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Abstract—This paper proposes a new structure for feedforward
active noise control (ANC) systems with online secondary path
modeling. The proposed method: 1) uses the same error signal
for updating the noise control process as used for the secondary
path modeling process and 2) incorporates an adaptive filtering
with averaging based filtered-reference algorithm in the noise
control process. The computer simulations have been conducted
with both narrowband and broadband noise signals. It is shown
that in the proposed ANC system the residual noise signal and the
secondary-path-modeling error can be reduced at a faster conver-
gence rate than the existing methods. This improved performance
is achieved at the expense of a slightly increased computational
complexity.

Index Terms—Active noise control, averaging, FXLMS algo-
rithm, online secondary path modeling.

I. INTRODUCTION

feedforward active noise control (ANC) [1]-[3] system

using the FXLMS algorithm comprises two filters; a noise
control filter (hereafter called the control filter), and a secondary
path modeling filter (hereafter called the modeling filter). As
shown in Fig. 1, the control filter W (z) is adaptive and gener-
ates the secondary canceling signal y(n). The objective of the
modeling filter S (z) is to compensate for the secondary path
S(z), which is present between the output of the control filter
and that of the error microphone.

The FXLMS algorithm appears to be very tolerant of errors
made in the modeling of S(z) by the filter S(z). As shown in
[4] and [5], with in the limit of slow adaptation, the algorithm
will converge with nearly 90° of phase error between S(z) and
S(z). Therefore, offline modeling can be used to estimate S(z)
during an initial training stage for ANC applications [2]. For
some applications, however, the secondary path may be time
varying, and it is desirable to estimate the secondary path online
when the ANC is in operation [6].

The basic additive random noise technique for online sec-
ondary path modeling in ANC systems is proposed by Eriksson
et al. [7]. As shown in Fig. 2, this ANC system comprises two
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Fig. 1. Block diagram of FXLMS based feedforward ANC system.
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Fig.2. ANC system of Fig. 1 with online secondary path modeling (Eriksson’s
method).

processes: a noise control process (hereafter called the con-
trol process), and a secondary path modeling process (here-
after called the modeling process). The main problem with this
system is that the white random noise, v(n), injected into the
ANC system for the modeling process, appears in the residual
error signal e(n). Thus e(n) comprises two parts: a part required
for the control process and a part required for the modeling
process. Since e(n) is used in both the control process and mod-
eling process, the part required for one acts as a disturbance for
the other. Due to this intrusion between the control process and
modeling process, the overall performance of the ANC system
is further degraded.

Improvements in the Eriksson’s method have been proposed
in [8]-[10]. These improved methods introduce another adap-
tive filter into the ANC system of Fig. 2. In [8], [9], the third
filter removes the interference from the modeling process, and
the modeling process therefore converges fast. Here no effort
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Fig. 3.

Third adaptive filter for improved online secondary path modeling in ANC system of Fig. 2. (a) Adaptive noise cancelation (ADNC) filter in Bao’s method.

(b) Prediction error filter in Kuo’s method. (c) ADNC filter with cross-updating in Zhang’s method.

is made to improve the control process [see Fig. 3(a) and (b)].
In [10], the control filter, the modeling filter, and the third filter
are cross-updated to reduce the mutual interference between the
control process and modeling process [see Fig. 3(c)]. Simula-
tion results presented in [10] show that this cross-updated ANC
system gives the best performance for ANC systems with online
secondary path modeling.

The main idea in this paper is to develop an ANC system that
can achieve improved online secondary path modeling without
introducing any extra adaptive filter into the ANC system of
Fig. 2. Since the control process is perturbed by the interference
which is random in nature [note that v(n) is a white random
noise process], we suggest using an adaptive filtering with av-
eraging (AFA) based filtered-x (FXAFA) algorithm in the con-
trol process. With a fast convergent control process, the inter-
ference in the modeling process is removed quickly and hence
the modeling process can converge fast. Simulations show that
the proposed ANC system can achieve better performance than
the existing methods.

