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Dissipative structures in charged-fluid layer systems have been investigated by computer
simulations. In a supercritical condition the system takes a convective state. It was found
that the steady convective states were highly degenerate and one of the states gave the max-
imum charge transport. Relative stabilities of such metastable states were examined by dis-
turbing each state. These investigations revealed that the most stable convective state corre-
sponded to the state of maximum charge transport within the computational error, support-
ing the maximum-entropy-production hypothesis for a multi-stable-state system.

I. INTRODUCTION

In a far from equilibrium condition a system or-
ganizes itself spontaneously into a state with a spa-
tial or temporal structure. It is called a dissipative
structure in contrast to the structure in thermo-
dynamic equilibrium. Bénard convection, Couette
flow, growing dendritic cyrstals, Belousov-
Zhabotinski reaction system, and oscillating chemi-
cal or biochemical reactions such as glycolic cycles
are well-known examples of dissipative structures.'
They may be classified into either spatial structures
or temporal structures, or their combinations.
Nonequilibrium  thermodynamics has  been
developed extensively in the last two decades espe-
cially by Prigogine and his co-workers.> Their argu-
ments on the stability of nonequilibrium states with
the assumpiton of local equilibrium has brought
some essential results: the theorem of excess entro-
py production for a stable state and the general evo-
lution criterion for general nonlinear processes.
These consequences were obtained by taking into ac-
count small fluctuations around a reference state.
Although these theorems were in part criticized,’
they are certainly a landmark of the nonequilibrium
thermodynamics.

If the magnitude of the fluctuations is not small,
the state of the system may be transferred to another
state, if it exists, and the new state may be more
stable against perturbation. The theorems cited
above are not helpful to tell us which are the most
stable states among the others. Therefore, the ther-
modynamic principle governing the relative stability
of nonequilibrium metastable states is an important
problem. The problem of relative stability generally
arises when one considers nonlinear, nonequilibrium
systems which have steady multistable states.

27

For Bénard convection, Malkus and Veronis* pro-
posed that the state of the maximum heat transfer is
the most stable among the states of structures with
possible wave numbers from an analysis near the
critical point for Bénard instability. Roberts® has
shown that the wave number of the mode corre-
sponding to the maximum heat transport was close
to that of fluctuation with the maximum rate of
evolution from a reference steady state. Felici® has
proposed intuitively from his experience the princi-
ple of facilitation, by which he means that a non-
equilibrium system tends to select one of the easiest
flow states. Independently, Sawada’ has recently
demonstrated from a thermodynamic argument in-
cluding reservoirs that the most stable states against
perturbation among the multisteady states should
correspond to the state of the maximum entropy
production, and that even a nonequilibrium non-
steady state should select a mode with the entropy-
production maximum, if some condition on time
scales is satisfied. It would therefore be important
to examine whether the principle stated above is
supported by the results of experiments or by the
numerical computation for nonlinear, nonequilibri-
um processes.

Among nonlinear, nonequilibrium systems,
charged viscous fluids present several interesting
dissipative structures such as Felici convection,?
nonlinear oscillations of ion drap pumping,® or of
ion transportation in a living cell membrane.”® In
contrast to thermal fluids, there are fewer investiga-
tions of charged fluids as systems presenting dissipa-
tive structures. Moreover, it stimulates interest
since the acting force in a charged fluid is different
from that in a thermal system. One difference is the
nearly linear buoyant gravitational force, while the
other is the nonlinear Coulomb force. The criterion
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for Felici instability was shown by Atten and
Moreau'! by a linear analysis and lately confirmed
by Schneider and Watson.!? Near the critical point
Lacroix'® showed in relief the existence of hystereses
in the I-V characteristics.

Atten and Lacroix'* analyzed roll-type structures
and hexagon-type structures for steady-state electro-
convection near the critical point. They discussed
the relative stability between the rolls and hexagonal
cells in this region. The horizontal nonlinearities,
however, are not fully taken into account in this
method, especially in transient processes.

Further interests are on the multisteady states,
namely metastable states, the relative stability, and
the transition processes among them. We shall show
the results of a numerical analysis including suffi-
cient nonlinearity to progress understanding of these
problems.

