. Model specifications: An asymmetrical case

Let us consider an incompressible Newtonian dielectric
liquid layer held in a two-dimensional container of the as-
pect ratio 1, the depth, to 5, the width. Unipolar ions are
injected to the liquid uniformly from one electrode at
z=0, and collected by the other electrode at z =d, where
the electric potential is V, at z=0, and 0 at z =d. The
walls are all rigid. At a supercritical condition convection
is naturally generated at the side walls because of the in-
homogeneity and finally occupies the entire space. The
time required for this depends on the magnitude of the in-
homogeneity. If a sufficient trigger was given at a side
wall we could see the growing process of the convecting
state. The processes have numerically been analyzed in
the following section.

B. Numerical analysis

- The equations of motion for the fluid and the space
charge are given with nondimensional variables as fol-
lows:

x; =x;/d, t'=tKV0/d2, E'=Ed/V,,
D' =d/V,, €=€/¢ q'=qd?*/eV,,
j'=jd*/exV§, p'=pd*/pK*V; ,

uw'=ud/kV, ,
Qo |W3 Wi | 1,
at 3z dx 9x 3z R,
2|_08g 3P  9dg 3P
+M 9z 3x 9x 3z |’ .1)
where

o=VXu, o=(0,0,0),

, M=(e/p)""*/k ,

o |2w , —aw
T3z’ ax
AV=w, R,=«Vy/v,
9q _

ot

AP=—gq,

with the boundary conditions,

=—V:[g(E4+u)], T=M"R,,

Y=0 for z=0, z=1, x =0, and x =5,

_ 3
ww—F
q=qo at z=0,

9w =HGu+1+Guw+3) — 6y +2—qy+4

®b=1atz=0,
b=0atz=1,
and

e

~-

\Ilw+1+';_a)w+1+0(h2) s

at x =0, x=5,andz=1,

R, = 7.5

VORTICITY

T

Rg = 15
VORTICITY

: 0.05

(b)

L]

2 TiMe

(3.2)

FIG. 5. Motions of contours of vorticity. (a) R,=7.5, (b)
R,=15.
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( Rec = 3,926)
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— o
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FIG. 6. Propagation velocity of convecting state. Cy is the
nondimensional propagation velocity normalized by the ionic
drift velocity uEo. R, is the electric Reynolds number, where
the standard velocity is the ionic drift velocity pwEy, too.

Dy =Dy +Pp+3)—6Py17—DPy4 at x =0
and x =5,

where ¥, w, P, and q are the stream function, the vortici-
ty, the electric potential, and the space charge, respective-
ly. p, k, and v are the liquid density, the ionic mobility,
and the kinetic viscosity, respectively. The stationary
solution, which is obtained analytically and unstable
above the critical point, was chosen as the initial state
after adding local space charge near the left wall as the
trigger. The above equation set was solved numerically
using the Crank-Nicholson method for the vorticity and
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the donor-cell method for the space charge in the 15X 75
mesh scheme. The detailed process can be seen in Ref. 8
by Suzuki and Sawada.

C. Results

The critical condition of our case, which is character-
ized by the nondimension charge density of 0.410, is
known by the linear-stability analysis by Atten and
Moreau as R, =3.926. Below the critical point R,=3.5a
convection was generated temporarily, but vanished after-
ward without propagation as in Fig. 2. Above the critical
point, propagating transitions from the stationary state to
the convecting state have been shown as in Figs. 3 and 4.
In order to find the propagation velocity, we plotted the
positions of the contours of the vorticity in Fig. 5. Since
the tangent lines for contours of the same value are paral-
lel, we can conclude that the convecting state propagates
to the outer space with definite velocities. The propaga-
tion velocity depends on (R, —R,.)/R,. as in Fig. 6.

IV. CONCLUSION

Here we have used two models as electroconvection sys-
tems. One model was chosen as an analytical example
and the other as a rather realistic one. The first model
was found to have features so close to Rayleigh-Bénard
convection that it could be analyzed using the amplitude
equation approach. The second model was not only
asymmetrical but also subjected to the rigid boundary
conditions so that the analysis was thought to be compli-
cated. Then a numerical approach was carried out. In
both models propagating transitions with the definite ve-
locities have been found at the supercritical conditions.

ACKNOWLEDGMENTS

The author wishes to thank Professor Y. Sawada, Dr.
M. Matsushita, and Dr. Y. Tsutsui for helpful discus-
sions. It is a pleasure to acknowledge the hospitality of
the members of Fundamental Department, especially
those of the Fluidics Division.

1A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279
(1969).

2M. C. Cross, Phys. Rev. A 25, 1065 (1982).

3H. S. Greenside and W. M. Coughran, Phys. Rev. A 30, 398
(1984).

4G. Ahlers and D. S. Cannell, Phys. Rev. Lett. 50, 1583 (1983).

5P. Atten and R. Moreau, J. Mec. 11, 471 (1972).

6J. C. Lacroix, P. Atten, and E. J. Hopfinger, J. Fluid Mech. 69,
539 (1975).

7N. Felici and J. C. Lacroix, J. Electrostat. 5, 135 (1978).

8M. Suzuki and Y. Sawada, Phys. Rev. A 27, 478 (1983).