The organization of this paper is as follows. Section II
explains the proposed method in connection to the operation
of Eriksson’s method. Section III discusses the computational
complexity issue, Section IV details the simulation results and
Section V presents concluding remarks.

II. PROPOSED METHOD FOR ANC SYSTEMS WITH ONLINE
SECONDARY PATH MODELING

A. Proposed Method

Consider Eriksson’s method for ANC systems with online
secondary path modeling, shown in Fig. 2. Assuming that the
control filter W (z) is an FIR filter of tap-weight length L, the
secondary signal y(n) is expressed as

ey

y(n) = w" (n)zr(n)

where w(n) = [wo(n)wi(n)---wr_1(n)]T is the tap-weight
vector, zr,(n) [#(n)x(n — 1)---2(n — L + 1)]T is the
L-sample reference signal vector, and z(n) is the reference
signal obtained by the reference microphone. An internally
generated zero-mean white Gaussian noise signal, v(n), uncor-
related with the reference noise z:(n), is injected at the output
y(n) of the control filter. The residual noise signal e(n) is given

as

e(n) = d(n) —y'(n) +v'(n) @

where d(n) = p(n) % 2(n) is the primary disturbance signal
at the error microphone, y'(n) = s(n) * y(n) is the secondary
canceling signal, v'(n) = s(n) * v(n) is the modeling signal,
* denotes the convolution operation, and p(n) and s(n) are im-
pulse responses of the primary path P(z) and secondary path
S(z), respectively. The residual noise signal e(n) is used as an
error signal for the control process, i.e.,

d(n) —y'(n) +v'(n) = u(n) +v'(n) (3)

“

is a component of the error signal due to the canceling noise
only.

The coefficients of the control filter W (z) are updated by the
FxLMS algorithm

w(n+ 1) =w(n) + pwew(n)z'(n)

= w(n) + /szl(n)“(n) + sz'(n)’ul(n) (5)

where ., is the step size for the control process, ='(n) =
[#'(n)z'(n — 1) ---2'(n — L + 1)]¥, and 2’(n) is the refer-
ence signal z(n) filtered through the modeling filter 5(z). We
see that the control process is perturbed by an undesired term
LT (n)V'(1).

Assuming that S(z) is represented by an FIR filter of tap-
weight length M, the filtered-reference signal ’(n) is obtained
as

#'(n) = 5" (n)xar(n)

(6)
where 3(n) = [85(n)81(n)s2(n) -+ 537_1(n)]T is the impulse
response of the modeling filter S(z) and z;(n) = [x(n)z(n —
1)---x(n— M +1)]T is the M-sample reference signal vector.

The residual noise signal e(n) is used as a desired response
in the modeling process, i.e., ds(n) = e(n), and hence the error
signal for the modeling process is generated as

es(n)

The LMS update equation for S(z) is given as

~!
— v

= dg(n) = '(n) = u(n) + [v'(n) = ¥'(n)].

3(n+1)=58(n)+ pses(n)v(n)
=3(n) + psv(n)[v'(n) — o'(n)]+psv(n)u(n) )
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Fig. 4. Proposed method for ANC systems with online secondary path
modeling.

where s is the step size of the modeling process, ¥'(n) =
$(n) xv(n) is an estimate of v’(n) obtained from the modeling
filter, and v(n) = [v(n)v(n — 1) -+ v(n — M + 1)]T. Equation
(8) shows that the performance of the modeling process is de-
graded by an undesired term p;v(n)u(n) and in worst case the
modeling process may diverge.

The error signals for the control process and the modeling
process are given in (3) and (7), respectively. From these ex-
pressions, we observe the following.

* Both ¢,(n) and es(n) contain u(n), which is the error
signal required for the control process. In e,,(n), u(n) is
corrupted by the component v'(n), and in e5(n), u(n) is
corrupted by a term [v’(n) — 0’ (n)].

