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Abstract

Self-organization of orientation maps due to external stimuli in the pri-

mary visual area of the cerebral cortex is studied in a two-layered neural

network which consists of formal neuron models with a sigmoidal output

function. A cluster learning rule is proposed as an extended Hebbian learn-

ing rule, where a modi�cation of synaptic connections is in
uenced by an

activation of neighboring output neurons. By making use of self-consistent

Monte Carlo method, we evaluate output responses of neurons against

explicit inputs after the learning. An orientation map calculated from

the output responses reproduces characteristic features of biological ones.

Moreover quantitative analysis of our results are consistent with those of

experimental results. It is shown that the cluster learning rule plays an

important role in forming smooth changes of preferred orientations.

Keywords: Self-organization, orientation map, external stimuli, neuron

model, cluster learning rule
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1 INTRODUCTION

Hubel and Wiesel (1962, 1968, 1974) found that neurons in the primary

visual area preferably respond to visual stimuli of oriented slits or bars and

the preferred orientations change continuously as a microelctrode moves

through the cortex parallel to its surface. They proposed an arrangement of

preferred orientations which is characterized by linear changes of preferred

orientations along one direction.

Recently optical recording techniques have been drastically developed,

and have been used in experiments, which revealed various characteristic

features of orientation preference maps. (Blasdel and Salama, 1986; Blas-

del, 1992a, 1992b; Bonhoe�er and Grinvald, 1991, 1993). In these maps,

preferred orientations change smoothly in all directions except for regions

of pinwheel singularities and fractures. The pinwheel singularity is a point-

like region around which orientation preferences change by 180 °along a

closed path. There appear two kinds of singularty, +1/2 and -1/2 sin-

gularity: preferred orientations increase with counterclockwise (clockwise)

motion around the +1=2 (�1=2) pinwheel singularity. About the same

number of �1=2 pinwheel singularities are present in the orientation maps.

Von der Malsburg (1973) theoretically studied the self-organization of

orientation selectivity for explicit input patterns using a model of a formal

neuron of a linear output function with a threshold. However pinwheel

singularities were not clearly formed. Of course the existence of pinwheel

singularities in the map was not known at that time.

Linsker(1986), Miyashita and Tanaka (1992), and Miller (1994) in-

vestigated the formation of an orientation preference map with random
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spontaneous activity provided as input. However, explicit external stim-

uli were not used, and the nonlinearity of the output function was not

considered. Obermayer et al. (1992) produced an orientation preference

map by the application of SOFM (self-organizing feature map) technique

(Kohonen, 1987), where an input stimulus was represented by a set of �ve

parameters instead of a de�nite pattern.

Although orientation preference is weakly organized before birth (Nicholas

et al., 1992), an in
uence of external inputs after birth can not be ignored

in sharpening and maintaining orientation preference. For instance, depri-

vation of vision in one eye in young kittens causes the map for this eye in

area 18 to vanish (Kim and Bonfo�er, 1994; G�odecke and Bonfo�er, 1996).

It is important to investigate whether a plausible orientation map contain-

ing de�nite pinwheel similarities is formed due to external input stimuli in

a formal neuron model with a nonlinear output function.

The purposes of the present paper are to clarify the problem whether

formal neurons and external stimuli can produce a plausible map of orien-

tation preference. In particular, we study the following two problems: (i)

Can a naive model of the Malsburg type produce the orientation map ?

(ii) If not, what kind of improvements on the naive model are required in

order to produce the map ? Here we adopt a formal neuron model that is

based on a discrete version of the nerve �eld model of Takeuchi and Amari

(1979).

In Section 2, a two-layered neural network model, a cluster learning

rule and basic equations are described. In Section 3, a Hamiltonian for-

malism (Inawashiro et al., 1996) is brie
y presented. In Section 4, results

obtained by a self-consistent Monte Carlo method is presented, and the the-
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oretical and experimental orientation maps are compared qualitatively and

quantitatively. In Section 5, the roles of the cluster learning rule and of the

inhibitory neuron pool are discussed. Section 6 is devoted to conclusions.

2 NEURAL NETWORKMODELWITH IN-

HIBITORY NEURON POOL

2.1 Model

We consider a two-layered neural network model with an inhibitory neuron

pool (Amari and Takeuchi, 1978; Takeuchi and Amari, 1979) as shown

in Figure 1. An input layer consists of L presynaptic neurons and an

output layer of N postsynaptic neurons. We use a formal neuron model of

McCulloch and Pitts (1943) with a sigmoidal output function.

