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In order to understand the rheological and transport properties of a suspension of
swimming micro-organisms, it is necessary to analyse the fluid-dynamical interaction
of pairs of such swimming cells. In this paper, a swimming micro-organism is modelled
as a squirming sphere with prescribed tangential surface velocity, referred to as a
squirmer. The centre of mass of the sphere may be displaced from the geometric
centre (bottom-heaviness). The effects of inertia and Brownian motion are neglected,
because real micro-organisms swim at very low Reynolds numbers but are too large
for Brownian effects to be important. The interaction of two squirmers is calculated
analytically for the limits of small and large separations and is also calculated numer-
ically using a boundary-element method. The analytical and the numerical results for
the translational–rotational velocities and for the stresslet of two squirmers correspond
very well. We sought to generate a database for an interacting pair of squirmers from
which one can easily predict the motion of a collection of squirmers. The behaviour
of two interacting squirmers is discussed phenomenologically, too. The results for the
trajectories of two squirmers show that first the squirmers attract each other, then they
change their orientation dramatically when they are in near contact and finally they
separate from each other. The effect of bottom-heaviness is considerable. Restricting
the trajectories to two dimensions is shown to give misleading results. Some movies
of interacting squirmers are available with the online version of the paper.

1. Introduction
Massive plankton blooms are an integral part of the oceanic ecosystem. From the

small night-time grazers that ascend from the (relatively safe) depths of the oceans
to feast on phytoplankton, descending from the water surface at night to increase
their nutrient uptake, to the largest animals on Earth, (plankton-grazing) blue whales,
there is an essential dependence on populations of micro-organisms. Moreover, it is
not only in the oceanic ecosystem that dense populations of micro-organisms have a
considerable influence on human life. They are used in biotechnology, they sometimes
cause harmful red tides in coastal regions of the ocean and they absorb CO2, which
affects the global climate.

The size of individual micro-organisms is often much smaller than that of the flow
field of interest, especially in an oceanic plankton bloom. In such cases, the suspension
is modelled as a continuum in which the variables are volume-averaged quantities
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(Fasham, Ducklow & McKelvie 1990; Pedley & Kessler 1992; Metcalfe, Pedley &
Thingstat 2004). Continuum models for suspensions of swimming micro-organisms
have also been proposed for the analysis of phenomena such as bioconvection
(Childress, Levandowsky & Spiegel 1975; Pedley & Kessler 1990; Hillesdon, Pedley
& Kessler 1995; Bees & Hill 1998; Metcalfe & Pedley 2001, for instance). However,
the continuum models proposed so far have been restricted to dilute suspensions,
in which cell–cell interactions are negligible. If one wishes to consider larger cell
concentrations, for example in the dense falling plumes that form part of bioconvection
patterns (Kessler et al. 1994; Metcalfe & Pedley 2001), it will be necessary to consider
interactions between micro-organisms. Then the translational–rotational velocities
of the micro-organisms, the particle stress tensor and the diffusion tensor in the
continuum model will need to be replaced by improved expressions.

To model the motion of a real micro-organism mathematically is a massive
undertaking. Micro-organisms exist over a large range of length scales (roughly
1–500 µm for common marine species) and alter their behaviour depending on many
parameters relating to their environment. The variety of shapes both inter- and
intraspecies is also vast. Indeed, even individual micro-organisms do not maintain the
same shape and often change to eat, reproduce or protect themselves from predators
or hostile environments. Any model capable of being analysed mathematically will
therefore need to make severe simplifications, even for the simplest micro-organisms
(Brennen & Winet 1977). The model micro-organism used in this paper will, by
necessity, be extremely primitive and many non-biological assumptions will be made.
The model micro-organisms we have used are the simplest we could think of that
both swim and have finite size, so that excluded-volume effects and hydrodynamic
interactions can be analysed non-trivially.

First it will be assumed that such a micro-organism has a spherical shape. This
assumption is made for obvious mathematical convenience, but a number of real
micro-organisms, notably ciliates such as Opalina and colonies of flagellates such as
Volvox (Brennen & Winet 1977; Larson, Kirk & Kirk 1992) are roughly spherical.
Cyanobacteria (Waterbury et al. 1985) also have no external appendages, and the cell
body is approximately a spheroid with aspect ratio about 2. They swim by a bulk
streaming of the cell surface without observable shape change (Pitta & Berg 1995).
The creatures will also be assumed to be neutrally buoyant, because the sedimentation
velocity for typical aquatic micro-organisms is much less than the swimming speed.
The centre of buoyancy of the spherical micro-organism may not coincide with its
geometric centre. This provides the micro-organism with a self-righting mechanism,
causing it to move in a preferred direction even if temporarily advected or rotated by
the flow in another direction (Pedley & Kessler 1987). Certain swimming algae are
bottom-heavy, for example, enabling them to swim vertically upwards (on average)
in still water (Kessler 1986). The model micro-organism is, therefore, force free but
may not be torque free. The swimming speeds of micro-organisms range up to several
hundred µm s−1. The Reynolds number based on the swimming speed and the radius
of individuals is usually less than 10−2, therefore the flow field around the micro-
organisms is assumed to be Stokes flow. Brownian motion is not taken into account,
because typically micro-organisms are too large for Brownian effects to be important
although often they appear to reorientate randomly while swimming, in a manner
which may be analogous to Brownian motion (Pedley & Kessler 1990; Hill & Häder
1997; Vladimirov et al. 2004).

The model micro-organism will be assumed to propel itself by generating tangential
velocities on its surface. Again, this is the simplest model that is susceptible to
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analysis. In fact, it is a reasonable model to describe the locomotion of certain
ciliates, which propel themselves by beating arrays of short hairs (cilia) on their
surface in a synchronized way. In particular, the so-called symplectic metachronal
wave employed by Opalina, for instance, in which the cilia tips remain close together
at all times, can be modelled simply as the stretching and displacement of the surface
formed by the envelope of these tips, and this can be regarded as approximately
spherical (Blake 1971; Brennen 1974). We make the additional simplification that
the small radial displacement of this envelope can be neglected, and the boundary
conditions applied on the sphere’s surface. Furthermore, the tangential motions on
the spherical surface will be assumed to be axisymmetric and time independent.
The latter assumption is not justified for ciliates such as Opalina, which beat the
cilia at a frequency of around 80 Hz, but if it is permissible to average over many
beat cycles then the present model can be taken to refer to the mean motion.
Details of this model micro-organism are given explicitly in Appendix A; it will
be referred to as a squirmer. The velocity field generated by a squirmer is shown
graphically in figure 1. The model of a squirmer was first proposed by Lighthill
(1952), and his analysis was then extended by Blake (1971). The model was used by
Magar, Goto & Pedley (2003) to analyse the nutrient-uptake properties of a solitary
squirmer.

Much work has been done to analyse the effect of hydrodynamic interactions in a
suspension of inert spheres in a Stokes-flow regime. This research field was pioneered
by Batchelor (1970). Brady and his colleagues calculated the particle stress tensor
and diffusion tensor for spheres in a simple shear flow and in a pressure-driven
flow by using Stokesian-dynamics simulations (Brady & Bossis 1988; Nott & Brady
1994). This simulation method constructs a mobility matrix for the force, torque
and stresslet based on precise expressions for two-sphere interactions, and the many-
body interaction is taken into account by inverting the mobility matrix (because
inverting the mobility matrix sums an infinite number of reflected interactions among
particles, as discussed in Durlofsky, Brady & Bossis 1987). The stresslet is necessary
in considering the stress field of a suspension and for improving the accuracy of
a Stokesian-dynamics simulation. Therefore, a precise analysis of the force, torque
and stresslet of two interacting spheres is the starting point for the many-body
problem. Claeys & Brady (1989) analysed a suspension of inert spheroids under
a simple shearing motion using a Stokesian-dynamics simulation, beginning with a
two-spheroid interaction then using this to construct the mobility matrix for many-
body interactions (Claeys & Brady 1993). Similarly, in order to analyse a non-
dilute suspension of swimming micro-organisms, it is first necessary to obtain precise
expressions for the force, torque and stresslet of two interacting micro-organisms.
Then it may be extended to many bodies. The present paper is concerned with
two-body interactions.

The electrophoretic motions of interacting charged particles have been widely
investigated (Prieve et al. 1984; Ken & Anderson 1985; Baygents, Rivette & Stone
1998, for instance). In the dilute limit, the charged particles actually swim in
the direction of the applied electric field. This characteristic as an active particle
is somewhat analogous to bottom-heavy micro-organisms, which swim upwards.
However, the electric charge is normally induced passively on the particle and there is
no preferred direction associated with an individual sphere. This means that there is
no overall torque on a charged sphere, which is different from the case of a bottom-
heavy sphere in a gravitational field. Moreover, when two charged particles are in
near contact, their electric fields change passively.
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This characteristic is also different from the case of our squirmers, which are
assumed to swim actively even when two of them are in near contact. Therefore,
earlier research on electrophoretic motion cannot be simply extended to study the
interaction of active micro-organisms.

There have been a few investigations of hydrodynamic interactions between micro-
organisms previously. Guell et al. (1988) discussed the flow field far from a spherical
body with a rotating helical flagellum (modelling a swimming bacterium). Ramia,
Tullock & Phan-Thien (1993) and Nasseri & Phan-Thien (1997) also investigated
the interaction between two spheroidal bodies with rotating helical flagella, by using
a boundary-element method. Their computational conditions were limited to two
cases, that of swimming side by side and that of swimming along one line. The
minimum distance between the two spheroidal bodies was taken to be approximately
equal to the minor axis of either spheroid, and they did not examine bodies in near
contact. Recently, Lega & Passot (2003) derived a hydrodynamic model for bacterial
colonies suspended on an agar plate. To model nutrient transfer and hydrodynamics,
the authors had to include an ad hoc interactive force acting between the micro-
organisms that in practice is unlikely to exist. Jiang, Osborne & Meneveau (2002) used
a numerical hydrodynamic model for two swimming organisms (copepods, which are
significantly larger than single-celled ciliates or flagellates) to calculate prey-encounter
rates and other important quantities; they concluded that the behaviour of micro-
organisms is very different when they are close together. However, the cse of two
micro-organisms in near contact was not analysed mechanistically in any of these
former studies.

It is to be expected that in the presence of a nearby micro-organism any given
micro-organism will not behave as if it were alone. It may attempt to reproduce
sexually or to consume (or avoid being consumed by) its neighbour. It may also move
away from it to avoid competition for food. However, the hydrodynamic interaction
of micro-organisms has not yet been modelled precisely and so considering only
passive interactions (where the micro-organisms do not actively react to the presence
of others) is a worthwhile approach in a first model. Throughout this paper the
squirming motion of a sphere’s surface is assumed to be invariant, except in § 6 where
the condition of constant swimming power is applied as an alternative.