* As compared with e(n), which is equal to e,(n) in
the conventional formulation, es(n) appears to be a
better error signal for the control process, because
[v(n) — o (n)| < |[v/(n)| and when S(z) converges then
(ideally) v'(n) = ¢'(n) = [v'(n) — '(n)] — 0.

* Since v(n) is white Gaussian noise of zero mean, both
v'(n) and [v'(n) — ¥’(n)] are random in nature and can
be averaged out.

On the basis of the above analysis, two modifications are sug-
gested to Eriksson’s method. The first is using e, (n) as the error
signal for both the control process and the modeling process,
ie., ey(n) = es(n) = e(n) — o'(n). The second modifi-
cation is replacing the FXLMS algorithm with an (AFA [11]
based FxAFA algorithm. The proposed ANC system is shown
in Fig. 4.

B. FxAFA Algorithm
Replacing e, (n) by es(n) in (5), we get
(n)] &' (n).

'(n) + p [v'(n) = '
©)

We see that the control process is perturbed by an undesired
term i, [v'(n) — 9'(n)] 2’ (n). Taking the expectation of (9)
and noting that v(n) and z:(n) are uncorrelated with each other,

we obtain

w(n+ 1) = w(n)+p,u(n)z

Efw(n+1)] = E [w(n)] + p E [u(n)a’ (n)]

+u E[0'(n) — o' (n)] E[g'(n)]. (10)
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TABLE 1
SUMMARY OF THE PROPOSED ANC SYSTEM

Parameters: L = tap-weight length of W (z)

M = tap-weight length of S(z)

Ly = step size for W(z)

s = step size for ()

~v € (0.5,1)

Forn=0,1,2,--- compute

y(n) = w'(n)z ( )

¥(n) = 8" (n)v(n)

ew(n) = es(n) = e(n) — ¥'(n)

3(n+ 1) 3(n) + pses(n)v(n)
(n

Computation:

a'(n) = & (n)zu(n)

g(n) = /Lweu(n)l’(n)

9(n) = (1—1/n)7g(n — 1) + (1/n")g(n)

w(n) =(1-1/n)w(n —1)+ (1/n)w(n)
w(n + 1) w(n) +g(n)

Since 9'(n) is an estimate of v’(n) and both are generated by
a zero-mean random process; hence E [¢'(n) —v'(n)] — 0.
From this analysis, we conclude that averaging can be used to
remove the effect of the perturbation term. To realize this, we in-
corporate the concept of AFA [11] to the FXLMS algorithm. In
[11], two averaging based adaptive filtering algorithms are pro-
posed. The first algorithm uses averaging in iterates only and
in the second algorithm averaging is incorporated with both it-
erates and observations. It is shown that the second approach
results in better performance than the first approach [11]. Mo-
tivated by the second approach, we incorporate averaging with
both the iteration vector [the tap-weight vector w(n)], and the
observation vector [the gradient vector pi e, (n)z’(n))] of the
FxLLMS algorithm. This results in the FXAFA algorithm [12],
which is described as

w(n+ 1) =w(n) +9g(n) (11)
where
1 n
w(n) =~ > w(k) (12)
k=1
1 & 1
g(n) = — > mew(k)e'(k); 5 <y <1 (13)
k=1

The operation of the proposed ANC system is summarized in
Table L. It is important to note that the averages introduced in
(12) and (13) are computed recursively.

Equation (13) shows that the effective step-size for the
FxAFA algorithm is p,,/nY = «(n) (say). This is a time
varying gain parameter with the property lim, ., a(n) — 0.
It is seen that v = 1 will rapidly decrease the gain parameter,
and hence the adaptation process may be very slow. Therefore
one may wish to choose v < 1. On the contrary, if y is selected
close to zero then «(n) is very slowly decreasing. This is also
not desirable for large mismatch. Hence 1/2 < ~ < 1 is the
recommended range for the values of v [13].