(�gure 1)

Input neurons simply send input signals to output neurons. An output

neuron i receives three kind of inputs; (i) an explicit external input X

k

from the input neuron k through an excitatory synaptic connection s

ik

,

(ii) an inhibitory input X

0

from the inhibitory neuron pool through an

inhibitory synaptic connection s

i

, and (iii) a feedback contribution from a

neighboring neuron j through a lateral connection w

ij

. For simplicity it

is assumed that the inhibitory neuron pool provides a constant inhibitory

input, X

0

= 1. The indexes i and k denote a two-dimensional vectors

indicating the location of each neuron within the output and input layer,

respectively.

An inner state of a neuron i is described by an averaged membrane

potential u

i

, referred to as a membrane potential for simplicity hereafter.
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We assume that the time dependence of the membrane potential is given

by

�

0

du

i

dt

= �u

i

+

X

j

w

ij

z

j

+

X

k

s

ik

X

k

� s

i

X

0

; (1)

where �

0

denotes a time constant of the membrane potential of order of

milliseconds. Here z

i

represents an output of a neuron i de�ned by

z

i

= f(u

i

� u

th

); (2)

where u

th

denotes a threshold for the excitation of a neuron. The output

function f(x) is de�ned by a sigmoidal function,

f(x) =

1

1 + exp(�2�x)

; (3)

where (�=2) represents a gradient at x = 0. We assume that a time constant

of the membrane potential, �

0

, is much smaller than the time duration of

presentation of an input pattern. In this situation, the steady value of the

membrane potential is immediately achieved, and is given by

u

i

=

X

j

w

ij

z

j

+

X

k

s

ik

X

k

� s

i

X

0

: (4)

It is assumed that the synaptic connections s

ik

and s

i

are modi�ed

through the learning based on a Hebbian learning rule and a cluster learning

rule described in Subsection 2.2. The self-organization of an orientation

map is accomplished when the modi�cation reaches saturation. The lateral

connection w

ij

is a function of the distance between output neurons i and

j. We use a \Mexican-hat" interaction de�ned by

w

ij

= (E + I) exp(�

ji� jj

2

2r

2

E

)� I exp(�

ji� jj

2

2r

2

I

); (5)

which is excitatory for a pair of nearby neurons and inhibitory for a pair

of distant ones. Here E denotes an excitatory strength, I an inhibitory
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strength, r

E

an excitatory range, and r

I

an inhibitory range. The lateral

connection is assumed to remain �xed during modi�cation of the synaptic

connections. A self-feedback connection w

ii

is assumed to be zero.

2.2 Cluster Learning Rule

In a Hebbian learning rule, a synaptic connection s

ik

between an input

neuron k and an output neuron i is strengthened by simultaneous activation

of the neurons as shown in Figure 2(a). The synaptic modi�cation is not

directly in
uenced by an activation of neighboring output neurons.

(�gure 2)

Now, we propose a \cluster learning rule", in which the synaptic mod-

i�cation of s

ik

is strengthened by a simultaneous activation of an input

neuron k and an output neuron i together with its neighboring neurons as

shown in Figure 2(b). The cluster learning rules for the synaptic connec-

tions s

ik

and s

i

are given by

�

ds

ik

dt

= �s

ik

+ c

1

z

i

X

k

+ c

0

1

X

j

e

ij

z

j

X

k

; (6)

�

ds

i

dt

= �s

i

+ c

2

z

i

X

0

+ c

0

2

X

j

e

ij

z

j

X

0

; (7)

where e

ij

represents a contribution factor from an output neuron j to an

output neuron i, � a learning time constant, and c

1

, c

0

1

, c

2

and c

0

2

are

learning constants which control learning e�ciencies of the synaptic con-

nections. We assume e

ij

to be positive and e

ii

to be zero. In the right

hand side of equations (6) and (7) the �rst term denotes the decay e�ect

which ensures the saturation of the synaptic connections, the second term

a increment due to the Hebbian learning rule, and the third term a con-
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tribution due to the cluster learning rule. The role of the cluster learning

rule is explained in Section 5.