When two micro-organisms are far enough apart the hydrodynamic interaction
between them is rather simple. In terms of a multipole expansion, the interaction can
be described by using only the second moment, a force dipole. However, two micro-
organisms in near contact are rather difficult to deal with. For rigid surfaces in relative
motion, the flow in the gap region dominates and lubrication theory provides the
leading term in an asymptotic expansion. For shearing motions (two surfaces sliding
past each other) the leading term in the force–velocity correlation is O(log ε−1), where
ε is the gap distance, and thus dominates the solution only in the mathematical sense.
Even if we take ε as the ratio of molecular to macroscopic dimensions, log ε−1 is
not large enough to dominate, and the next-order, O(1), term must be included. The
O(1) term cannot be obtained by an asymptotic analysis of the region near the gap,
because all regions of the particle surface contribute to it (Kim & Karrila 1992). Thus
a numerical solution is unavoidable.

In § 2 of this paper, the far-field flow properties will be calculated analytically,
by exploiting the Fáxen relations, and in § 3 the near-field flow properties will be
calculated analytically using lubrication theory. The intermediate-field flow properties
will be calculated numerically in § 4, using a boundary-element method, and then the
analytical and numerical results will be compared. In these sections, the principal
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e

Figure 1. Flow velocity vectors relative to the translational velocity vector of a solitary
squirmer with β = 5 in a uniform flow, of speed 1.0 in dimension-free form, coming from the
far right.

derived quantities will be the translational–rotational velocities and the stresslet of
an interacting pair of squirmers. The bulk stress of a suspension of squirmers can
be expressed using the stresslet, as discussed in Batchelor (1970), which is why the
stresslet of an interacting pair of squirmers needs to be calculated first. In a future
paper, we intend to use the results of this paper to investigate the behaviour of
suspensions of many squirmers, using the technique of Stokesian dynamics. It is
therefore worthwhile generating a database for interacting pairs of squirmers from
which arbitrary pairwise interactions can be looked up or interpolated. The stresslet
is also necessary for improving the accuracy of the Stokesian-dynamics simulation.
Details of the database will be explained in § 5.† The behaviour of two interacting
squirmers is discussed phenomenologically and for results the trajectories of two
squirmers are also given in § 5. Some movies of interacting squirmers are available
with the online version of the papers. In § 6, we will summarize the results and discuss
the effect of boundary conditions on the squirmer surface.

2. Analysis for far-field separation
The solutions for the flow and the stresslet generated by a solitary squirmer are given

explicitly in Appendix A in dyadic notation; some symbols defined in Appendix A
will be used here without repeating their definitions.

The velocity field generated by a solitary squirmer with B2/B1 = 5 (Bn =0 for n> 2)
is shown in figure 1. A solitary, force-free squirmer swims with speed U = 2B1/3, from
(A 7). (Stone & Samuel (1996) derived an analytical result for the swimming speed of
a micro-organism propelled by surface distortions in terms of the surface velocities.
However, in our case the surface velocity of a squirmer includes its swimming speed,
so their method does not yield new information.) The far-field flow properties will
be calculated by exploiting the Fáxen relations. The linearity of the problem means
that the solution for two inert spheres in a background flow field can be added to the

† The database, which covers a wide range of parameters, is available from the first author
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solution for two squirmers in a fluid otherwise at rest to calculate the general solution
for two squirmers in a background flow field. The velocities and angular velocities
of the squirmers (with the background flow) are then the sums of the solutions for
squirmers in a still fluid and for inert spheres in a background straining flow. The
construction of the solutions will follow a similar approach to that of established
texts (e.g. Kim & Karrila 1992; Russel, Saville & Schowalter 1992).

2.1. Velocity difference

To express the velocity difference of the two squirmers in general terms, consider the
velocity field generated by a squirmer centred at the origin, with radius a, squirming
set B and orientation vector e. Let this be V, where, from (A 8),

V(x, a, e, B) = −1

3

a3

r3
B1e + B1

a3

r3

e · r
r

r
r

+
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(
an+2

rn+2
− an

rn

)
BnPn

(
e · r
r

)
r
r

+
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(
n

2
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−
(

n

2
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)
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rn

)
BnWn
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r

)(
e · r
r

r
r

− e
)
. (2.1)

Let the flow solution (A 8) for a solitary squirmer with centre at x0, radius a and
squirming set B(1) (i.e. the set of modes of the squirming motion, B

(1)
1 , B

(1)
2 , . . .) be usol

in the frame in which the fluid is at rest far away. Then if a new squirmer is added
to this flow field at x0 + r , with radius αa and squirming set B(2), Fáxen’s first law is
given as (Russel et al. 1992)

F2 = 6πµαa

(
2

3
B

(2)
1 e2 − U2 +

(
usol +

α2a2

6
∇2usol

)∣∣∣∣
x0+r

)
, (2.2)

where F2 is the force exerted on the second squirmer, e2 is the orientation vector
of the second squirmer and U2 is its velocity. Since the second squirmer moves with
velocity 2

3
B

(2)
1 e2 in the absence of the first squirmer, the first term on the right-hand

side is added to Fáxen’s first law for a inert sphere. By assuming a force-free squirmer,
(2.2) can be transformed to

U2 =
2

3
B

(2)
1 e2 +

(
usol +

α2a2

6
∇2usol

)∣∣∣∣
x0+r

. (2.3)

Of course the original squirmer causes a perturbation to the velocity field of the
second, but these higher-order terms are neglected here.

Defining the separation velocity as dU = U2 − U1 yields the following expression
for dU:

dU =
2

3
B

(2)
1 e2 − 2

3
B

(1)
1 e1 + V

(
r, a, e(1), B(1)

)
+

α2a2

6
∇2V

(
r, a, e(1), B(1)

)
− V

(
−r, αa, e(2), B(2)

)
− a2

6
∇2V

(
−r, αa, e(2), B(2)

)
. (2.4)

2.2. Rotational velocities

The rotational velocity of the first squirmer in the same arrangement as in the previous
section can be given by Fáxen’s second law (Russel et al. 1992):

T 1 = 8πµa3
(
−Ω1 + 1

2
∇ ∧ V

(
−r, αa, e(2), B(2)

))
, (2.5)

where T 1 is the torque exerted on the first squirmer. If the squirmer is bottom heavy,
there will be a torque acting on it and this must be equal and opposite to the
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Figure 2. The arrangement of a bottom-heavy squirmer. Gravity acts in the g-direction,
and the squirmer has orientation vector e, radius a and centre-of-mass distance h from its
geometrical centre.

hydrodynamic torque, so that the net torque on the squirmer is zero. If the distance
of the centre of gravity to the centre of the squirmer is h, in the opposite direction to
its swimming direction in undisturbed fluid (see figure 2), then there is an additional
torque equal to

4
3
πa3ρhe ∧ g, (2.6)

where ρ is the density and g is the gravitational acceleration. This torque must be
matched by the hydrodynamic torque, T . Thus

Ω1 = − ρ

6µ
he1 ∧ g + ∇ ∧ V

(
− r, αa, e(2), B(2)

)
. (2.7)

The correction to the rotational velocity due to the effect of the movement of the first
sphere on the second sphere and the consequent effect back on the first sphere is of
order

O

(∣∣∣∣B
(1)
2

a

∣∣∣∣a6

r6
r ∧ e

)
, (2.8)

which is much smaller.

2.3. Stresslets

The stresslet of the first squirmer in the same arrangement as above is given by
Fáxen’s second law (Russel et al. 1992):

S1 =
4π

3
µa2(3 e1e1 − I)B (1)

2 +
10

3
πµa3

(
1 +

a2

10
∇2

)
E
(
−r, αa, e(2), B(2)

)
. (2.9)

The first term on the right-hand side is the stresslet of a solitary squirmer, given
by equation (A 14); E is the rate of strain of a solitary squirmer, defined as
E = 1

2
(∇V + ∇ (V)t ), and can be calculated term by term. The first mode (n= 1),
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Figure 3. Diagram of the geometry for two near-separated squirmers. The vector ez denotes
the direction of squirmer 1 from squirmer 2, while eρ points radially out from that vector and
eφ is azimuthal.

for example, gives the result

E(r, a, e, B) =
a3

r4

(
e · r
r

I − 5
e · r
r

r r
r2

+
er + re

r

)
B1. (2.10)

3. Analysis for near-field separation
The other regime of importance in r-space is the near field, which can be defined as

the region including values of r such that r − (1 + α)a � (1 + α)a. In this region one
can use lubrication theory to calculate the velocities, angular velocities and stresslets
of the two squirming spheres. As in the previous section, the problem is linear in the
velocity field, and hence the problem of two squirming spheres in a fluid that is at
rest at infinity can be solved and then added to the solution for two inert spheres in a
linear background-flow field. The rigid-sphere case has been studied extensively, with
contributions from Batchelor & Green (1972a), and a general outline of the method
is included in standard texts (e.g. Kim & Karrila 1992).

Let the two spheres, 1 and 2 say, have radii a and αa, orientation vectors e1 and
e2 and squirming sets B(1) and B(2), respectively. Let the z-axis pass through the two
sphere centres and let z = 0 be the plane containing the point on sphere 2 closest to
sphere 1 (so that sphere 2 is in the region z � 0 and sphere 1 in z > 0). Let the surfaces
of the spheres be determined by z =h1 and z = h2 (for spheres 1 and 2 respectively).
Furthermore let the minimum separation of the spheres be εa (with ε � 1) and assume
that α =O(1) (i.e. the spheres are comparable in size). This is illustrated in figure 3.

To find the difference in velocity one can consider a frame in which sphere 2 is fixed
and the centre of sphere 1 moves with velocity V − Ω ′ ∧ r , where V is the separation
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velocity (i.e. the velocity of sphere 1 less the velocity of sphere 2), Ω ′ is the angular
velocity of sphere 2 and r is the separation vector between the two sphere centres
(r = r1 − r2).