Let’s give some reasons why “averaging” can improve the
performance. We know that the method of steepest descent com-
putes a tap-weight vector that moves down the ensemble-av-
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TABLE I
COMPUTATIONAL COMPLEXITY (NUMBER OF MULTIPLICATIONS/ITERATIONS) COMPARISON OF
THE PROPOSED METHOD WITH THE EXISTING METHODS
(HERE, (-) IS THE RATIO OF COMPUTATIONAL COMPLEXITY TO THAT OF ERIKSSON'S METHOD.)

Analytical Expression| M = L/3; N = L/2|M = L;N=L/2|M =N=1L
Eriksson s Method |2L + 3M + 2 ~ 3L ~ 5L ~ 5L
Improved Methods|2L + 3M + 2N +3 |~ 4L(1.33) ~ 6L(1.2) ~ TL(1.4)
Proposed Method [6L + 3M + 2 ~ TL(2.33) ~ 9L(1.8) ~ 9L(1.8)

erage error-performance surface along a deterministic trajectory
that terminates on the Wiener solution (although it takes infi-
nite number of iterations, n, to do so). The LMS algorithm, on
the other hand behaves differently because of the presence of
the gradient noise: rather than terminating on the Wiener solu-
tion, the tap-weight vector computed by the LMS algorithm ex-
ecutes a random motion around the minimum point of the error
performance surface [14, p. 234]. Furthermore, by assigning a
small value to the step size parameter, the adaptation is made to
progress slowly, and the effects of the gradient noise on the tap
weights are largely filtered out [14, p. 235].

In the proposed algorithm, the aim is to have the iterations
move to the Wiener solution reasonably fast. For the averaging
approach of (13), with v < 1 the estimates from (11) are allowed
to approach the vicinity of the true value faster. At the same
time, averaging removes the random fluctuations in the gradient
vector and ensures that the iterations move toward the optimal
(Wiener) solution. Now better noise reduction performance is
expected and ANC will reduce the residual noise component
u(n) at a fast convergence rate. This means that the modeling
process is now expected to converge fast.

C. Effect of Using Same Error Signal

As said earlier, in the proposed method, both the modeling
filter and the control filter are updated using the same error
signal, i.e., e,(n) = es(n) = e(n) — '(n) = € (n)(say).
Taking the z-transform and making necessary substitutions, we
get following expression for this error signal:

E'(2) = [P(2) =S(:)W (2)]X (2) +[S(2) = S ()] V (2). (14)

By convergence of W (z), we mean that the error signal is min-
imized to (ideally) zero. This requires W (z) to adapt to the fol-
lowing optimal solution:

15)

This equation shows that W (z) will converge to the optimal so-
lution P(z)/S(z), if and only if, modeling error reduces to zero,
ie., S(z) — S(z). Converse is also true, that the modeling error
reduces to zero, if and only if, W (z) converges to the optimal
solution P(z)/S(z). Thus in the proposed method the conver-
gence of the control filter and the modeling filter is mutually
dependent.

III. COMPUTATIONAL COMPLEXITY

Table II presents a computational complexity (multiplica-
tions per iteration) comparison of the proposed method with
the existing methods. It is assumed that three adaptive filters,
B(z), C(z), and H(z) in Bao’s method, Kuo’s method, and
Zhang’s method, respectively, are selected of tap-weight length
N . Hence, these methods (called improved methods in Table II)
have the same computational complexity.

The data represented in Table IT shows that the computational
complexity of the proposed method is greater than the existing
schemes. The source of this increased computational burden is
the recursive computation of the averages introduced in (11).

IV. COMPUTER SIMULATIONS

In this section, we compare the performance of the proposed
method with that of Eriksson’s method and Zhang’s method.
The performance comparison is done on the basis of two per-
formance measures. The first is the residual error signal e(n).
The second is the relative modeling error being defined as

S i) — ()2
AS(dB) = 10log,, | =2

M—1 (16)

2 {si(m)p?