2.3 Steady State of the Learning

We assume that an input pattern X

�

labeled by � (� = 1; 2; :::; P ) is pre-

sented to the output layer through the input layer. For simplicity we take

bar-shaped patterns as input patternsX

�

although we think that more nat-

ural images are appropriate. In this study we are interested in mechanisms

of the network itself such as the inhibitory neuron pool and the cluster

learning rule. If a plausible map of orientation preference is produced in

our model, the mechanism of our network will work for more appropri-

ate external inputs. The pattern X

�

is chosen at random from an input

ensemble fXg which contains all the patterns X

�

with the uniform prob-

ability, 1=P . The learning constant � is assumed to be much larger than

the time required for presenting a full set of the patterns. In this situation,

the synaptic connections are little modi�ed during the presentation of an

input pattern, and the learning equations (6) and (7) are approximated by

an ensemble average over the input ensemble (Geman, 1979). Moreover if

input patterns are presented continuously for a much longer duration than

the learning time constant, a steady state of the learning will be attained

and steady values of the synaptic connections are given by (Inawashiro et

al., 1996)

S

ik

=

c

1

P

X

�

Z

�

i

X

�

k

+

c

0

1

P

X

�

X

j

e

ij

Z

�

j

X

�

k

; (8)

S

i

=

c

2

P

X

�

Z

�

i

X

0

+

c

0

2

P

X

�

X

j

e

ij

Z

�

j

X

0

; (9)
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where the capital letters denote the quantities in the steady state, and Z

�

i

represents a steady output of a neuron i against the �th input pattern.

After the system reached the steady state, the learning is stopped and

response of the system against input patterns is studied. Using equations

(2), (4), (8) and (9), a steady output of a neuron i against the �th input

pattern is given by

Z

�

i

= f

0

@

X

j

w

ij

Z

�

j

+

1

P

X

�

(c

1

v

��

� c

2

X

0

X

0

)Z

�

i

+

1

P

X

�

X

j

(c

0

1

v

��

� c

0

2

X

0

X

0

) e

ij

Z

�

j

� u

th

1

A

(10)

where v

��

represents the spatial correlation between two input patterns X

�

and X

�

de�ned by

v

��

=

X

k

X

�

k

X

�

k

: (11)

In general a self-correlation v

��

takes a much larger positive value than

the others. The learning constants c

1

, c

0

1

, c

2

and c

0

2

are chosen so that

(c

1

v

��

� c

2

X

0

X

0

) and (c

0

1

v

��

� c

0

2

X

0

X

0

) are positive. If a neuron i would

be excited by the �th input pattern, the large value of (c

1

v

��

� c

2

X

0

X

0

)

plays an important role in maintaining the excitation. In the right hand

side of equation (10), the third term comes from the cluster learning. We

are interested in the response property of the neurons which is represented

by a solution fZ

�

i

g of (10).
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3 STATISTICALMECHANICAL DESCRIP-

TION

3.1 Mean Field Equations

We introduce a set of new variables m

i�

by

Z

�

i

=

1

2

(1 +m

i�

): (12)

Using a hyperbolic tangent function, the steady outputs (10) are rewritten

in terms of m

i�

as

m

i�

= tanh �

0

@

X

j 6=i

J

(xy)

ij

m

j�

+

X

� 6=�

J

(z)

��

m

i�

+

X

j 6=i

X

�

J

(xyz)

ij��

m

j�

+ h

i�

+h

self

i�

+ h

self

i�

m

i�

�

: (13)

Here J

(xy)

ij

, J

(z)

��

and J

(xyz)

ij��

are exchange interactions de�ned by

J

(xy)

ij

=

1

2

w

ij

; (14)

J

(z)

��

=

c

1

2P

(v

��

�

c

2

c

1

X

0

X

0

); (15)

J

(xyz)

ij��

=

c

0

1

2P

(v

��

�

c

0

2

c

0

1

X

0

X

0

)e

ij

; (16)

and h

i�

and h

self

i�

are local e�ective �elds de�ned by

h

i�

=

X

j 6=i

J

(xy)

ij

+

X

� 6=�

J

(z)

��

+

X

j 6=i

X

�

J

(xyz)

ij��

� u

th

(17)

h

self

i�

= J

(xy)

ii

+ J

(z)

��

+ J

(xyz)

ii��

: (18)

The equations (13) represent mean �eld equations for an Ising spin

system at a �xed temperature T = 1=� in statistical physics of magnetism
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(Ashcroft and Mermin, 1987), and m

i�

is a mean �eld average of an Ising

spin located at a lattice site i� in a three-dimensional space where i denotes

xy coordinates and � z coordinate. Output responses of neurons given by

a solution of the steady outputs (10) are evaluated from a solution of the

mean �eld equations (13) through the equations (12).