II. SIMULATION
OF ELECTROCONVECTION

Let us consider the case in which unipolar charges
are injected uniformly into an incompressible isotro-
pic viscous insulating liquid layer subject to a uni-
from potential difference V, across it. The fluid
motion is governed by the conservation laws of
mass, momentum, charge, the Poisson equation, and
the equation of fluid states. For an incompressible
fluid the basic equations are given in terms of di-
mensionless variables as

x{ =x;/d, t'=wVy/d* E'=Ed/V,,

O'=d/V,, €=€/E, q'=qd*/eV,,

j'=7d%/exV§, p'=pd*/pV} ,
and

U'=ud/kV,,

where x; represents the i component of coordinate x,
d the layer thickness, ¢ the time, k the charge mobili-
ty, Vo the potential difference, E the electric field, ®
the electric potential, € the dielectric constant of the
fluid, € the average dielectric constant, g the charge
density, j the current density, p the pressure, p the
density, and U the fluid velocity. Deleting the prime
from all variables, they are written as

V-i=0, (1)
N | §VE=—Vp+—AT+MF,, @
at R, ¢

9% . §.7=0 (3)
ot ’

J=gE+1), @

=VE, (5)

®, (6)

Oe ]EZ] . 7

< ml

q
E=—
F,=qE—SE’Ve+V % F»

Here M =(e /p)!/% is an important parameter for
charge transportation in a fluid, since it is the ratio
of hydrodynamic mobility and carrier mobility.
R, =kV, /v is the electric Reynolds number, where v
is the kinematic viscosity. It is convenient to intro-
duce a parameter T =M?2R, which is analogous to
the Rayleigh number in Bénard convection, so that
it can be called the electric Rayleigh number. Equa-
tion (1) represents the law of mass conservation for
an incompressible fluid, Eq. (2) the law of momen-
tum conservation, namely, Navier-Stokes equation
for a Newtonian fluid, Eq. (3) the charge conserva-
tion law, Eq. (4) the total current density consisting
of conductive and convective currents, Eqgs. (5) and
(6) the Poisson equation, and Eq. (7) the electric
force density. Since we consider the case of slow
motions of substances and small carrier density, we
neglect the effect of magnetic fields. In Eq. (7) the
second term in the right-hand side can be separated
into two terms as

de
oT,,

Vp +
Tm

—»

a- VT, ,

dp ,

where T, is the temperature. We considered the
case where the heat generated due to the Joule effect
and viscous dissipations can be neglected. The tem-
perature is then uniform in the liquid layer. There-
fore, the second term in Eq. (7) is omitted. The
third term can be gathered with the gradient term of
Eq. (2) which can be eliminated by a rotation opera-
tion. Therefore, the effective electric force is the
first term in Eq. (7). It is noted that when charge
carriers move along the electric field, the time re-
quired to attain the steady velocity after many col-
lisions with liquid molecules is much shorter than
the characteristic time for the macroscopic liquid
motion. It means that the force acting on carriers is
instantaneously transmitted to the liquid from the
external field.

Two kinds of analysis may be considered. One is
performed in real space, and the other in wave num-
ber space. A merit of the latter is the possibility of
determining the boundary conditions precisely and
approximating the distributions of variables with
comparatively few variables, namely, Fourier coeffi-
cients.

In the case that the nonlinear terms play an im-
portant role, the truncation error of higher-order
coefficients becomes significant. If the distributions

Ve=
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of physical variables are represented with Fourier
series both in vertical and horizontal directions,
there appears a considerable number of coefficients.
On the other hand, when real-space difference equa-
tions are analyzed, there are physical variables corre-
sponding to each space point. Nevertheless, the best
feature of the real-space analysis is to enable simula-
tions of continuous deformation of structure in any
direction without truncation errors.

In the present work the analysis was made with
the V-0 method. In Eq. (2) the gradient term was
eliminated by applying rotation. By introducing the
stream function ¥ and vorticity ©=(0,0,0) Eq. (2)
becomes

Qo |W3 W | 1,
at dz dx Ox Oz R,
+[_2g 0 _ ag a0
+M 0z dx 9x 9z |’ @
where
F=VXTH,
- | oY . —oV¥
u= a9z 0, ax ’
AV =0 . 9)
Rewriting Eqgs. (3)—(6) yields
%‘tl=—€'[q(ﬁ+fi)] , (10)
AdD=—gq. (11)

Thus this system consists of two dynamic equations
and two Poisson equations. The boundary condi-
tions are shown below.