For the primary acoustical path P(z) and the secondary path
S(z), the experimental data provided by [1] is used, where both
are modeled by IIR filters of order 25. The frequency response of
the acoustic paths is shown in Fig. 5. The modeling filter 5(z)
and control filter W (z) are FIR filters of tap-weight length L
and M, respectively. The adaptive noise cancelation (ADNC)
filter H(z) in Zhang’s method is selected as an FIR filter of
tap-weight length N. The control filter W (%) is initialized by
the null vector w(0) = 0, and ADNC filter H(z) is initialized
by the null vector h(0) = 0. To initialize the modeling filer,
offline modeling is performed! which is stopped when the mod-
eling error [as defined in (16)] has been reduced to —5 dB. The
resulting weights are used for $(0) when the ANC system is
started. A sampling frequency of 4 kHz is used and the simula-
tions are carried out with the signals having frequency content
below 500 Hz. The parameters are adjusted for fast and stable
convergence and are summarized in Table III. All the results

IAs stated in Section II-C, the adaptation of () and 8 (2) in the proposed
method is mutually dependent. If S( =) is initialized by a null vector, then ANC
system may be unstable. To avoid this situation, we have used offline modeling
to initialize the modeling filter .5(z). It is worth mentioning that practically the
first stage in ANC system design is offline measurements. It is better to initialize
the ANC system by offline measurements [15].
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Fig. 5. Frequency response of acoustic paths used in computer simulations. (a) Primary path P(z). (b) Secondary path S(z).
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Fig. 6. Performance comparison between existing methods and proposed method for Case 1. (a) Relative modeling error AS' (dB) versus iteration time 7. (b)

Residual error signal e(n) versus iteration time n.

TABLE III
SIMULATIONS PARAMETERS FOR COMPUTER EXPERIMENTS

Eriksson’s Method
(Haws ts)

Zhang’s Method
(Haw, fss Hh)

Proposed Method

Case (Hws fos5Y)

1,2/1x107%,1x 10732 x 107%,5 x 1073,1 x 1073|2 x 1073,5 x 1073,0.6
3 |1x1075,1x10732x107%,3x 1073,1 x 1073|1 x 1073,3 x 1073,0.5

presented below are averaged over ten realizations of the noise
process.

1) Case 1: First we consider a sinusoidal signal of 200 Hz
as a reference noise signal. The variance of this signal is 2, and
a zero-mean white Gaussian noise is added to it with SNR of
20 dB. In order to maintain low residual noise in steady state,
zero-mean white Gaussian noise of variance 0.01 is used in the
modeling process. The tap-weight lengths for the adaptive filters
are chosen as L. = 128, M = 64, and N = 64. The delay
A in Zhang’s method is 30. Fig. 6(a) shows the curves of the
relative modeling error, AS, as defined in (16). We see that the
proposed method achieves best performance among the existing
methods. The corresponding curves for the residual error signal
are shown in Fig. 6(b). We see that proposed method can reduce
the residual noise at a much faster rate than Zhang’s method.
This is because in the proposed method a large value for the step
size pu,, for W(z) can be selected (see Table III). This confirms

the discussion presented earlier, that due to an efficient control
process, the residual noise is reduced efficiently, which in turn
improves the performance of the modeling process.