It is noted that J

(xy)

ij

represents an exchange interaction between two

spins located at i� and j� on the same xy plane, J

(z)

��

an exchange in-

teraction between two spins located at i� and i� along the same z axis,

and J

(xyz)

ij��

an exchange interaction between two spins located at i� and j�

(i 6= j) in the xyz space. In the right hand side of equation (13) the last

term h

self

i�

m

i�

is a kind of a mean �eld at i� which is proportional to the

mean �eld average of the Ising spin i� itself, and is called a \self-�eld".

The self-�eld does not appear in an ordinary form of mean �eld equations

in physics. We believe that the self-�eld represents one of biological fea-

tures of self-organization in a formal neuron model with a sigmoidal output

function. It is to be noted that the self-�eld acts upwards because the self-

correlation v

��

takes a large positive value.

3.2 Hamiltonian Formalism

We consider an Ising Hamiltonian in the three-dimensional lattice space

(Inawashiro et al., 1996),

H = �

1

2

X

i

X

�6=�

X

�

J

(z)

��

�

i�

�

i�

�

1

2

X

i 6=j

X

j

X

�

J

(xy)

ij

�

i�

�

j�

�

1

2

X

i 6=j

X

j

X

�

X

�

J

(xyz)

ij��

�

i�

�

j�
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�

X

i

X

�

(h

i�

+ h

self

i�

+ h

<�>

i�

)�

i�

(19)

where �

i�

denotes an Ising spin operator which takes �1 or +1, and h

<�>

i�

denotes a certain local e�ective �eld at i�. The local e�ective �eld h

<�>

i�

is

subject to an additional constraint,

h

<�>

i�

= h

self

i�

< �

i�

>; (20)

where < �

i�

> represents a thermal average of a local Ising spin i� de�ned

by

< �

i�

>=

Trf�

i�

exp(��H)g

Trfexp(��H)g

: (21)

Here Tr denotes the trace operation over all Ising spin variables �

i�

. Under

the constraint (20), the local e�ective �eld h

<�>

i�

at i� is proportional to the

thermal average of the very Ising spin i�, and is also called a self-�eld in the

Hamiltonian (19). The constraint (20) are referred to as \self-consistency

condition".

The Ising spin system described by the Hamiltonian (19) is charac-

terized by (i) the strong self-�elds h

<�>

i�

, (ii) long-range antiferromagnetic

interactions along z axis due to the inhibitory neuron pool, (iii) long-range

antiferromagnetic interactions within xy plane due to the lateral connec-

tions, and (iv) short-range ferromagnetic and long-range antiferromagnetic

interactions in the xyz space due to the cluster learning rule. It is to be

noted that the interaction J

(xyz)

ij��

e�ectively acts between two spins at i�

and j� with neighboring two-dimensional coordinates i and j while the

interaction J

(z)

��

acts between two spins at i� and i� along the same z axis.

The strong self-�elds support a small cluster of up spins, and these clusters

can be located in a variety of di�erent distributions. Di�erent distributions
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of self-�elds leads to di�erent distributions of spin averages. The self-�elds

and these long-range antiferromagnetic interactions cause a variety of ori-

entation maps calculated from spin averages.

The mean �eld equations (13) are derived from the Hamiltonian (19)

under the self-consistency conditions (20). The mean �eld average of a spin

is approximately given by a thermal average of a spin,

m

i�

'< �

i�

> : (22)

We evaluate the thermal averages of spins in the next section.

4 SIMULATION OF ORIENTATIONMAPS

4.1 Method

There are two methods to calculate the output responses of neurons: (i) a

numerical calculation of the steady outputs (10) by an iterative method,

and (ii) an indirect method which uses the Hamiltonian (19) to evalu-

ate spin averages. The iterative procedure for (10) often fails to converge

starting from random distributions of spin averages, at least in interest-

ing ranges of parameters (Kuroiwa et al.). The di�culty of the iterative

method partly comes from the existence of the strong self-�elds and of

three long-range antiferromagnetic interactions.