Our system is a two-dimensional cell with a rec-
tangular cross section of the aspect ratio of ten.
Unipolar charges are injected uniformly into the in-
sulating liquid layer with a fixed density at the
lower electrode plate, namely, the injector. The
upper electrode is the collector. The side walls are
rigid and electrically insulating. The space to be cal-
culated is divided into a thousand equal squares
(vertically by ten and horizontally by a hundred
divisions) with the side length £=0.1.

A set of finite difference equations corresponding
to Egs. (1)—(7) must satisfy the following require-
ments. First, the law of causality concerning the
convective transport of perturbations, and second,
the conservation laws of mass and energy. Unless
one considered the transient phenomena, the first re-
quirement is not necessary. We are, however, in-
terested in both transient phenomena and steady
states. We tried two schemes, the upstream differ-

ence scheme and the central difference scheme, for
the vorticity calculation. The former scheme satis-
fies the above requirements with comparatively
stable computation and is considered to give qualita-
tively correct results. The latter scheme does not,
however, satisfy the first requirement, but gives
more accurate steady states. One of the implicit
methods, called the Crank-Nicholson method, was
applied on the vorticity calculations, and the results
were found to be qualitatively correct by one of the
upstream methods, called the donor cell method.
When the Reynolds number is small, it is expected
that the central difference scheme on the vorticity
calculation gives correct transient results. The
donor cell method is known to have an accuracy
better than first order in A.'> On the other hand,
calculation on charge ¢ is made only by the donor
cell method since the spatial variation of charge q is
considered to be small compared to that of the vorti-
city. The implicit method with the central differ-
ence scheme for g is of course preferable, but it is
too time consuming. A detailed procedure of the
numerical calculation is described in the Appendix.

III. THE RESULTS OF COMPUTER
SIMULATION AND DISCUSSIONS

A. The quiescent conduction state

First, the quiescent conduction state was obtained
to test the accuracy of our difference scheme ac-
cording to Eqs. (A1)—(A7) in the Appendix. The in-
itial condition was the quiescent solution obtained
analytically and superimposed by a sinusoidal per-
turbation of charge distribution with the magnitude
of 1% and the wave number k =7.

For a condition of weak injection (gy<0.5),
q0=0.410, R, =1.0, and T=484, where the critical
value T,=1900, the evolution of the system was in-
vestigated. At the first stage the liquid system start-
ed a convective motion, but eventually returned back
to the quiescent state as shown in Fig. 1. Circles
show the numerical results and the solid lines denote
analytical values. The deviations were less than
0.05% for the electric potential, less than 1.00% for
the charge density, and 0.03% for the mean electric
current.

For a condition of intermediate injection strength
(0.5<g0<5.0, gop=2.114 and T=20, where
T, =250, deviations extended to 1.2% in the electric
potential, 20% in the charge density, and 4.5% in
the mean electric current because of the steep
change of charge density near the injector, which is
difficult to approximate by an equal division of
space. We mainly treated the weak injection case to
avoid such complications.
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FIG. 1. Quiescent state for ¢o=0.410 and

T=484 <T.=1900. Solid lines are obtained analytically
and open circles by computation. (a) Maximum velocity
variation; (b) charge .q and electric potential ® distribu-
tions.

B. Transitions to stable structures

In a weak injection case transition processes were
investigated from the initial quiescent conduction
state to the fully developed convection state. Setting
electric Reynolds number 7=9680, where
T,=1900, go=0.410, and M2=484 corresponding
to nitrobenzene, the initial conduction state was
modulated by sinusoidal perturbations of space
charge with various wave numbers.

Two schemes were examined, one was the central
difference scheme by Eq. (A1) and the other was the
donor cell method, which is one of the upstream
difference schemes, given by Eq. (A2) in the vortici-
ty calculation. When R, is small it is expected that
the time developments of the system are qualitative-
ly equal between the two schemes. If so, the former
scheme should give more accurate solutions since it
is accurate to k2.