2) Case 2: In this case, the reference noise is a broadband
signal comprising sinusoids of frequencies 200, 250, 425, and
500 Hz. The variance of the reference noise signal is adjusted
to 2 and a zero-mean white Gaussian noise is added to it with
SNR of 20 dB. As in Case 1, the modeling process is excited
by a zero-mean white Gaussian noise of variance 0.01. The
tap-weight lengths for the adaptive filters are chosen to be the
same as in Case 1, i.e., L = 128, M = 64, and N = 64. The
delay A in Zhang’s method is 30. In Fig. 7(a), curves of the rel-
ative modeling error, AS, are shown for the proposed method in
comparison to the existing methods. Fig. 7(b) shows the curves
for residual error signal e(n). As in Case 1, the proposed method
gives better performance than Zhang’s method, both in noise re-
duction and secondary path modeling. It is interesting to note
that here the convergence of e(n) is slower as compared with
the curves shown in Fig. 6(b). The reason is the reference signal,
which comprises multiple frequency components as compared
with the single tone in Case 1.

3) Case 3: Here the reference noise signal is generated by
filtering a zero mean white Gaussian noise of unit variance
through a bandpass filter with the passand 100-400 Hz. The
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variance of the filtered signal is adjusted to 2 and a zero-mean
white Gaussian noise is added to it with SNR of 20 dB. The step
size parameters are adjusted for fast and stable performance
and are given in Table III. As in the previous cases, zero-mean
white Gaussian noise of variance 0.01 is used in the modeling
process. The simulations results are presented in Fig. 8. We see
that the convergence of the three methods is very slow as com-
pared with the results presented in Figs. 6 and 7. Nevertheless,
proposed method achieves better performance than the existing
methods, by using two adaptive filters only.

V. CONCLUDING REMARKS

In this paper, we have proposed a new method for feedforward
ANC systems with improved online secondary path modeling.
The main features of the proposed ANC system are summarized
below.

* Since the primary noise is much stronger than the online
secondary path modeling excitation signal, the influence
from the primary noise to the secondary path modeling
process is more significant, especially at the beginning of
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the ANC process while the system has no idea of the sec-
ondary path model. An effort, therefore, is made to im-
prove the control process, so that better noise reduction is
achieved and hence the modeling process converges fast.

» The proposed structure uses two adaptive filters, W(z)
and S (2), to perform the noise control and secondary path
modeling simultaneously. This is in contrast to the existing
improved methods, which use three adaptive filters.

» The proposed ANC system can reduce the residual noise
signal and the secondary-path-modeling error at a faster
convergence rate than the existing methods.

In the noise-control process, two rounds of averaging are
incorporated with the FXLMS algorithm. The first round of
averaging removes random fluctuations from the gradient
vector and the second round of averaging ensures that tap
weights converge to the optimal solution. Due to this averaging,
the proposed FXAFA algorithm has long memory, and hence
poor tracking properties. This problem can be overcome, for
example, by using weighted averaging with exponential for-
getting factor [16], or moving averaging with sliding window
can be used. Another idea may be to re-initialize the averaging
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process at regular intervals. Improving the tracking properties
of the proposed ANC system is a task of future work.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the anony-
mous reviewers for their invaluable comments on the original
and revised versions of the manuscript.

REFERENCES

[1] S. M. Kuo and D. R. Morgan, Active Noise Control Systems-Algorithms
and DSP Implementation. New York: Wiley, 1996.

, “Active noise control: A tutorial review,” Proc. IEEE, vol. 87, no.

6, pp. 943-973, Jun. 1999.

S. J. Elliot, Signal Processing for Active Control.

demic Press, 2001.

[4] D. R. Morgan, “An analysis of multiple correlation cancellation loops

with a filter in auxiliary path,” IEEE Trans. Acoust., Speech, Signal

Process., vol. ASSP-28, pp. 454-467, Aug. 1980.

S. J. Elliott, I. M. Stothers, and P. A. Nelson, “A multiple error LMS

algorithm and its application to the active control of sound and vibra-

tion,” IEEE Trans. Acoust., Speech, Signal Proces., vol. ASSP-35, pp.

1423-1434, Oct. 1987.

N. Saito and T. Sone, “Influence of modeling error on noise reduction

performance of active noise control systems using filtered-x LMS algo-

rithm,” J. Acoust. Soc. Jpn. (E), vol. 17, no. 4, pp. 195-202, Apr. 1996.