In the Hamiltonian formalism, a Monte Carlo simulation is often used

to evaluate thermal averages of Ising spins in complex systems even though

it is computationally expensive. However we cannot apply an ordinary

Monte Carlo procedure because we do not know distributions of self-�elds

h

self

i�

< �

i�

> in the Hamiltonian (19) before starting calculations. We
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use a \self-consistent Monte Carlo method" (referred as SCMC method,

Inawashiro et al., 1996; Kuroiwa et al.). We start from an initial condition

in which certain values are assigned to self-�elds. We perform a Monte

Carlo procedure over many Monte Carlo (MC) periods. In a MC period

self-�elds are given by h

self

i�

multiplied by MC averages of spins which are

calculated over the immediately preceding MC period, and the procedure

is continued until the self-�elds converge with a certain accuracy. After the

convergence has been accomplished, the self-consistency conditions (20) are

satis�ed approximately, and the output responses of neurons are approxi-

mated by

Z

�

i

=

1

2

(1+ < �

i�

>

MC

); (23)

where < �

i�

>

MC

denotes a MC average of an Ising spin i�. It is to be

noted that SCMC method is able to give output responses independent

of parameters and of initial distribution of spin averages (Kuroiwa et al.).

The stability of SCMC method in giving spin averages help us to �nd

appropriate values of parameters by trial and error.

4.2 Parameters

We use �fteen bar-shaped patterns as explicit external inputs for simplicity

as shown in Figure 3(a). The spatial correlation (11) between a pair of input

patterns is easily calculated as shown in Figure 3(b). The lateral connection

w

ij

is chosen as shown in Figure 3(c), and its parameters are given in Table

1. The contribution factor e

ij

in the cluster learning rule is chosen equal to

the positive part of the lateral connection w

ij

. The threshold u

th

is chosen

so that a neuron is not excited e�ectively (Z

�

i

< 0:5 for all i and �) in case
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of no inputs.

(�gure 3)

(table 1)

We calculate MC averages over every period of 4000 MC steps. Here

one MC step represents a MC procedure where spin-
ips are tried a num-

ber of times which is equal to the total number of spins. Note that �rst

4000 MC steps are discarded to exclude transient con�gurations of Ising

spins. Initial self-�elds h

<�>

i�

are chosen to be +h

self

i�

or �h

self

i�

at random,

and an initial spin con�guration to be +1 and �1 at random. The other

parameters are given in Table 1. A periodic boundary condition for the

output layer is assumed.

4.3 Self-Consistency

In order to verify the self-consistency conditions (20) in SCMC simulation

we calculate a root mean square deviation � de�ned by

� =

v

u

u

t

1

PN

X

�;i

�

< �

i�

(l) >

MC

� < �

i�

(l � 1) >

MC

�

2

(24)

where < �

i�

(l) >

MC

denotes MC averages of Ising spins over \the lth MC

period". The smallness of � ensures that the self-consistency conditions

(20) are approximately satis�ed within a certain accuracy.

(�gure 4)

The behavior of � for every MC period is shown in Figure 4. The

deviations � decreases monotonically as MC period increases. Between

80001 and 84000 MC steps, the root mean square deviation � becomes

0:019, and the self-consistency conditions (20) are satis�ed approximately.
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4.4 Orientation Maps

Monte Carlo averages of local Ising spins are calculated over a MC period

between 80001 and 84000 MC steps where the system is approximately in

a thermal equilibrium. An output response of a neuron against the �th

input pattern is easily calculated from the MC average of a spin within the

z = � plane through the equation (23). All the responses of neurons are

depicted on the two-dimensional triangular lattice of the output layer by

line segments where the magnitudes of output responses are represented

by the lengths of the line segments and the orientations of input patterns

by those of the line segments (Figure 5). An output neuron makes e�ective

responses against more than two input patterns, which are indicated by

more than two line segments at a lattice site in Figure 5. It is to be

noted that we used a random distribution of self-�elds and a random spin

con�guration as the initial condition of the simulation in order to avoid

any arti�cial arrangements to produce these structures.