The problem is governed by the Stokes equations,

µ∇2u = ∇p, ∇ · u = 0, (3.1)

where the velocity of the fluid is u, its viscosity is µ and p is the pressure. The
boundaries of the two squirmers are defined by

h1 = a
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ε +

ρ∗2

2a2
+ O

(
ρ∗4

a4

))
, h2 = −αa
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ρ∗2

2α2a2
+ O

(
ρ∗4
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))
, (3.2)

for squirmers 1 and 2 respectively; here ρ∗ =
√

x2 + y2 and x and y are defined
in Cartesian coordinates. To make the boundary conditions order 1, the following
scaling is then used:

ε1/2aX = x, ε1/2aY = y
(

=⇒ ε1/2aρ = ρ∗), εaZ = z. (3.3)

This then defines the problem as follows:(
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H1 = 1 +
ρ2

2
+ O(ε), H2 = − ρ2

2α
+ O(ε), (3.5)

where h1, 2 = εaH1, 2 and
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(
∂

∂X
,

∂

∂Y
, 0

)
(3.6)

is the dimensionless scaled gradient operator in the plane perpendicular to the line
joining the centres. The velocities and pressure have not yet been scaled or non-
dimensionalized; this will be done later in this section when a scale for velocity has
been found (there are several velocity scales, such as B(1)

i for any i � 1).
It is now possible to exploit the linearity of the Stokes equations to decompose

this problem into two simpler problems. The first has the squirming-sphere boundary
conditions on sphere 1 and zero velocity on sphere 2. The second problem is the
complementary one, of zero velocity on sphere 1 and the squirming-sphere boundary
conditions on sphere 2. Solving one of these problems will trivially provide a solution
to the other, so without loss of generality we will consider the first problem. Thus the
velocity on Z = H2(X, Y ) is 0 and the velocity on sphere 1 (where Z = H1(X, Y )) is∑

n

[
B (1)

]
n
Wn

(
e1 · r1
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)(
e1 · r1

r1

r1

r1

− e1

)
+

2

3

[
B (1)

]
1
e1, (3.7)

where

r1 = r − (1 + ε)aeZ, eZ = (0, 0, 1), (3.8)

which defines unscaled coordinates of the same orientation as r but with their origin
at the centre of sphere 1. Since the orientation and squirming set of sphere 2 are
not present in this problem, without loss of generality we define e = e1 and B = B(1).
The constant velocity on the surface of sphere 1 (i.e. the last term in (3.7)) can be
absorbed into the solid-body motion of one sphere (with another nearby sphere fixed
in space). Hence the term 2

3
B1e in (3.7) can be neglected.
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Expanding (3.7) in terms of ε1/2 gives the velocity on sphere 1 as

u = u0 + ε1/2u1 + O(ε), (3.9)

where ρ = (X, Y, 0) and

u0 =
∑

n

BnWn(e · ez) (e · ez ez − e), (3.10)

u1 =
∑

n

BnWn(e · ez)(e · ρ ez + e · ez ρ) + BnW
′
n(e · ez)e · ρ(ez · e ez − e). (3.11)

The boundary conditions suggest that it would be wise to attempt to express the
velocity and pressure as power series in ε1/2. More precisely, we consider the following
expansions:

u = u0 + ε1/2u1 + O(ε), v = v0 + ε1/2v1 + O(ε),
w = ε1/2w0 + εw1 + O

(
ε3/2

)
, p = ε−3/2p0 + ε−1p1 + O

(
ε−1/2

)
,

}
(3.12)

where u = (u, v, w) and all the functions in (3.12) are independent of ε. Note that to
satisfy the boundary conditions the terms in these power series must differ by O(ε1/2)
rather than the O(ε) that is required to solve the equivalent problem of a translating
or rotating rigid sphere.

3.1. The first-order solution

Integrating the z-component of the first equation in (3.4) shows that p0 = p0(X, Y ),
which is as yet an arbitrary function (assumed to have continuous second partial
derivatives). The following solutions for u0 and v0 can be found by integrating the x-
and y-components:

u0 =
1

2

∂p0
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(Z − H1)(Z − H2) +

Z − H2

H
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Z − H2

H
u0 · ey. (3.14)

Here

H = H1 − H2 = 1 +
α + 1

2α
ρ2 + O(ε), (3.15)

is the distance between the two spheres’ surfaces at ρ from their line of centres (see
figure 3). Using the equation of continuity, these solutions can be combined to yield

H 3

12
∇2

⊥p0 +
H 2

4

α + 1

α
ρ · ∇⊥p0 − α − 1

2α

∑
n

BnWn(−e · ez)e · ρ = 0. (3.16)

We seek a solution to (3.16) of the form

p0(ρ, φ) = q0(ρ) e · eρ (3.17)

and find that q0 satisfies a linear second-order ordinary differential equation in one
variable, ρ:

H 3

12ρ2

∂

∂ρ

(
ρ

∂q0

∂ρ

)
− H 3

12ρ3
q0 +

H 2

4

α + 1

α

∂q0

∂ρ
−
∑

n

α − 1

2α
BnWn(−e · ez) = 0. (3.18)
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This is the Reynolds equation for the problem (see Kim & Karrila 1992). The solution
for the particular integral of (3.18) is

q0 = − 6ρ

5H 2

α − 1

α + 1

∑
n

BnWn(−e · ez). (3.19)

The boundary conditions on the function p0 are that it must tend to a constant as
ρ → ∞ and must be bounded and single-valued at ρ = 0 (which implies that q0 = 0
on ρ = 0, from (3.17)).

One can now apply some simple asymptotics to find the leading-order behaviour
of the function q0. For ρ � 1 the complementary function acts like q0 ∼ ρ±1. The
negative power must be discounted since q0 would not then be finite in the limit

ρ → 0. Likewise for ρ � 1 it can be shown that q0 ∼ ρ−(3±
√

10). This time the positive
root,

√
10 − 3, can be discounted since q0 must be bounded in the limit ρ → ∞. Thus

if there exists a non-trivial component of the complementary solution it must have
the following asymptotic behaviour:

q0(ρ) ∼
{

R1ρ, ρ � 1,

R2ρ
−(3+

√
10), ρ � 1,

(3.20)

where R1 and R2 are constants. Now consider (3.18), ignoring the last term (which
will be accounted for later, in the particular integral). If the function q0 ∼ R1ρ

for ρ � 1, and q0 → 0 as ρ → ∞ and is non-trivial then, assuming that the constant
of proportionality is positive near the origin (R1 > 0), there must exist at least one
maximum. Consider this point first. Here ∂q0/∂ρ =0 and q0 > 0, which implies from
(3.18) that ∂2q0/∂ρ

2 > 0; this is contradictory, however, since the point is a maximum
(and it does not occur at ρ = 0). Likewise if R1 is negative the same argument
can be made for the first minimum. Hence there cannot be any contribution to q0

from the complementary function, since it cannot satisfy both boundary conditions.
The asymptotic behaviour of the particular integral can also be calculated, and the
following behaviour is found:

q0 =

⎧⎪⎪⎨
⎪⎪⎩

−6

5

α − 1

α + 1
BnWn(−e · ez)(ρ

3 + O(ρ5)), ρ � 1,

−6

5

α − 1

α + 1

(
α + 1

2α

)−2

BnWn(−e · ez)

(
1

ρ3
+ O(ρ−5)

)
, ρ � 1.

(3.21)

For confirmation the solution was calculated numerically and showed the same
asymptotic behaviour. Thus the numerical solution confirms that there is no
contribution from the complementary solution.

There are points of consequence about the function q0: (a) if α =1 there is no
pressure difference from that outside the lubrication region, and hence the flow is
Couette; (b) if α − 1 � 1 then the pressure function scales with α − 1, the non-
dimensional difference in size of the squirmers; (c) the theory is actually valid for all
values of α (if one is more delicate with the asymptotic expansions, one can show
this). Therefore very small spheres next to big spheres can be covered by this theory,
as well as a sphere near a wall (where α � 1 but, as can be observed, the pressure
remains bounded and is O(1)).

3.2. The forces and torques on squirmer 1

Calculating the forces on the two spheres is an essential prerequisite to calculating
the velocity difference. It is only by demanding that the spheres are force and torque
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free that their solid-body motions can be calculated. To find the force we first rewrite
the velocities slightly. In a frame such that e · ey = 0 the velocities of the spheres given
in (3.13) and (3.14) can be rewritten (using the expression for u0 given in (3.10)) to
give the φ-dependence explicitly. We write e in Cartesian coordinates as

e = e1ex + e3ez, (3.22)

where e2
1 + e2

3 = 1. The leading-order fluid velocity in the gap is

eρ ·
(

1

2
∇q0(Z − H1)(Z − H2) +

Z − H1

H
u0

)
, (3.23)

in the ρ-direction, where ρ, φ, Z are cylindrical coordinates (defined in the standard
way from the Cartesian coordinates). Re-expressing (3.23) using (3.22) gives the
velocity component in the ρ-direction as

eρ ·
(

1

2
∇ (q0e1 cos φ) (Z − H1)(Z − H2) − Z − H1

H

∑
n

BnWn (−e · ez) e

)

= e · eρ

(
1

2

∂q0

∂ρ
(Z − H1)(Z − H2) − Z − H1

H

∑
n

BnWn(−e · ez)

)
(3.24)

and the velocity component in the φ-direction as

e · eφ

(
1

2

q0

ρ
(Z − H1)(Z − H2) − Z − H1

H

∑
n

BnWn(−e · ez)

)
. (3.25)

Now the force integrand can be calculated; for example, if dFx is a force element
in the x-direction then

dFx = ex · [σ · n] dA, (3.26)

where σ is the stress tensor. Furthermore,

ex · [σ · n] = −p n · ex + 2µ{(eρ · n) (Eρρeρ + Eφρeφ) + (ez · n) (Eρzeρ + Eφzeφ)} · ex,

(3.27)

where E is the rate of strain tensor. So, expressing the φ-dependence explicitly yields

dFx = −
{

µ

a
q0 sin θ cos φ e · eρ

+ µ

[
2
∂u0,ρ

∂ρ∗ sin θ cos φ e · eρ−
(

∂u0,φ

∂ρ∗ e · eφ +
1

ρ∗ u0,ρe · eφ

)
sin θ sinφ

−
(

∂u0,ρ

∂z
+

∂u0,z

∂ρ∗

)
cos θ cosφ e · eρ+

(
1

ρ∗ u0,ze · eφ+
∂u0,φ

∂z
e · eφ

)
cos θ sinφ

]}
dA.