To verify this, the quiescent conductive state was
initially perturbed by charge superposition with a
sinusoidal distribution. The evolutions of convec-
tions by both schemes were compared both in struc-
ture and in current or entropy production. The
structures were almost the same in ¥=0 contours
within 1% as in Fig. 2. The steady convection state
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FIG. 2. Comparison of two numerical analyses. (a)
Upstream scheme; (b) central difference scheme. A, up-
ward maximum velocity; B, downward maximum veloci-
ty; I, electric current; P[S], entropy production; and A0,
the obtained convection structure. Only the ¥=0 contour
is shown.

obtained by the central difference scheme is denoted
as AO. During the evolution, there was no qualita-
tive difference as shown in Figs. 2(a) and 2(b), and
the central difference scheme was applied thereafter.

As the initial conditions, a cosine wave perturba-
tion of charge density with wave number k was im-
posed. Time evolution of the maximum liquid velo-
city Wpax, the electric current I, and the entropy
production P[S] are shown in Fig. 3(a). The up-
ward maximum velocities were twice as large as the
downward maximum velocities. The convective
motions were shown by means of contours of the
stream function, where counterclockwise rotations
were shown by positive signs in Fig. 3(b) above
which the evolution of charge distribution was
shown. The figures are symmetrical with respect to
right boundaries. In this case 12 rolls were estab-
lished, whose structure was denoted as A12. The re-
gion of upward flow was definitely narrower than
that of downward flow and became greater in charge
density. At the steady state the difference between
the current and the entropy production was about
2%, which was considered to be due to the compu-
tational error, noting that P[S] might be smaller
than I since the central difference scheme tends to
reduce spatial variations with small wavelength.
Similar computations were made for various initial
perturbations with wave numbers, k =0.87, 1.0m,
1.4, 1.6m, 1.8, and 2.0mr. Stable convection states
were obtained as shown in Fig. 4 and denoted as A8,
A10, A14, A16, A18, and A20, respectively. The
electric current I and the maximum liquid velocity
W .ax and necessary time 7 to converge to the steady
state for each case were plotted in Fig. 5. There
were found maximum or minimum points between
1.27 and 1.67.

As a comparison, a computation in an intermedi-
ate  injection strength, where ¢p=2.114,
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FIG. 3. Evolution of 12-roll state. (a) Current I, entro-
py production P[S], W4y, and Wy, variations; (b) evo-
lution of charge distribution. Bottom of (b) shows the
stream lines.

;

T=968 > T,=250, was made for an initial charge
perturbation of k =2. In this case a steady stable
convection was established, although there were
small variations in the convective velocities. The
electric Nusselt number, defined as the total electric
current divided by the corresponding conduction
current, was 1.22.
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T.=1900. +’s denote the centers of anticlockwise rolls
and dots clockwise.
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C. System evolutions
by initial perturbations not preferred

In a weak injection case, where ¢o=0.410 and
T=9680, the system did not show the simple
behavior reported in the previous section where the
initial perturbation was of wave number k =2.41.
In Fig. 6(a) the evolution of convection state from a
quiescent state is shown. The perturbation
developed as a stable structure until #=2; then the
rolls near the side walls collapsed and the system
came up to a twenty-roll structure around t=4. The
corresponding current and the entropy production
are shown in Fig. 6(b). They varied violently be-
tween t=0 and t=3 to become a relatively more
stable state after 1=3.5.

10418
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FIG. 5. Current I, maximum velocity W ., and con-
verging time 7 for various steady states shown in Fig. 4.
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FIG. 6. Evolutions from unstable structures. (a) Twenty-four-roll state to twenty-roll state for go=0.410 and T=9680;

(b) six-roll state to fourteen-roll state for go=2.110 and T=968.

In an intermediate injection strength case, where
qo=2.114, T=968 > T, =250, and the initial charge
perturbation of k =0.6w, a convection state with
wave number k =0.67 developed until z=0.5, then
the state was modified by itself to a 14-roll state as
shown in Figs. 6(c) and 6(d).

In both cases the second-order derivatives of the
current curves with respect to time were found to be
locally negative in the growing up region. Then the
structures initially given collapsed naturally and new
stable structures were reconstructed.

Some comparisons are shown in Fig. 7, where cir-
cles correspond to stable convective structures,
crosses for unstable structures, and solid lines for
the marginally stable quiescent conduction state.
The upper line is for go=0.41 and the lower line for
go=2.1, obtained by interpolation from the results
by Atten and Moreau.!! The vertical axis represents
the electric Rayleigh number T and the horizontal

axis the wave number k. Stable convection states
were found to exist in the inner regions of such
lines.