(�gure 5)

In the orientation map (Figure 5), we observe linear zones, +1=2 and

�1=2 pinwheel singularities, and fractures as characteristic features of the

local structures. These local features occur in a dispersed manner in the

orientation map with no long-range orders and the map shows a global

disorder as observed in the experiments (Blasdel and Salama, 1986; Blas-

del, 1992a, 1992b; Bonhoe�er and Grinvald, 1991, 1993). The number of

+1=2 pinwheel singularities is almost equal to that of �1=2 ones; there

are twenty-one +1=2 pinwheel singularities and twenty �1=2 ones in the

maps. Pinwheel singularities are smoothly linked, and this smoothness
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leads to global smooth changes of preferred orientations except for regions

of the pinwheel singularities and fractures. The orientation map obtained

by using the cluster learning rule is qualitatively similar to biological ob-

servations.

In this paper the orientation selectivity is de�ned as the strength of

the maximal output of a neuron. One of characteristic features of the orien-

tation map of our model is that 80% neurons take an orientation selectivity

between [0:9; 1:0]. In other words, the orientation selectivity in our model

is tuned much shaper than that obtained by use of spontaneous activities

(Miller, 1994). Learning due to explicit external inputs is important in

producing a sharp tuning.

We present typical structures of �1=2 pinwheel singularities on the

triangular lattice. These structures are derived by manual assignment of

orientations on the triangular lattice sites without computer simulation.

We observe that a lot of �1=2 pinwheel singularities in Figure 5 are similar

in their structure to those in Figure 6.

(�gure 6)

4.5 Quantitative Comparisons

In Figure 5, we can see two types of nearest neighbors of pinwheel singulari-

ties; each of 34 (82:9%) singularities has the nearest-neighbor singularity of

the opposite sign and each of 7 singularities has that of the same sign. Re-

cently Obermayer and Blasdel (1996) analyzed data obtained from squirrel

monkeys and macaque monkeys of di�erent ages, and reported that the

approximately 80% of singularities have their own nearest neighbors of the

opposite sign.
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We calculate an autocorrelation function de�ned by (Obermayer et al,

1992)

C(ji� jj) =< q(i)q(j) cos 2�(i) cos 2�(j) >; (25)

where < � > means the average operation over the all lattice points of the

output layer. We de�ne a preferred orientation �(i) as the orientation of

an input pattern which gives the maximal output of a neuron i and the

selectivity q(i) as the strength of the maximal output. The autocorrelation

function calculated from the orientation map (Figure 5) is shown in Figure

7(a). It takes a Mexican-hat shape with orientation preferences anticorre-

lated for the average distance between singularities that amounts to 5.8 in

unit of triangular lattice constant. The distance is interpreted as the half

length of a hypercolumn. The autocorrelation function oscillates and its

amplitude decreases as the distance increases, indicating a global disorder

in the orientation map.

An intersection angle I(i) represents the magnitude of the correlation

between orientation preference coordinates and cortical coordinates (Erwin

et al., 1996), and is given by

I(i) = min(j�(i)� g(i)j; 180

�

� j�(i)� g(i)j); (26)

where g(i) is the angular component of the gradient r�(i). From Figure

7(b) we can see that there are no preferred angle of the intersection between

orientation preference and its angle of gradient. These three results men-

tioned above are consistent with data of the biological experiments (Erwin

et al., 1996). (�gure 7)
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5 ROLES OF THE CLUSTER LEARNING

RULE AND THE INHIBITORY NEU-

RON POOL

5.1 Orientation Maps Obtained by Using Hebbian

Learning Rule only

What kinds of roles does the cluster learning rule play in the formation

of the orientation map as shown in Figure 5 ? We switch o� the cluster

learning rule, and use only the Hebbian learning rule in a formation of an

orientation map. In the simulation we set e

ij

to be zero, and c

1

to be 4:5.

The other parameters remain the same as used in the previous simulation.

The orientation map is shown in Figure 8. We can see that (i) structures of

singularities are deformed and the identi�cation of pinwheel singularities is

more di�cult than in Figure 5, and (ii) the orientation map contains only

a few links between singularities and a lot of fractures instead.

(�gure 8)

These results show that the cluster learning rule plays an important

role in organizing smooth structures of pinwheel singularities, in forming

smooth links between them, and in preventing the formation of fractures

in the orientation map.