[7]1 L. J. Eriksson and M. C. Allie, “Use of random noise for on-line trans-

ducer modeling in an adaptive active attenuation system,” J. Acoust. Soc.

Am., vol. 85, no. 2, pp. 797-802, Feb. 1989.

C. Bao, P. Sas, and H. V. Brussel, “Adaptive active control of noise in

3-D reverberant enclosure,” J. Sound Vib., vol. 161, no. 3, pp. 501-514,

Mar. 1993.

[9] S. M. Kuo and D. Vijayan, “A secondary path modeling technique for
active noise control systems,” IEEE Trans. Speech Audio Process., vol.
5, no. 4, pp. 374-377, Jul. 1997.

[10] M. Zhang, H. Lan, and W. Ser, “Cross-updated active noise control

system with online secondary path modeling,” IEEE Trans. Speech

Audio Process., vol. 9, pp. 598-602, Jul. 2001.

G. Yin, “Adaptive filtering with averaging,” in Adaptive Control, Fil-

tering, and Signal Processing, K. J. Astrom, G. C. Goodwin, and P. R.

Kumar, Eds. New York: Springer-Verlag, 1995.

[12] M. T. Akhtar, M. Abe, and M. Kawamata, “On use of averaging in
FxLMS algorithm for single-channel feedforward ANC systems,” in
Proc. IEEE ISCAS, vol. 1V, 2003, pp. 389-392.

, “Adaptive filtering with averaging based algorithm for feedfor-

ward active noise control systems,” IEEE Signal Process. Lett., vol. 11,

no. 6, pp. 557-560, Jun. 2004.

S. Haykin, Adaptive Filter Theory, 4th ed. New Jersey: Prentice Hall,

2002.

[15] W.S. Gan and S. M. Kuo, “An integrated audio and active noise control

headsets,” IEEE Trans. Consumer Electron., vol. 48, no. 2, pp. 242-247,

May 2002.

V. Krishnamurthy, “Average stochastic algorithms for adaptive blind

multiuser detection in DS/CDMA systems,” IEEE Trans. Commun.,

vol. 48, no. 1, pp. 125-134, Jan. 2000.

[2]
3

=

London, U.K.: Aca-

[5

—_

[6

oy

[8

—

[11]

[13]

[14]

[16]

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 13, NO. 5, SEPTEMBER 2005

Muhammad Tahir Akhtar (S’02) received the B.S.
degree in electrical engineering from the University
of Engineering and Technology, Taxila, Pakistan, in
1997 and the M.S. degree in systems engineering
from Quaid-i-Azam University, Islamabad, Pak-
istan, in 1999 (through a fellowship from Pakistan
Institute of Engineering and Applied Sciences
(PIEAS), Islamabad). Since October 2001, he has
been pursuing the Dr. Eng. degree at the Graduate
School of Engineering, Tohoku University, Sendai,
Japan, under a Japanese Government Scholarship
(Monbokagakusho).

In 1999, he joined the Electrical Engineering Department of PIEAS as a Fac-
ulty Member. His research interests include active noise control and adaptive
signal processing.

Mr. Akhtar won a First Place Award in the student paper contest at the IEEE
2004 Midwest Symposium on Circuits and Systems, Hiroshima, Japan.

Masahide Abe (M’99) received the B.Eng., M. In-
form. Sci., and Dr. Eng. degrees from Tohoku Uni-
versity, Sendai, Japan, in 1994, 1996, and 1999, re-
spectively.

He is currently a Lecturer in the Graduate School
of Engineering at Tohoku University. His main inter-
ests and activities are in adaptive digital filtering and
evolutionary computation.

Dr. Abe received the Young Engineer Award from
the Institute of Electronics, Information, and Com-

~
| ; b
munication Engineers (IEICE) of Japan in 1997. He

is a member of the society of Instrument and control Engineers of Japan.