(3.28)

Equation (3.28) is given in terms of the unscaled coordinates ρ∗, z and the φ-
independent components u0,ρ, u0,φ and u0,z are defined by

u0,ρ(ρ, z) e · eρ = u0 · eρ, u0,φ(ρ, z) e · eφ = u0 · eφ, u0,z(ρ, z) e · eρ = ε1/2w0. (3.29)

The φ-dependence of w0 in (3.29) is found by integrating the continuity equation at
zero order in ε, using (3.13) and (3.14).
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Defining new functions Q0 and vM such that

Q0

∑
n

BnWn(−e · ez) = q0 (3.30)

and

vM

∑
n

BnWn(−e · ez) = uM, ∀ subscripts M, (3.31)

in order to non-dimensionalise velocities and pressures, gives the expression for the
force integrand (3.28), integrated over the φ-coordinate from 0 to 2π, as∫ 2π

0

dFx dφ =

∫
µπa

∑
n

BnWn(−ez · e)e · ex

×
{

−ε−3/2Q0 sin θ −
[
2ε−1/2 ∂v0,ρ

∂ρ
sin θ − ε−1/2

(
∂v0,φ

∂ρ
sin θ

1

ρ
v0,ρ

)

−
(

ε−1 ∂v0,ρ

∂Z
+ ε−1/2 ∂v0,z

∂ρ

)
cos θ

−
(

1

ρ
v0,z + ε−1 ∂v0,φ

∂Z

)
cos θ

]}
sin θ dθ. (3.32)

The asymptotic behaviour of Q0 can be calculated from the governing equation of
the pressure, (3.18), subject to the boundary conditions that q0 = 0 when ρ = 0 and
q0 � 1 for ρ � 1. Thus

Q0 =

⎧⎪⎪⎨
⎪⎪⎩

Rρ −
(

3

8
R − 3

2

)
α − 1

2α
ρ3 + O(ρ5), ρ � 1,

−12

5

α − 1

2α

(
α + 1

2α

)−3

ρ−3 + O(ρ−5), ρ � 1,

(3.33)

where R is a constant. In the gap region π − θ � 1, and this suggests the change of
variables ρ = ε−1/2 sin θ , which implies that

dρ = ε−1/2
√

1 − ερ2 dθ. (3.34)

This gives the leading-order force on sphere A as

Fx = µπae · ex

∑
n

BnWn(−e · ez)

∫ ρ0

0

{
−Q0ρ

2 +

(
1

2
H (Q0ρ)′ − 2

H

)}
dρ, (3.35)

where ρ0 corresponds to the limit of the lubrication region. The two terms in the
integrand are both O(ρ−1) for ρ � 1. These integrals can be evaluated analytically.
The force is then (asymptotically for large ρ0) calculated from (3.35) to give

Fx =
8

5
µπa

α(2α2 + α + 2)

(1 + α)3

∑
n

BnWn(−e · ez)
(
log ρ2

0 + O(1)
)
. (3.36)

One should now match the inner solution with the outer one to find a value for ρ0. As
discussed by O’Neill & Stewartson (1967), a precise assignment of ρ0 is not required;
instead a matching procedure is used. The above inner solution is matched in the
limit of large ρ0 with corresponding entity from the outer solution. For a consistent
result

ρ0 =
D

ε1/2
, (3.37)
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where D ∼ O(1) is determined from the outer solution. Therefore, since

log ρ0 = −1

2
log ε + log D,

∼ −1

2
log ε, (3.38)

the force can be expressed from (3.36) in terms of ε:

Fx = −8

5
µπae · ex

α(2α2 + α + 2)

(1 + α)3

∑
n

BnWn(−e · ez) (log ε + O(1)), (3.39)

which to leading order is independent of the flow field outside the lubrication region.
This is analogous to the flow generated by a rigid sphere moving past a second sphere
in a direction perpendicular to their line of centres (e.g. Kim & Karrila 1992).

The force element in the z-direction, dFz, must be given by

dFz = ez · [σ · n] dA,

=

(
− µ

a
q0ez · n · E∗

zρeρ · n + E∗
zzez · n

)
dA. (3.40)

However, to leading order in φ all the terms in (3.40) are proportional to e · eρ and
hence cosφ (and are otherwise independent of φ) and so integrate to zero. It follows
that the force in the z-direction will be such that (cf. Kim & Karrila 1992, § 9.3)

Fz = O(− log ε). (3.41)

The torque exerted on sphere 1 will now be calculated in the same way. One can
find an expression for the total torque independent of the flow outside the lubrication
region:

Ty = −4α(α + 4)

5(α + 1)2
µπa2e · ex

∑
n

BnWn(−e · ez) (log ε + O(1)). (3.42)

By symmetry Tx =0. The torque element in the z-direction, dTz, can also be calculated,
as follows:

dTz = n · exdFy − n · eydFx

= sin θ cos φ
(
E∗

ρρey · eρeρ · n + E∗
φρey · eφeρ · n + E∗

ρzey · eρez · n + E∗
φzey · eφez · n

)
− sin θ sinφ

(
E∗

ρρex · eρeρ · n + E∗
φρex · eφeρ · n + E∗

ρzex · eρez · n + E∗
φzex · eφez · n

)
.

(3.43)

Now every component of the rate of strain tensor (to leading order) is proportional
to either sinφ or cosφ, and every ei · eρ or ei · eφ (where i = x, y) is also proportional
to sinφ or cos φ. Therefore integrating any term in (3.43) over φ from 0 to 2π will
give zero. Hence Tz = O(ε). The force and torque on the static sphere 2 can also be
calculated in the same way.

3.3. The stresslet of squirmer 1

Calculating the stresslet generated by two squirmers in a fluid otherwise at rest
involves adding up two terms: (a) the stresslet caused by the squirming motion on
the surface (without the translational–rotational velocities of the two spheres); (b) the
stresslet due to the translational–rotational velocities of the two spheres, which is the
same as that for inert spheres (Kim & Karrila 1992).
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To calculate the stresslet due to squirming on either sphere, the tensor∫
A

n σ · n dA, (3.44)

needs to be evaluated. As the leading-order velocity on either sphere (which is u0 or
0) is constant within the lubrication region, we have, to that order,∫

A

(un + nu) dA = 0, (3.45)

where A is that part of either sphere’s surface within the lubrication region. The
integrand in (3.44) will be

nσ · n = n(−p∗
0n + Eρρeρeρ · n + Eρzeρez · n + Eφρeφeρ · n

+ Eφzeφez · n + Ezρezeρ · n + Ezzezez · n),

= −q∗
0 e · eρ nn + neρ(Eρρ sin θ + Eρz cos θ ),

+ neφ(Eφρ sin θ + Eφz cos θ ) + nez(Ezρ sin θ + Ezz cos θ) (3.46)

where n = (sin θ cos φ, sin θ sinφ, cos θ) and q∗
0 and p∗

0 are dimensional pressure
functions:

q∗
0 = ε−3/2 µ

a
q0, p∗

0 = ε−3/2 µ

a
p0. (3.47)

Furthermore one can note that the following strain-rate components,

Eρρ, Eρz, Ezz, Ezρ, (3.48)

and the pressure term are linearly dependent on e · eρ . The following components are
proportional to e · eφ:

Eφρ, Eφz, Eρφ, Ezφ, Eφρ. (3.49)

Other than these dependences all the components of E in (3.48) and (3.49) are
independent of φ. Therefore the only non-zero components of (3.44), integrated over
φ, are the ρz-, φz-, zρ- and zφ- components.

Before proceeding, we will take note of the order (in terms of ε) of the pressure
term, and then this term will be shown to be asymptotically smaller than the leading-
order behaviour of the terms derived from the rate of strain tensor. First, the pressure
term is

−Q0n n e · eρ (3.50)

times a dimensional factor

µε−3/2a−1
∑

n

BnWn(−e · ez). (3.51)

Since

e · eρ = e · (cosφ ex + sinφ ey) = e1 cos φ, (3.52)

the term given in (3.50) can be integrated over φ from 0 to 2π. This leaves only the
ρz, zρ terms non-zero and equal to πe1Q0 sin2 θ cos θ . In the integration region we
have ρ = ε−1/2 sin θ , and so the integrand of this part of the stresslet will be O(ε)
multiplied by sin θ dθ , which is O(ε), and then multiplied by O(ε−3/2) (the factor
multiplying pressure), giving a leading-order contribution for this term of O(ε1/2).
Furthermore, since e · ey = 0 the φ-integral of (3.46) (except for the pressure term) can
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be evaluated:∫ 2π

0

nσ · n dφ = πezex cos θ e · ex(E′
ρρ sin θ + E′

ρz cos θ + E′
φρ sin θ + E′

φz cos θ)

+ πexez sin θ e · ex(E′
zρ sin θ + E′

zz cos θ). (3.53)

Now, in the same way as for the force calculation, (3.53) needs to be integrated over
the θ-direction too. Rather than performing this directly, we note that the integration
region will be such that ρ = ε−1/2 sin θ , and so in these coordinates (3.53) becomes∫

n σ · ndA = µπaezex e · ex

∫ ρ0

0

[
∂u′

0,ρ

∂Z
+

∂u′
0,φ

∂Z

]
Z=H1

ρ dρ + O(ε). (3.54)

Then substituting the results for u0,ρ and u0,φ from (3.24) and (3.25), respectively,
gives∫

n σ · ndA = µπaezex e · ex

∫ ρ0

0

∑
n

BnWn(−e · ez)

[
1

2
(Q0ρ)′ − 2ρ

H

]
dρ + O(ε),

(3.55)
which by similar asymptotic means gives the following result:∫

n σ · ndA = µπaezex e · ex

∑
n

BnWn(−e · ez)

(
4α(α + 4)

5(α + 1)2
log ρ2

0 + O(1)

)

= −µπaezex e · ex

∑
n

BnWn(−e · ez)

(
4α(α + 4)

5(α + 1)2
log ε + O(1)

)
.

(3.56)

Once again this is independent of D, where

ρ0 =
D

ε1/2
. (3.57)

Writing ez = ξ/ξ (where ξ is the vector from the point on sphere 1 closest to sphere 2
to the point on sphere 2 closest to sphere 1) to conform with the notation used by
Batchelor & Green (1972a) one can express the stresslet as

S =

∫
n σ · n dA = −µπa

4α(α + 4)

5(α + 1)2

∑
n

BnWn

(
− e · ξ

ξ

)
log ε

× ξ

ξ

(
e − e · ξ

ξ

ξ

ξ

)
+ O(1). (3.58)

The stresslet of the static sphere 2 can be calculated in the same way.

4. Comparison between analytical results and numerical simulation
It is not clear how applicable the above analyses for far- and near-field separation

are for intermediate particle separations. The intermediate-distance flow properties
will be computed using a boundary-element method (BEM), as first developed by
Youngren & Acrivos (1975), and the results will be compared with the analytical
results. In this section, and the remainder of the paper, we show only the results for
two identical spheres, i.e. α = 1 and B(1) = B(2), with only two squirming modes, B1

and B2 (Bn =0 for n> 2). Of course the orientations of the two squirmers, e1 and e2,
are in general different.
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4.1. Numerical methods

When there are N squirmers in an infinite fluid, the Stokes flow field external to the
squirmers can be given in integral form as

u(x) = u∞(x) −
N∑

m=1

∫
A′

m

K (x − x ′) · q(x ′) dA′
m (4.1)

where u∞ is the undisturbed velocity, i.e. the flow field without particles, Am is the
surface of squirmer m and K is the Oseen tensor. The single-layer potential q is found
by subtracting the traction force on the inner surface, f in, from that on the outer
surface, f out :

q = f out − f in. (4.2)

The boundary condition is given by

u(x) = Um + Ωm ∧ (x − xm) + us,m, x ∈ Am, (4.3)

where Um and Ωm are the translational and rotational velocities of squirmer m. xm

is the centre of squirmer m and us,m is the squirming velocity of squirmer m, defined
by (A 8).