5.2 Analysis of E�ects of the Inhibitory Neuron Pool

and of the Cluster Learning Rule

Some of spin averages in the planes of z = � and � in the Ising spin space

are shown in Figure 9. A cluster of positive spin averages on the � plane

corresponds to a cluster of �ring neuron against the �th input pattern
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in the output layer. A part of the orientation map is also shown at the

bottom in Figure 9, where two clusters of �ring neurons with line segments

of orientation preferences are located nearby with an abrupt changes of

preferred orientations.

(�gure 9)

Local e�ective �elds in the Hamiltonian (19) are divided into two

classes, constant �elds h

i�

and m-dependent �elds h

self

i�

(1 + m

i�

). The

former �elds h

i�

are negative and have a strong e�ect to align spins down-

wards. A spin average m

i�

is approximately equal to 1 or �1 at low tem-

perature, and the latter �eld becomes approximately 2h

self

i�

for a positive

m

i�

, or approximately vanishes for a negative m

i�

. Because of the large

positive value of v

��

, 2h

self

i�

is larger than the absolute value of h

i�

, causing

to establish an up spin, i.e., an active neuron.

The excitatory part of the exchange interactions J

(xy)

ij

aligns the neigh-

boring spins to form a cluster of up spins within the � plane. The up-spin

cluster within the � plane represents a cluster of output neurons responding

to the �th input pattern. The inhibitory part of the interaction prevents

the clusters from growing too large and keeps these spin clusters apart from

each other of the order of inhibitory range r

I

within the � plane.

For an appropriate positive value of c

2

, the exchange interaction J

(z)

��

along the z axis becomes negative for a pair of � and � distant apart. This

tends to prevent a pair of spins distant apart along the same z axis from

aligning upwards simultaneously. Thus the inhibitory neuron pool prevents

an output neuron to respond simultaneously to di�erent input patterns.

Suppose that a fracture is formed in the output layer, that is, two ac-

tive clusters are formed close to each other with abrupt changes of preferred
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orientations as shown at the bottom in Figure 9. This means that in the

Ising spin space two clusters of positive spin averages are located nearby in

xy coordinates and distant apart from each other in z coordinates. We em-

phasize that in case of no inhibitory interactions between these two clusters

many fractures tends to be formed without any obstructions and smooth

changes of preferred orientations are lost all over the output layer as shown

in Figure 8. The inhibitory interactions are provided by the negative part

of J

(xyz)

ij��

as explained below.

The cluster learning rule generates the exchange interaction J

(xyz)

ij��

as

seen in (16). The interaction is positive for a pair of spins i� and j� located

nearby in xyz coordinates, and negative for a pair of spins i� and j� located

nearby in xy coordinates and distant apart from each other in z coordinates.

Positive parts of the interactions tend to align a pair of spins in the same

direction, and negative parts of the interactions tend to align them in the

opposite directions to each other. This means that a pair of neurons with

nearby xy coordinates tends to �re simultaneously against similar input

patterns � and �, and to avoid simultaneous �ring against input patterns

of a large di�erence in their orientations. In the orientation map formations

of fractures are suppressed, and overall smoothness in changes of preferred

orientations is achieved by the cluster learning rule as shown in Figure 5.

6 CONCLUSIONS

In the present paper we investigate self-organization of orientation maps

due to explicit external stimuli in a formal neuron model, and propose

the cluster learning rule where a modi�cation of synaptic connections is
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strengthened by an activation of neighboring output neurons. The simu-

lation using the cluster learning rule reproduces orientation maps qualita-

tively similar to biological ones, and the quantitative analysis of our results

also agree with those of experimental results.

In order to show the e�ects of the cluster learning rule we carry out the

simulation without the cluster learning rule using only the Hebbian learning

rule. It turns out that the resultant map contains abundant fractures and

deformed structures of singularities, and the smoothness of preferred orien-

tations is lost. Therefore we concluded that the cluster learning rule plays

an important role in producing smooth changes of preferred orientations in

the map. The e�ects of the cluster learning rule are also explained by the

Ising spin formalism. It is an interesting problem to investigate whether an

e�ect similar to the cluster learning rule is observed in biological systems.