Masayuki Kawamata (M’82-SM’92) received
the B.E., M.E,, and D.E. degrees in electronic
engineering from Tohoku University, Sendai, Japan,
in 1977, 1979, and 1982, respectively.

He was an Associate Professor in the Graduate
School of Information Sciences, Tohoku University,
and is currently a Professor in the Graduate School
of Engineering, Tohoku University. His research
interests include 1-D and multidimenstional digital
signal processing, intelligent signal processing, and
linear system theory.

He received the Outstanding Transaction Award from the Society of Instru-
ment and Control Engineers of Japan in 1984 (with T. Higuchi), the Outstanding
Literary Work Award from the Society of Instrument and Control Engineering
of Japan in 1996 (with T. Higuchi), and the 11th IBM-Japan Scientific Award in
Electronics in 1997. He is member of the Institute of Electronics, Information,
and Communication Engineers (IEICE) of Japan, the Society of Instrument and
Control Engineers of Japan, and the Information Processing Society of Japan.

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on October 6, 2008 at 21:38 from IEEE Xplore. Restrictions apply.



	toc
	A New Structure for Feedforward Active Noise Control Systems Wit
	Muhammad Tahir Akhtar, Student Member, IEEE, Masahide Abe, Membe
	I. I NTRODUCTION

	Fig.€1. Block diagram of FxLMS based feedforward ANC system.
	Fig.€2. ANC system of Fig.€1 with online secondary path modeling
	Fig.€3. Third adaptive filter for improved online secondary path
	II. P ROPOSED M ETHOD FOR ANC S YSTEMS W ITH O NLINE S ECONDARY 
	A. Proposed Method


	Fig.€4. Proposed method for ANC systems with online secondary pa
	B. FxAFA Algorithm

	TABLE I S UMMARY OF THE P ROPOSED ANC S YSTEM 
	TABLE II C OMPUTATIONAL C OMPLEXITY (N UMBER OF M ULTIPLICATIONS
	C. Effect of Using Same Error Signal
	III. C OMPUTATIONAL C OMPLEXITY
	IV. C OMPUTER S IMULATIONS

	Fig.€5. Frequency response of acoustic paths used in computer si
	Fig.€6. Performance comparison between existing methods and prop
	TABLE III S IMULATIONS P ARAMETERS FOR C OMPUTER E XPERIMENTS 
	1) Case 1: First we consider a sinusoidal signal of 200 Hz as a 
	2) Case 2: In this case, the reference noise is a broadband sign
	3) Case 3: Here the reference noise signal is generated by filte

	Fig.€7. Performance comparison between existing methods and prop
	Fig.€8. Performance comparison between existing methods and prop
	V. C ONCLUDING R EMARKS
	S. M. Kuo and D. R. Morgan, Active Noise Control Systems-Algorit
	S. J. Elliot, Signal Processing for Active Control . London, U.K
	D. R. Morgan, An analysis of multiple correlation cancellation l
	S. J. Elliott, I. M. Stothers, and P. A. Nelson, A multiple erro
	N. Saito and T. Sone, Influence of modeling error on noise reduc
	L. J. Eriksson and M. C. Allie, Use of random noise for on-line 
	C. Bao, P. Sas, and H. V. Brussel, Adaptive active control of no
	S. M. Kuo and D. Vijayan, A secondary path modeling technique fo
	M. Zhang, H. Lan, and W. Ser, Cross-updated active noise control
	G. Yin, Adaptive filtering with averaging, in Adaptive Control, 
	M. T. Akhtar, M. Abe, and M. Kawamata, On use of averaging in Fx
	S. Haykin, Adaptive Filter Theory, 4th ed. New Jersey: Prentice 
	W. S. Gan and S. M. Kuo, An integrated audio and active noise co
	V. Krishnamurthy, Average stochastic algorithms for adaptive bli