Equation (4.1) with the boundary condition (4.3) expresses the velocity field
generated by point forces in a homogeneous fluid and is not restricted to a rigid-
body motion inside a squirmer. In order to impose a rigid-body motion, one needs to
introduce a double-layer potential in (4.1) and to deal with velocity slip on the surface
explicitly. Introducing double-layer potentials, however, considerably increases the
computational load. Since f in can be obtained analytically in the case of a squirmer,
it is computationally more efficient to express the velocity field in terms of single-layer
potentials alone rather than using two kinds of potential. The effect of f in appears in
calculating the stresslet of a squirmer, so it is subtracted analytically, as explained in
Appendix B. The boundary-element method using single- or double-layer potentials
only, the so-called generalized boundary-integral method, is explained in detail, with
a derivation of the integral equations and the force and torque exerted on a particle,
in the established text Pozrikidis (1992).

It is supposed that squirmer m is subjected to known external forces Fm and torques
Tm. The equilibrium conditions for squirmer m are

Fm =

∫
Am

q(x) dAm, (4.4)

Tm =

∫
Am

x ∧ q(x) dAm. (4.5)

Squirmers are assumed to be neutrally buoyant, so Fm =0. The centre of buoyancy
of the squirmer may not coincide with its geometric centre (see figure 2), and in that
case the torque Tm is given by (2.6). The stresslet of squirmer m can be expressed
using the single-layer potential as

Sm =

∫
Am

[
1

2
(qx + xq) − 1

3
x · qI

]
dA. (4.6)

A detailed derivation of the stresslet is given in Appendix B.
These governing equations are non-dimensionalized using the radius a, the

swimming velocity of a solitary squirmer, 2B1/3, and the fluid viscosity µ. Let
the ratio of second-mode squirming to first-mode squirming be β , i.e. β = B2/B1. In
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Figure 4. Boundary elements on the surface of squirmers. Smaller triangles are generated in
the near-contact region, when ε � 0.1.

the case of a bottom-heavy squirmer, its behaviour is determined by a dimensionless
parameter Gbh given by

Gbh =
2πρgah

µB1

. (4.7)

Gbh is the ratio of the gravitational torque to the viscous-drag torque.
The boundary-element method is employed to discretize (4.1). By evaluating (4.1)

at M distinct boundary points, a system of 3M linear algebraic equations will result
and can be written in matrix form as

{u − u∞} = [A]{τ}, (4.8)

where [A] is a fully populated 3M × 3M matrix. The boundary condition (4.3) and
the equilibrium conditions (4.4) and (4.5) can also be written in matrix form as:

{u} = [B]{U, Ω} + {us} (4.9)

and

[C]{τ} = {F, T}, (4.10)

respectively. [B] is a 6 × 3M matrix and [C] is a 3M ×6 matrix. Finally, by combining
all three equations, the linear algebraic equations for the problem can be written as⎡

⎢⎢⎢⎣
A −B

C 0

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ

U, Ω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

us − u∞

F, T

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (4.11)

When the minimum separation of the squirmers ε is larger than 0.1 (distance being
non-dimensionalized by the radius a), the surface of a single squirmer is divided into
320 nearly equal-sized triangles. When ε � 0.1, smaller triangles are generated in the
near-contact region, as shown in figure 4, in order to reduce numerical errors. The
total number of triangles in this case is 590 per squirmer. The integration in (4.1)
is performed on a triangle element by using 28-point Gaussian polynomials (Lyness
& Jespersen 1975). The singularity in the integration at x = 0 is solved analytically
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Figure 5. Diagram of the geometry for squirmer 1 and sphere 2. The squirming motion of
squirmer 1 generates a translational velocity (with components Ur,2 and Uθ,2), (a) rotational
velocity Ωz,2 and a stresslet S2 on sphere 2; θ0 is the angle between the orientation vector e of
squirmer 1 and r .

(Youngren & Acrivos 1975). The linear algebraic equation (4.11) is solved by LU
decomposition, including pivoting. In § 5 the trajectories of two squirmers are obtained,
where the time marching is performed by the Runge–Kutta–Fehlberg method. This
method is a combination of fourth- and sixth-order Runge–Kutta schemes, and the
time step is determined step by step according to an error criterion.

Though BEM has no limitation in dealing with the boundary condition (4.3), we
omit squirming modes higher than the second mode, i.e. Bn = 0 in us,m when n � 3, as
stated above. If one wants to prescribe an infinite series of squirming modes on the
surface, one needs to generate an infinite number of infinitely small boundary elements
on the surface. In the numerical simulation, therefore, we cannot technically deal with
high modes of squirming velocity. The reasons for limiting ourselves to the first and
second modes are: (a) in the case of a solitary squirmer, the first mode determines the
swimming speed, the second mode determines the stresslet and the higher modes have
no effect on the swimming speed or the stresslet; (b) the higher a mode is, the more
rapidly it decays with r , so the effect of higher modes is negligible in the far-field
interaction; (c) the effect of high modes in the near field is to generate fluctuations in
the velocities and stresslet due to small displacements in the θ-direction. The overall
properties, such as the trajectories of a pair of squirmers, may be captured by using
the first few modes. This simplification in the boundary condition for the BEM is
used throughout this paper.

4.2. Comparison for far-field separation

Let squirmer 1 be at the centre of a cylindrical coordinate system with orientation
vector e and β = 1 (B2 = B1). Let sphere 2, which has no squirming velocity, be at
r with the same radius as squirmer 1. Let the z = 0 plane contain e and the centres
of both squirmers; let θ0 be the angle between the orientation vector e of squirmer
1 and r . This coordinate system is illustrated in figure 5. The squirming motion
of squirmer 1 generates a translational velocity (with components Ur,2 and Uθ,2), a
rotational velocity Ωz,2 and a stresslet S2 on sphere 2. These quantities are compared
with the analytical results. If one wants to know the velocities and stresslet generated
by two squirmers, one just needs to add up two cases, (i) particle 1 is a squirmer and
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Figure 6. Comparison of the translational–rotational velocities of sphere 2 at θ0 = π/4 and
3π/4. Here ‘analysis’ stands for the analytical results and ‘BEM’ stands for the numerical
results using the boundary-element method. (a) The translational velocity in the r-direction,
Ur,2, (b) the translational velocity in the θ -direction, Uθ,2, (c) the rotational velocity, Ωz,2.

particle 2 is an inert sphere and (ii) particle 1 is an inert sphere and particle 2 is a
squirmer, because the flow problem is linear. We will also neglect bottom-heaviness
throughout this section, i.e. we will take Gbh =0. The effect of bottom-heaviness is
simple to include, and one just needs to superimpose the additional rotational velocity
and asymmetric part of the stress tensor caused by the bottom-heaviness.

For far-field separation, the translational–rotational velocities can be given as (2.3)
and (2.7), respectively. These analytical equations will now be compared with the
numerical results using BEM. Figures 6(a) and 6(b) show a comparison of the
translational velocity components of sphere 2 in the r- and θ- directions Ur,2 and
Uθ,2, respectively, for θ0 = π/4 and 3π/4. We see that the analytical and numerical
results correspond well even when r < 3, so (2.3) is applicable over quite a wide
range of r values. At leading order Ur,2 decays as r−2 and Uθ,2 decays as r−3, and
this is confirmed by the numerical results. Figure 6(c) shows the comparison for the
rotational velocity Ωz,2 of sphere 2, for θ0 = π/4 and 3π/4. The absolute values of the
rotational velocities in these two cases are the same in the far field, so the two cases
overlap in the figure. It is found that the analytical and numerical results correspond
very well even when r < 2.5. At leading order Ωz,2 decays as r−3, and again this is
confirmed by the numerical results.

The difference between the analysis and the numerical simulation for translational–
rotational velocities was examined at various values of θ0. The difference for Ur,2 is
generally larger than for Uθ,2 or Ωz,2; therefore only the result for Ur,2 is shown in
figure 7. The difference is defined by the absolute value of the analytical velocity Uana

r,2

minus the numerical velocity UBEM
r,2 . It is found that this velocity difference is lower
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than 10−2 if r > 3. Therefore the analytical equations (2.3) and (2.7) can be used for
r � 3 with an accuracy of approximately 1%.

The stresslet can be given as (2.9) in the far field. Figures 8(a) and 8(b) show a
comparison of the stresslet components Sxx,2 and Sxy,2 on sphere 2; for θ0 = π/4 and
3π/4. Here the x-axis is taken in the e-direction and the y-axis is taken in the θ0 = π/2
direction, as illustrated in figure 5. It is found that the analytical and numerical results
again correspond well when r > 3, though not quite as well as for the velocities. At
leading order, the stresslet decays as r−3, which is confirmed by the numerical results.

The difference between the analysis and the numerical simulation for the stresslet
was examined at various values of θ0, and the results are shown in figures 9(a)
and 9(b). The strength of the stresslet for a solitary squirmer is of order 10, so the
difference itself is rather larger than for the translational velocity (figure 7). The
difference decreases to below 10−1 when r � 4.0 and 10−2 when r � 6. If sphere 2 is
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far enough from squirmer 1, the stresslet Sxx,1 generated by squirmer 1 equals 4π,
from (A 14). If one bases the relative error in the stresslet on this value, one may
say that the analytical equation (A 14) can be used for r � 3.5 with an accuracy of
approximately 1%.

4.3. Comparison for near-field separation

When two squirmers are in near contact, the minimum separation ε between the
two surfaces becomes very small. The boundary-element method needs very careful
treatment in order to achieve high accuracy in such cases. As in former bench-
mark simulations (Ingber & Mammoli 1999 or Tran-Cong & Phan-Thien 1989, for
instance), fine elements must be generated in the near-contact region (see figure 4).
These fine elements do improve the numerical accuracy but, nevertheless, reliable
results are not obtained when ε < 0.01. The comparison between the analysis and the
numerical simulation was, therefore, performed mainly in the ε � 0.01 regime. The
accuracy in the near field was checked by comparison with the analytical and exact
solutions for two rigid spheres; the results will be shown later.
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Figure 10. Diagram of the geometry for two near-separated squirmers at the minimum
separation ε. Squirmers 1 and 2 have orientation vectors e1 and e2, respectively. The z-axis
passes through the two squirmer centres, and Cartesian coordinates are taken.
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Figure 11. The force and torque generated by the shearing motion of two squirmers; ‘BEM’
stands for the numerical results using the boundary-element method. (a) The ratio of Fx and
dus , (b) the ratio of Ty and dus .