The inhibitory neuron pool plays also an important role in forming

orientation preference, preventing a output neuron from making multiple

responses to several input patterns. Since there exist a large number of

inhibitory neurons in many parts of cerebral cortices, we are interested in

whether inhibitory neurons in the cortex really play a similar role to the

inhibitory neuron pool in this study.
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Figure 1: A two-layered neural network model. An input signal X

k

from

input neuron k is sent to an output neuron i through an excitatory synaptic

connection s

ik

. A constant inhibitory input X

0

(= 1) is sent to the output

neuron i through an inhibitory synaptic connection s

i

. The output neuron

i receives also a feedback contribution from a neighboring neuron j through

a lateral connection w

ij

. A sum of these three kinds of inputs leads to an

output z

i

of the neuron i through a sigmoidal output function.

Table 1: Parameters.

L

x

= 17, L

y

= 17, N

x

= 40, N

y

= 40,

P = 15, T = 4:0, u

th

= 1:5, X

0

= 1:0,

c

1

= 1:05, (c

2

=c

1

) = 10:0, c

0

1

= 1:05, (c

0

2

=c

0

1

) = 10:0,

E = 0:96, I = 2:04, �

E

2

= 1:64, �

I

2

= 2:5,
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Figure 2: (a) Hebbian learning rule. (b) Cluster learning rule. In the

Hebbian learning rule, a synaptic connection s

ik

is strengthened by simul-

taneous activation of an input neuron k and an output neuron i. In the

cluster learning rule, the synaptic connection is strengthened by a simulta-

neous activation of an input neuron and an output neuron i together with

its neighboring neurons. A contribution factor from an output neuron j to

an output neuron i in the learning is denoted by e

ij

(> 0).
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Figure 3: (a) Fifteen bar-shaped patterns. The input neurons are arranged

on a triangular lattice. The magnitude of an input signal is chosen to be

0, 0:5 or 1, represented by a point, a small or large black dot, respectively.

(b) Spatial correlation between the input pattern X

1

and the others. The

horizontal axis implies the intersecting angle between two input patterns

and the vertical axis the spatial correlation. The broken line represents a

value of (c

2

=c

1

)X

0

X

0

(= 10:0) used in the simulation. Note that (c

1

v

11

�

c

2

X

0

X

0

) takes a positive value. (c) A lateral connection. The horizontal

axis implies a distance of a pair of neurons and the vertical axis the lateral

connection. A black dot (�) corresponds to a distance of a pair of neurons

on the triangular lattice. Note that we set a strength of self-feedback

connection w

ii

to be zero. The connection takes a positive value for 1st,

2nd and 3rd neighboring neurons.
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Figure 5: Orientation map obtained by SCMC method using cluster learn-

ing rule in the period between 80001 and 84000 MCS. The length of a line

segment represents the magnitude of an output of a neuron and the orien-

tation of the line segment the orientation of the input. An output neuron

responds to more than two input patterns, which are indicated by more

than two line segments at a lattice site. The symbol `+' represents +1=2

pinwheel singularity and `�' �1=2 one. A thin line with arrows shows a

linear zone and a thick line a fracture.
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+1/2 pinwheel singularity -1/2 pinwheel singularity

Figure 6: �1=2 pinwheel singularities on the triangular lattice. Orienta-

tions are manually assigned on the lattice sites without computer simula-

tion.
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Figure 7: (a) Autocorrelation function of distance between a pair of two

neurons i and j in unit of the triangular lattice constant. (b) The histogram

shows the percentage of locations with an intersection angle [0; 90

�

] between

a preferred orientation 0 � � � 180

�

and its gradient 0 � g � 180

�

.
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Figure 8: Orientation map calculated in the period between 80001 and

84000 MCS by use of the Hebbian learning rule only. In the simulation we

set e

ij

= 0 and c

1

= 4:5, and the other parameters are the same as in table

1.
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Figure 9: The schematic representation of the Ising spin system and the

output layer. The planes of z = � and � belong to a three-dimensional

Ising spin space. The plane at the bottom represents the output layer of

the neuron system. Spin averages in the three-dimensional Ising spin space

are projected onto the two-dimensional output layer. Clusters of positive

spin averages are represented by shaded regions. In the output layer, a

fracture is formed between two cluster with a large di�erence of preferred

orientations. Exchange interactions J

(xy)

ij

act between two spins i� and j�

on the same xy plane and J

(z)

��

act between two spins i� and i� along the

same z axis, while J

(xyz)

ij��

act between two spins i� and j� with di�erent i

and j.