D. Transitions among stable convective
states by disturbances

In Sec. IIIA several steady stable convective
states were found to exist for the same boundary
condition. This implies that the states were degen-
erate; one might be the most stable state and the
others metastable states. The liquid-layer system
was considered to be transferred to a more stable
state by some disturbances. We applied mainly two
disturbing methods:

(1) At t=0 impulsive charge disturbances were
applied on stable convection states. The distur-
bances had the following form.

(2) Different random forces were continuously ex-



484 MAKOTO SUZUKI AND YASUJI SAWADA 27

T
10 1 W
AR b=1.0
\‘ \
1 g _ 9,=041
10° =% o
% b=0.1
\\ q°:211
\—//
10°

0O 2 4 6 8 k

o stable, = unstable
FIG. 7. Stable convective structures. T, electric Ray-
leigh number; k, wave number; solid lines, obtained from

linear stability theory for the quiescent state according to
Ref. 9.

erted on each mesh point according to Eq. (A1) with
a random force term added to the right-hand side
(rhs). The amplitude distributes homogeneously in
the range [—a,a], where a was varied from about
0.5 to 80% of the steady maximum value of the vor-
ticity. The results are described below.

1. Impulsive disturbances

(a) State A0 was modulated with an impulsive
charge disturbance of k' =27 and Ag,=2, where the
other parameter remained constant. At ¢=0.5 the
convectional rolls were divided into smaller ones.
After fluctuating awhile the system was stabilized at
a 12-roll state, as in Fig. 8(a). The final value of the
entropy production P[S] did not change signficant-
ly, but the electric current I increased 0.56% from
the initial value.

(b) State A10 was modulated with an impulsive
disturbance of k'=1.6m and Aqy=2. The system
was stablized at a 12-roll state as in Fig. 8(b).

(c) State A12 was modulated with an impulsive
disturbance of k'=2.27 and Ago=2. Around
t=1.5 the system state had become a 16-roll state,
then returned back to a 12-roll state [Fig. 8(c)].

(d) State A16 was modulated with an impulsive
disturbance of k’'=m and Ago=2, then changed as
in Fig. 8(d) to become a 14-roll state.

(e) State A20 was modulated with an impulsive
disturbance of k'=1.47 and q,=2, then changed as
in Fig. 8(e) to become 14-roll state. The increase of
P[S] was about 0.3%.

(f) State A20 was modulated with an impulsive

disturbance of k'=0.47 and Agy=2, then changed
as in Fig. 8(f). Around r=0.5 the state was
transferred to a state with a wave number of the dis-
turbance. It meant that the disturbance was too
strong. The four-roll state was found to be unstable
and changed to an eight-roll state. The final values
of P[S] and I increased by —0.8 and 0.7%, respec-
tively.

2. Disturbance by random force

(g) State A8 was modulated with a random force
of a=5.0, which corresponds to 20% of the max-
imum velocity, so called 20% amplitude. The state
did not change at 20% amplitude, but changed to a
12-roll state at 80% amplitude as in Fig. 8(g)-2.
Variations of I and P[S] were not small. When ran-
dom force was removed at t=5.0 the values con-
verged as in Fig. 8(g)-1.

(h) When A12 was modulated by a random force
of 20% amplitude, the structure did not change.
When the amplitude of the disturbance was 80% the
structure varied as in Fig. 8(h).

(i) When state A16 was modulated with a random
force of 80% amplitude, the structure varied and
the average size of rolls increased as in Fig. 8(i).

(j) When state A18 was modulated with random
force of 0.5% amplitude, the state remained un-
changed. When the amplitude was 20% the state
changed to a 16-roll state with a 1% increase of
P[S] as in Fig. 8().