Let the two squirmers, 1 and 2 say, have orientation vectors e1 and e2 respectively.
Let them have the same radius, and the same squirming sets B with β =1. Let the
z-axis pass through the two squirmer centres, and Cartesian coordinates be taken as
illustrated in figure 10. Although neither of e1 and e2 are necessarily in the (x, z)-plane,
we have restricted them to lie in the (x, z)-plane for simplicity. When e1 = (1, 0, 0)
and e2 = (−1, 0, 0) the squirmers swim past each other perpendicularly to their line
of centres; this will be referred to as a shearing motion hereafter. When e1 = (0, 0, 1)
and e2 = (0, 0, −1) they approach each other; this will be referred to as a squeezing
motion. When e1 = (1, 0, 0) and e2 = (1, 0, 0) they swim in parallel; this will be referred
to as a parallel motion. These three cases are dealt with in this section.

The force in the x-direction Fx and the torque in the y-direction Ty are derived as
in (3.39) and (3.42), respectively, and they are proportional to the velocity difference
on the surface and vary as log ε at leading order. In the case of a shearing motion of
two identical squirmers, the non-dimensionalized equations (3.39) and (3.42) can be
simplified to

Fx = πdus(log ε−1 + O(1)), (4.12)

Ty = πdus(log ε−1 + O(1)), (4.13)

where dus is the difference between the squirming velocities of the two squirmers
at the minimum separation point. These analytical equations are compared with
the numerical results using BEM in figures 11(a) and 11(b). We see both that the
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Figure 12. The force generated by the squeezing motion of two squirmers; ‘BEM’ stands for
the numerical results using the boundary-element method.

analytical equations fit well with the numerical results and that the leading order
of Fx and Ty is log ε−1 as predicted. In the case of shearing motion, the O(1) term
in (4.12) is 0.3 and that in (4.13) is −0.5 (these values are chosen for a good fit to
the numerical results in figures 11(a) and 11(b)). Although (3.39) is analogous to a
shearing force between two inert spheres, the O(1) term in (4.12) is different from
the value of 3.8 obtained in that case (e.g. Kim & Karrila 1992). This difference may
come from the different velocity distributions of an inert sphere surface, given by
a rigid-body motion, and a squirmer surface, given by the squirming velocity. The
leading-order term log ε−1 is a weak singularity and thus dominates the solution only
in the mathematical sense. The next-order, O(1), term is always necessary and should
be obtained by fitting with the numerical results.

The force in the z-direction, Fz, is O(log ε−1) at leading order, as given in (3.41).
The numerical results for Fz in a squeezing motion and the fitted curve are shown in
figure 12. This confirms that Fz is O(log ε−1) at leading order. By fitting the analytical
equations to the numerical results at small ε, say ε = 0.01, one could obtain more
accurate forces and torques in the ε < 0.01 range. This technique will be used in
subsequent sections.

Solving the motion of two swimming squirmers without bottom-heaviness in a fluid
otherwise at rest can be divided into the following two processes: (i) calculation of
the force and torque generated by the squirming motion on the surface (without the
translational–rotational velocities of two squirmer bodies) and (ii) calculation of the
translational–rotational velocities of two inert spheres due to the force and torque
obtained in (i). Again this is permitted because the problem is linear in the velocity
field. Thus the relation between the torque due to squirming (without translational–
rotational velocities) and the rotational velocity of a torque-free squirmer should be the
same as that between the torque and the rotational velocity for two rigid spheres. This
has been confirmed in the parallel-motion case, and the result is shown in figure 13.
The reason why we chose the case of parallel motion is that both asymptotic (Kim
& Karrila 1992) and exact (Goldman, Cox & Brenner 1966) solutions for two rigid
spheres are available in this case. It is found that the ratio of the torque due to
squirming, T squ

y , and the rotational velocity Ωy agrees with the analytical and exact
solutions for the two-rigid-sphere case. Therefore, calculation (ii) can be done by
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Figure 13. The ratio of the torque Ty and the rotational velocity Ωy in a parallel-motion case.
The line gives the analytical results of Kim & Karrila (1992) for rigid spheres and the solid
dots show the exact results of Goldman, Cox & Brenner (1966) for rigid spheres. ‘BEM’ stands
for the numerical results using the boundary-element method, in which the torque due to
squirming is calculated without translational–rotational velocities and the rotational velocity
is calculated for a torque-free squirmer.

exploiting a former study (e.g. Kim & Karrila 1992) even though the results are now
obtained for squirmers without translational–rotational velocities. We have already
shown how to obtain accurately the forces and torques generated by squirming in the
near field; it is now possible to solve for the motion of two swimming squirmers in
the near field. Figure 13 also shows that the accuracy of the BEM is acceptable when
ε � 0.01.

The stresslet S caused by the squirming motion is obtained from (3.58) and is
proportional to the velocity difference on the surface and to log ε at leading order.
In the case of a shearing motion of two identical squirmers, the xz-component of the
non-dimensionalized stresslet, Sxz, can be given as

Sxz = −πdus(log ε−1 + O(1)). (4.14)

This analytical equation is compared with the numerical results using BEM in
figure 14. It is found that the analytical equation fits well with the numerical results
and that the leading order of Sxz is log ε−1 as predicted. The O(1) term in this case
is −0.3, which is different from the value −0.98 for the case of two inert spheres (e.g.
Kim & Karrila 1992). Again, the leading-order term log ε−1 is a weak singularity, so
the next-order, O(1), term should be obtained by fitting to the numerical results.

Fitting all components of the stresslet to the numerical results can be tedious, so a
simplified method will be shown here. When two squirmers are near to contact, the
stresslet given by (A 12) can be re-expressed at leading order as

Ssqu = Fsqun0 − 1
3

Fsqu · n0I, (4.15)

where the use of (3.45) shows that the last term in (A 12) vanishes; Ssqu and Fsqu

are the stresslet and force due to squirming and n0 is the position vector from the
centre of the sphere to the minimum separation point. The validity of (4.15) has
been checked for both a shearing motion and a squeezing motion, and the results are
shown in figures 15(a) and 15(b). It is found that all the stresslet components agree
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of two squirmers; ‘BEM’ stands for the numerical results using the boundary-element method.
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analytical results (analysis); the analytical results were calculated using the simplified equation
(4.15) for the stresslet. (a) Two squirmers in a shearing motion, (b) two squirmers in a squeezing
motion.

well with (4.15) in both cases when ε < 0.1. Since the force Fsqu is proportional to
log ε at leading order, the stresslet is also proportional to log ε, as seen in (3.58). It
is now possible to obtain all the stresslet components due to squirming by using a
near-field expression for the force.

As mentioned previously, calculating the stresslet in the near field requires the
addition of two terms: (i) the stresslet caused by the squirming motion and (ii) the
stresslet due to the translational–rotational velocities of two inert spheres. The second
stresslet, which is derived by subtracting the first stresslet from the total stresslet
in the simulation, is shown, in figure 16, for a shearing motion in order to confirm
the addition process and to check numerical accuracy. The analytical result for the
second stresslet was calculated by assuming that two inert spheres move with the
same translational–rotational velocities as in the two-squirmer simulation (Kim &
Karrila 1992). It is found that the analytical and numerical results correspond well
when ε < 0.1, so the validity of the addition process is confirmed. It is also found that
the numerical accuracy for the stresslet is acceptable when ε � 0.01.
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Figure 16. Stresslet due to the translational–rotational velocities of two inert spheres. The
numerical result (BEM) was calculated by subtracting the stresslet due to squirming from the
total stresslet, and the analytical result (Kim & Karrila) was calculated by assuming that two
inert spheres move with the same translational–rotational velocities as in the two-squirmer
simulation.

5. Trajectories of two squirmers
As explained in the introduction, it is intended that the results of this paper will be

used to perform simulations of the trajectories of many squirmers in suspension, in
order to assess the hydrodynamic effect of active squirming on macroscopic suspension
properties, in the semi-dilute regime in which pairwise interactions dominate. Full
boundary-element simulations of many squirmers would be prohibitively expensive,
computationally, so in this section we compile a database of pairwise interactions,
covering the whole range of relative initial positions and orientations of the two
squirmers, from which an arbitrary interaction can be interpolated. On the way to
compiling the database, we note a number of interesting features shown by the
trajectories of just two interacting squirmers.

In the Stokes-flow regime, the motion of a squirmer and the flow field around it
are determined instantaneously, because there is no inertia. Therefore, from arbitrary
initial conditions one can calculate the trajectories of two squirmers by integrating the
velocities in time. Rather than constructing a database of trajectories, which would
require positions and orientations relative to their initial values, as functions of time,
we will instead construct a database of the effective forces exerted by two squirmers
on each other. The reasons for using forces are explained as follows. (i) Solving for
the motion of two swimming squirmers in a fluid otherwise at rest can be divided
into calculation of (a) the forces and torques generated by the squirming motion and
(b) the velocities of two inert spheres due to these forces and torques. The motion
of two spheres under given forces and torques has been studied extensively and a
general outline of the method is included in standard texts (see, for instance, Kim
& Karrila 1992). Therefore, if one has a database of the effective forces and torques
generated by the squirming motion, one can easily calculate the velocities of the
two squirmers. (ii) The database generated in this study describes the two-squirmer
interaction only, though, as explained above, we intend to use it for a many-body
simulation. If a suspension of squirmers is sufficiently dilute, the pairwise additivity
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Figure 17. The geometry for the trajectories of squirmers 1 and 2. θ0 is the angle between e1

and e2. Squirmer 1 is always placed 10 units apart from squirmer 2 in the x-direction, and the
x-coordinate of point A relative to the centre of squirmer 2 is equal to the distance between
point A and the centre of squirmer 1. The relative positions of A and A′ from the centre of
squirmer 1 can be uniquely determined as functions of θ0. δy is the distance between the centre
of squirmer 2 and point A′.

of either forces or velocities is valid. Generally speaking, the pairwise additivity of
forces is to be preferred, because it can express lubrication forces more precisely
and can be adjusted to prevent particles overlapping. (iii) The stresslet for both far-
and near-field separation is known from (2.9) and (3.58), respectively. The near-field
stresslet needs to be improved by using (4.15), which is possible if one has a database
of forces.

In constructing the database we exploited the linearity of the flow problem and
assumed that particle 1 is a squirmer and particle 2 is an inert sphere, as illustrated
in figure 5. If one wants to know the forces and torques generated by two squirmers,
one just needs to add the case where particle 1 is an inert sphere and particle 2 is
a squirmer, which can be obtained from the same database. The database covers a
wide range of relative positions such that 2.01 � r � 1000 and 0 � θ0 � π (see figure 5).
The results for 1000 < r and r < 2.01 can be calculated from the analytical results
obtained in § 2 and § 3. The results for π <θ0 < 2π can be obtained by exploiting the
symmetry of the problem. The database covers the parameter range 0.1 � β � 10 as
well. Some sample lines are shown in table 1 for the case with β = 1; the total number
of lines in this case is 54 481. The full database is available as a supplement to the
online version of the paper.

In this section, we will introduce some interesting features of the trajectories.
We begin by considering two-dimensional configurations, in which the centres and
orientation vectors of the two squirmers are in the same plane. Let the x-direction
be e2, and let the centre of squirmer 2 be placed δy apart from a point A′ in the
y-direction (see figure 17). Let point A be the intersection between the extension of e1
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Line θ0 (10−2) r F1,x (102) F1,y T1,z F2,x (102) F2,y T2,z

1 0.0000000 2.0100000 1.2174085 −3.1479160×10−14 1.4528049×10−13 −1.1099990 9.9733589×10−15 −1.2322131×10−13

2 1.7453293 2.0100000 1.2171774 1.2118332 6.8882938×10−1 −1.1097651 −1.2251480 4.7030337
3 3.4906585 2.0100000 1.2161901 2.4179815 1.3768254 −1.1087570 −2.4444593 9.3993799
4 5.2359878 2.0100000 1.2144617 3.6162668 2.0635738 −1.1069900 −3.6557136 1.4085593
5 6.9813170 2.0100000 1.2120071 4.8045108 2.7486605 −1.1044795 −4.8566902 1.8758226
6 8.7266463 2.0100000 1.2088415 5.9805354 3.4316711 −1.1012409 −6.0451685 2.3413833
7 10.471976 2.0100000 1.2049798 7.1421622 4.1121917 −1.0972897 −7.2189279 2.8048969
...

...
...

...
...

...
...

...
...

182 0.0000000 2.0103915 1.2123818 −3.2934483×10−14 1.4213806×10−13 −1.1049766 7.1548602×10−15 −1.2222647×10−13

...
...

...
...

...
...

...
...

...
54481 314.15927 1009.0996 0.18803752 −2.7732075×10−10 3.6425745×10−10 −291.04566 6.7654162×10−10 1.0440157×10−12

Table 1. Sample lines of the database, in which particle 1 is a squirmer and particle 2 is an inert sphere. θ0 and r are the angle and distance
illustrated in figure 5. Fi,j and Ti,j are the j th components of the force and the torque exerted on particle i.
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(a) t = 2.0 (b) t = 3.0 (c) t = 3.2 (d ) t = 3.4

(e) t = 3.6 (g) t = 5.0( f ) t = 4.0 (h) t = 6.0

Figure 18. Sequences (a) to (h) show the interactions between two squirmers with β = 5
under the initial conditions θ0 = π and δy = 1.

from the centre of squirmer 1 and the extension of e2 from point A′. We restrict the
configurations so that the x-coordinate of point A relative to the centre of squirmer 2
is equal to the distance between point A and the centre of squirmer 1. Initially,
squirmer 1 is always placed a distance of 10 units from squirmer 2 in the x-direction,
i.e. rx,1 − rx,2 = 10, where rj,i is the j -component of the positions vector of squirmer i.
Then the relative positions of A and A′ from the centre of squirmer 1 can be uniquely
determined as functions of θ0.

The value of the parameter β used in this section was 5, because the trajectories
show more interesting features for higher values of β . Squirming modes higher than
the second are omitted, as explained in § 4.1. Trajectories for any other value of β in
the range 0.1 � β � 10 can be readily calculated by using the database.

To start with, we show the interactions between two squirmers under the initial
conditions θ0 = π and δy = 1 in figures 18(a) to 18(h) (see also movies 1 and 2). Here
t is the dimensionless time and t = 0 is the initial instant. The orientation vectors of
the squirmers are shown as big arrows on the spheres, and thin solid lines are added
so that one can easily compare the angle between the two squirmers. It is found
from the figure that the two squirmers come very close to each other, then change
their orientation in the near field and finally move away from each other. The final
directions of e1 and e2 are significantly different from the initial directions in this
case. The trajectories of the two squirmers under the initial conditions θ0 = π and
δy = 1, 2, 3, 5 or 10 are shown in figure 19. The arrows show the initial orientations
of the squirmers. The interaction decreases with increasing |δy | and is small when
|δy | � 10. The change in the orientation vectors is significant only when the squirmers
experience near contact.

Figures 20(a) to 20(l) show the interactions between two squirmers under the initial
conditions θ0 = π/2 and δy = −5 (see also movies 3 and 4). It is seen that they interact
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Figure 19. The trajectories of two squirmers under the initial conditions θ0 = π and δy = 1, 2,
3, 5 or 10 (β = 5).

strongly even though they are rather far apart initially (δy = −5). The squirmers attract
each other at first (see figure 20b for instance), then change their orientation in the
near field (see figure 20e) and separate for a short distance (see figure 20f ). However,
they again attract each other (see figure 20g) and change their orientation in the near
field (see figure 20h) but finally move away from each other. Their interaction is very
complex and the final directions of e1 and e2 are completely different from the initial
directions, in this case. The trajectories of two squirmers under the initial conditions
θ0 = π/2 and δy = −1, −2, −3, −5 or −10 are shown in figure 21. The interaction is
very strong, and a change in the direction of e2 appears even when δy = −10. The
complexity of the trajectories may come from the disturbance of the flow field due to
the region of closed streamlines behind a squirmer (see figure 1), because they often
rotate as a pair when one squirmer is trapped behind the second.

Figures 22(a) to 22(c) show the interactions between two squirmers under the initial
conditions θ0 = π/4 and δy = −1 (see also movie 5). The basic behaviour of the two
squirmers is completely different in this case. They come very close to each other at
first, then change their orientation in the near field but do not escape from each other
again. They swim as a pair, as shown in figure 22(c). We checked the stability of this
pair-swimming motion by applying a disturbance to the original stable positions of
the two squirmers. Let r stb

2 be the position of squirmer 2 relative to squirmer 1 when
the squirmers are swimming steadily as a pair, in a two-dimensional configuration
having the two squirmer centres, e1 and e2, in the same (x, y)-plane. First we applied
a disturbance that retains the two-dimensionality and places squirmer 2 in the vicinity
of the original position, at r stb

2 + ∆rxy , where ∆rxy is a vector in the (x, y)-plane with
length 0.1. In this case, the displaced squirmer 2 tends to come back to its original
position. Therefore the pair swimming motion is stable when they retain a two-
dimensional configuration. Secondly, we applied the disturbance in the z-direction,



150 T. Ishikawa, M. P. Simmonds and T. J. Pedley

(a) t = 6.0 (b) t = 7.0 (c) t = 7.5

(d) t = 7.75 (e) t = 8.25 ( f ) t = 9.0

(g) t = 9.5 (h) t = 10.25 (i) t = 11.0

( j) t = 11.5 (k) t = 12.0 (l) t = 13.0

Figure 20. Sequences (a) to (l) show the interactions between two squirmers with β = 5
under the initial conditions θ0 = π/2 and δy = −5.

placing squirmer 2 in the vicinity of the original position at r stb
2 + ∆rz, where ∆rz

is a vector in the z-direction. In this case, the displaced squirmer 2 tends to move
away from the original position for even a very small disturbance. Therefore the
pair-swimming motion is unstable to three-dimensional disturbances.

The effect of three-dimensionality was investigated further, as follows. The vectors
e1 and e2 are still within (x, y)-planes, but the two (x, y)-planes have a spacing of
δz in the z-direction. The trajectories of two squirmers under the initial conditions
θ0 = π/4, δy = −1 and δz =0 or 0.1 are shown in figure 23. We see that the initial slight
gap in the z-direction (δz =0.1) prevents the squirmers from swimming as a pair.
The trajectories in these two cases are fully three-dimensional and the final directions
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Figure 21. Trajectories of two squirmers under the initial conditions θ0 = π/2 and δy = −1,
−2, −3, −5 or −10 (β = 5).

(a) t = 26.0 (b) t = 32.0 (c) t = 40.0

Figure 22. Sequences (a) to (l) show the interactions between two squirmers with β = 5
under the initial conditions θ0 = π/4 and δy = −1.

of e1 and e2 are considerably different from the initial directions. The restriction to
two-dimensional configurations is thus a very strong limitation, and in general the
squirmer interactions should be treated three-dimensionally. Stable pairs are unlikely
to be found in general.

However, the next example is necessarily two-dimensional. Figures 24(a) to 24(f )
show the interactions between two squirmers under the initial conditions θ0 = 0 and
δy = 1 (see also movies 6 and 7). Although the two squirmers are swimming in the
same direction, they attract each other at first, then change their orientation in the
near field and finally move away from each other. The final directions of e1 and e2 are
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Figure 23. Effect of three-dimensional orientation on the trajectories of two squirmers with
β =5. e1 and e2 are each within an (x, y)-plane; however, the two (x, y)-planes have a gap of
δz in the z-direction (θ0 = π/4, δy = −1 and δz =0 or 0.1).

(a) t = 22.5 (b) t = 23.5 (c) t = 24.0

(d ) t = 24.25 (e) t = 24.5 ( f ) t = 25.5

Figure 24. Sequences (a) to (f ) show the interactions between two squirmers with β = 5
under the initial conditions θ0 = 0 and δy = 1.

considerably different from the initial directions, and the two trajectories incline to
the same direction. The trajectories of the two squirmers under the initial conditions
θ0 = 0 and δy = 1, 2, 3, 5 or 10 are shown in figure 25. In this case the two squirmers
interact for a long time, because they are swimming in the same direction. Therefore,
the effect of the interaction appears even when δy =10. All cases show a similar
tendency, and the interaction is increased by decreasing δy .
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Figure 25. Trajectories of two squirmers under the initial conditions θ0 = 0
and δy = 1, 2, 3, 5 or 10 (β = 5).

Lastly the effect of bottom-heaviness was investigated. The relevant parameter Gbh

is defined in (4.7). If one assumes that the micro-organisms swim in water at 20
body lengths per second with their centre of mass a half-radius from the geometric
centre, Gbh is about 5 for micro-organisms with radius 10 µm and about 50 for
micro-organisms with radius 100 µm. The trajectories of two bottom-heavy squirmers
under the initial conditions θ0 = 0 and δy =5 are shown in figure 26. Gravity acts
in the −x-direction. The interaction in the near field inclines the trajectories to the
right in all cases; however, the final direction is almost upwards if Gbh �= 0. The two
squirmers may come closer if Gbh is increased.

6. Summary and discussion
The interaction of two squirmers has been calculated analytically for the limits of

small and large separation and has also been calculated numerically using a boundary-
element method. In the far-field analysis, the translational–rotational velocities and
the stresslet due to the interaction were derived, and the results correspond well with
the numerical results. The analytical equations for the velocities, (2.3) and (2.7), can
be used for r � 3 with an accuracy of approximately 1%. If one considers the error
in the stresslet relative to the maximum stresslet component for a solitary squirmer,
one may also say that the analytical equation (2.9) can be used for r � 3.5 with
an accuracy of approximately 1%. In the near-field analysis, the forces, torques and
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Figure 26. Effect of bottom-heaviness on the trajectories of two squirmers with β =5 and
Gbh =0, 5 or 50. The initial condition is θ0 = 0 (two-dimensional orientation) and δy = 5.
Gravity acts in the −x-direction.

stresslets due to the interaction were derived, and again the results correspond well
with the numerical results. The leading-order terms for these three quantities are of
order log ε−1, which is a weak singularity. Thus the next-order term must be included;
here it was obtained by fitting to the numerical results. Fitting all components of
the stresslet to the numerical results may be tedious, so a simplified method was
introduced in (4.15). The accuracy of this equation was confirmed by comparison
with the numerical results.