We summarize in Fig. 9 the results of computer
simulation of the relative stability among the vari-
ous metastable states obtained by giving an impul-
sive perturbation to the initial states, as shown in
Figs. 8(a)—8(g). It is evident that a steady convect-
ing system cannot be uniquely specified by the num-
ber of rolls or by the wavelength of the rolls, even if
the sytem is two dimensional. Therefore, even if the
number of rolls is identical between the initial states
and the final states, the corresponding currents are
not identical. Nevertheless, since the number of the
rolls n is a simple parameter, we take it as the hor-
izontal axis of Fig. 9. In the same figure we take the
current, which is proportional to the entropy pro-
duction in a steady state, in the vertical axis, to see
the validity of the entropy-production-maximum
principle. The open circles are the current corre-
sponding to the initial states obtained from small
fluctuations. The transition from an initial state to
a final state certainly depends on the character of
the perturbation. The examples we show in Fig. 9
are very limited, considering the variety of the possi-
ble perturbations one can envisage. Nevertheless,
there exists a general tendency for the final state to
carry more current than the corresponding initial
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bances; arrows indicate the initial states and the final
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one with one notable exception. This is understand-
able, as this initial state is the one with the max-
imum current. Any transition from it will decrease
the current. These limited results are consistent
with the principle of maximum entropy production,
although more examples have to be studied.

The final states are obtained by the impulsive per-
turbation scatter in the region of n from 12 to 16.
These results are consistent with the analysis of the
data perturbed constantly by a random noise shown
in Figs. 8(h) and 8(i). In each disturbed system the
distribution of roll size was obtained by measuring
the size of rolls appearing at z=0.5 and at t=1, 2, 3,
4, and 5. The number of appearnces of the roll is
plotted as a function of the wave number 2/A,
which is equal to n/10. In Fig. 10, (a) and (b) are
the initial states and (a’) and (b’) are the correspond-
ing state during the random perturbation. In this
range of calculation the most frequently appearing
roll corresponds to 1.2 for 2/A or n=12, which is
the same region with the results of Fig. 9 within the
computational error.

E. Numerical errors

In our numerical analysis the accuracy was
second order in A in the o calculation both in time
and space, better than first order in space, and first
order in time in charge calculation by means of the
donor cell method. The numerical errors can be
evaluated by comparing the results with either
analytical solutions or experimental results. In our
problem it was only the quiescent conduction state
that was obtained analytically. Numerical results
for this state agreed with the analytical solution
within 1% in charge density and 0.05% in electric
potential. Therefore, the donor cell method used for
charge calculation could be regarded to give good re-
sults with nearly the above accuracy.
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FIG. 10. Variations of the distribution of wave num-
bers. Horizontal axis is 2/A, which is equal to n/10.
Vertical axis is the number of appearances of the rolls of a
given wave number. (a) Sixteen-roll state, (a’) disturbed as
in Fig. 8(i); (b) Twelve-roll state, (b') disturbed as in Fig.
8(h).

Another evaluation was made be comparing the
electric current and the entropy production. These
values should agree since the input power was all
dissipated; however they differed by 2%, so the ab-
solute numerical errors in average current were es-
timated to be around 2%. However, the profile
showing a maximum in Fig. 9 may be justified be-
cause the relative error in each convecting state is
considered to be less than the absolute error.

IV. CONCLUSION

The electroconvective structure was studied nu-
merically, by finite difference schemes, for the first
time with full nonlinearity. The spatial structure
and its evolution under the perturbation were exam-
ined. The relative stability among the various meta-
stable states was discussed. The central results are
summarized as follows:

(1) A quiescent conduction state was obtained in a
condition below the critical Rayleigh number which
was given by the linear stability theory. The numer-
ical errors were 0.05% in electric potential, 1.0% in
charge density, and 0.03% in average current.

(2) In a condition above the critical electric Ray-
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leigh number and with some initial perturbations,
several regular convective structures were establish-
ed stably. The region of the wave number for the
stable structure was narrower than the line showing
the marginal stability of the quiescent state. When
initial perturbations with wave numbers near the
marginal stability condition were given such pertur-
bations grew for a while, then collapsed and changed
to become convective structures with wave numbers
relatively more stable. It was found that in the
starting state second-order differentials in the
current curves with respect to time were negative,
while they were positive for the cases achieving
stable structures. The numerical error in the con-
vective region was estimated to be around 2% in
average current.

(3) In steady stable convective states the liquid
velocity and the electric current take maximum
values in the region 1.2<A <1.7, where A is the

wavelength. Although the two maximum wave-
lengths were slightly different, they were in the same
region within the computational errors.

(4) Steady stable convective states were able to be
transferred to other states by perturbations. By
transitions the system was found to occupy a more
efficient state to transport charge or to dissipate en-
ergy, consistent with the maximum-entropy-
pr(6>duction principle proposed by Sawada’ and Feli-
ci.
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