We have generated a database for an interacting pair of squirmers so that squirmers’
motion can be easily predicted. The database was constructed by calculating the
forces generated by two squirmers on each other, covering the whole range of relative
positions and orientations. The full database is available on the JFM website. The
behaviour of two interacting squirmers was discussed phenomenologically, too. The
results for the trajectories of two squirmers were shown for some interesting cases.
The results show that the squirmers attract each other at first, then they change their
orientation dramatically when they are in near contact and finally they separate from
each other. The effect of bottom-heaviness is considerable. Restricting the trajectories
to two dimensions is shown to give misleading results.

Throughout this paper the surface squirming velocity is assumed not to change
during the interactions. Real micro-organisms, however, may well change their
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swimming motion according to the presence of a nearby micro-organism. Of course,
we have not modelled a cell’s biological response to other micro-organisms, but we
can apply a different primitive boundary condition for the squirmers to see whether
the effect of this are significant. In this boundary condition, the surface squirming
velocity is defined as λus . Here us is the normal squirming velocity defined by (A 8)
and λ is a scalar factor that is chosen to realize constant swimming power, equal
to the rate of viscous-energy dissipation, throughout an interaction. The swimming
power consumed by a squirmer is defined as∫

A

τ · us dA, (6.1)

where τ is the traction force on the surface. The factor λ can be calculated easily by
exploiting the linearity of the flow field. The flow field generated by two squirmers is
the sum of the flow fields in the following two cases (i) sphere 1 has the squirming
motion and sphere 2 is inert; (ii) sphere 1 is inert and sphere 2 has the squirming
motion. In the case of an inert sphere the swimming power is zero. Therefore λ can
be determined separately for a sphere with squirming motion in each flow field.

We have checked the relative translational–rotational velocities under the constant-
swimming-power condition. In fact the effect of changing the boundary condition was
very small. This can be explained as follows. The surface velocity is proportional to
λ, and the lubrication force, (3.39), is proportional to log ε−1 and λ. The power is the
product of these two quantities in the near field and is thus proportional to log ε−1

and λ2. In order to keep the power constant, λ should therefore vary as

λ ∝

√
1

log ε−1
. (6.2)

Because log ε−1 is a very weak singularity, λ changes very slowly.
In future papers, we will use the database compiled in this paper to investigate both

the rheological properties of a semi-dilute suspension of many squirmers and also
the diffusive property of squirmers in a semi-dilute suspension (Ishikawa & Pedley
2006a, b).

T. Ishikawa was supported by a JSPS postdoctoral fellowship for research abroad
from 2003 to 2005. M. P. Simmonds was supported by a NERC research studentship
from 1999 to 2002.

Appendix A. Solutions in dyadic notation for a solitary squirmer
The aim of this appendix is to establish the solutions for the flow and the stresslet

generated by a single squirmer, and to represent them in dyadic notation. This
provides frame-independent expressions, which will be used throughout the paper.
The initial part of this derivation is taken directly from Blake (1971). In this appendix
it is irrelevant whether the squirmer is bottom heavy or not.

Solving the Stokes equations for an axisymmetric nearly spherical body with a
prescribed (and not necessarily zero) velocity on its surface, in an otherwise static
fluid, reduces to solving

µ ∇2u = ∇p, ∇ · u = 0, (A 1)

where the velocity of the fluid is u, its viscosity is µ and p is the pressure. In a frame
of reference in which the sphere centre is at rest, and the fluid at infinity has velocity
−U e (where e is the unit vector along the axis of symmetry and U is the speed at
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which the sphere swims), the following boundary conditions are then applied for a
sphere to be termed a squirmer:

ur |r=a =
∑

n

An(t)Pn(cos θ), uθ |r=a =
∑

n

Bn(t)Vn(cos θ), (A 2)

where Pn is the nth Legendre polynomial and Vn is defined thus:

Vn(cos θ) =
2

n(n + 1)
sin θ P ′

n(cos θ); (A 3)

ur and uθ are the velocities in the r- and θ-directions (using spherical polar
coordinates). The spherical coordinates are defined such that θ = 0 denotes the
axis of axisymmetry and thus the swimming direction. This problem can be solved
and the solution (Blake 1971) is:

ur = −U cos θ + A0

a2

r2
P0 +

2

3
(A1 + B1)

a3

r3
P1

+

∞∑
n=2

[(
n

2

an

rn
−
(n

2
− 1

) an+2

rn+2

)
AnPn +

(
an+2

rn+2
− an

rn

)
BnPn

]
, (A 4)

uθ = U sin θ +
1

3
(A1 + B1)

a3

r3
V1

+

∞∑
n=2

[(
n

2

an+2

rn+2
−
(n

2
− 1

) an

rn

)
BnVn +

n

2

(n

2
− 1

)(an

rn
− an+2

rn+2

)
AnVn

]
,

(A 5)

p = µ

∞∑
n=2

2n − 1

n + 1
(nAn − 2Bn)

an

rn+1
Pn. (A 6)

For the squirmer to experience no net force (a necessity since it is neutrally buoyant
and the Reynolds number is zero),

U =
1

3
(2B1 − A1). (A 7)

In the case of zero radial velocity on the sphere surface (An =0 ∀n), the only case
considered in this paper, the expression for the velocity can be written in a form
independent of basis. Transforming now to a frame of reference in which the fluid
at infinity is at rest, one can express the velocity field (A 4), (A 5) in terms of e, r
and r , where e is the swimming direction or orientation vector of a squirmer, r is the
position vector and r = |r|, as follows:

u = −1

3

a3

r3
B1 e + B1

a3

r3

e · r
r

r
r

+

∞∑
n=2

(
an+2

rn+2
− an

rn

)
BnPn

( e · r
r

) r
r

+

∞∑
n=2

(
n

2

an+2

rn+2
−
(n

2
− 1

) an

rn

)
BnWn

( e · r
r

)( e · r
r

r
r

− e
)

. (A 8)

Here Wn is defined by

Wn(cos θ) =
2

n(n + 1)
P ′

n(cos θ). (A 9)

The expression for the velocity is now independent of the coordinate frame.



Hydrodynamic interaction of two swimming model micro-organisms 157

The stresslet generated by a solitary squirmer can now be calculated. The problem is
linear in velocity (since the Reynolds number is zero) so the stresslet can be calculated
for each individual mode of squirming, where a mode refers to the motion driven by
only one of the Bn. Consider the terms that have a factor Bn (i.e. set Bi = 0 ∀ i �= n).
The velocity field is given by

u =
an

rn
Bn

[(
a2

r2
− 1

)
Pn

r
r

+

(
a2

r2

n

2
−
(

n

2
− 1

))(
e · r
r

r
r

− e
)

Wn

]
(A 10)

for n �= 1. Pn and Wn must be considered as functions of e · r/r . The rate of strain E,
say, can then be calculated on the sphere (where r = a):

E =
Bn

2a

[
−4Pn

r r
a2

− 4(n + 1)
e · r
a

r r
a2

Wn + (2n + 1) (er + re) Wn

+2
e · r
a

WnI + 2

(
e · r
a

re + er
a

− r r
a2

− ee
)

W ′
n

]
. (A 11)

The stresslet S was defined by Batchelor & Green (1972b) to give no isotropic
contribution, and is given by

S =

∫
A

[
1
2
((σ · n)x + x(σ · n)) − 1

3
x · σ · nI − µ (un + nu)

]
dA, (A 12)

where σ is the stress tensor,

σ = −pI + 2µE, (A 13)

and the particle surface is defined as A. In the case of a squirmer, the last term in the
integral does not vanish. All terms in (A 12) integrate to zero when n is odd. When
n is even and n � = 2 the terms are not identically zero, but sum to zero. In the case
where n= 2 the result is non-zero and is

S =
4

3
πµa2(3ee − I)B2. (A 14)

The benefit of the initial decomposition of the velocity field on the squirmer is
now clear. The first mode determines the swimming speed (A 7) and the second mode
determines the stresslet of the squirmer (A 14). The squirming parameter β is defined
as B2/B1. In all the examples calculated explicitly in this paper we chose Bn = 0 for
n> 2.

Appendix B. Stresslet expressed by the single-layer potential
When the Reynolds number is zero, a flow field external to a squirmer can be

given in integral form, using a single-layer potential only, as (4.1). The boundary-
element method using single- or double-layer potentials only, so called the generalized
boundary-integral method, is explained in detail, with a derivation of the integral
equations and of the force and torque exerted on a particle, in an established text
(Pozrikidis 1992).

The single-layer potential q, (4.2), is found by subtracking the traction force on
the inner surface, f in, from that on the outer surface, f out . Equation (4.1) with the
boundary condition (4.3) expresses the velocity field generated by point forces in a
homogeneous fluid and is not restricted to a rigid-body motion inside a squirmer. In
order to impose a rigid-body motion, one needs to introduce a double-layer potential
in (4.1) and to deal with velocity slip on the surface explicitly. Introducing double-
layer potentials, however, considerably increases the computational load. Since the
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effect of f in appears in calculating the stresslet of a squirmer, we intend to subtract
its effect analytically in the following manner.

The first moment of the single-layer potential can be expressed as∫
A

xq dA =

∫
Aout

x f out dA −
∫

Ain

x f in dA, (B 1)

where Aout and Ain represent the outer and inner surfaces, respectively. The second
integral can be transformed, by exploiting the discussion in Batchelor (1970) and
equation (A 13), as follows:∫

Ain

x f in dA =

∫
Ain

x(σ · n) dA =

∫
Vin

σ dV +

∫
Vin

x(∇ · σ ) dV

=

∫
Vin

(−pI + 2µE) dV = IT + µ

∫
Ain

(un + nu) dA (B 2)

where Vin is the volume inside the Ain, and IT is the isotropic contribution term. The
flow field expressed by (4.1) has no slip velocity on the surface, so the last integral in
(B 2) can be substituted to the outer surface from the inner surface. Thus equation
(B 1) can be rewritten as∫

A

xq dA =

∫
Aout

x f out dA − µ

∫
Aout

(un + nu) dA. (B 3)

This equation is exactly the same as the stresslet given by Batchelor (1970), in
which the isotropic contribution and asymmetric part have not yet been subtracted.
Consequently, the stresslet of squirmer m can be expressed using only a single-layer
potential:

Sm =

∫
Am

[
1
2
(qx + xq) − 1

3
x · qI

]
dA. (B 4)
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