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We developed an improved ultrasonic atomic force microsd@pdFM) for mapping resonance
frequency and Q factor of a cantilever where the tip is in linear contact with the sample. Since the
vibration amplitude at resonance is linearly proportional to the Q factor, the resonance frequency
and Q factor are measured in the resonance tracking mode by scanning the sample in the constant
force mode. This method enables much faster mapping of the resonance frequency and Q factor than
the previous one using a network analyzer. In this letter, we describe the principle and
instrumentation of the UAFM and show images of carbon-fiber-reinforced plastic composites.
© 2001 American Institute of Physic§DOI: 10.1063/1.1357540

It has been established that ultrasonic atomic force mi- SS+a(CS,+SG)
croscopy (UAFM)! can realize reliable measurement of  B(w)=— (1+CC)+alCS—SG)’ 1)
stored and loss moddlby recording the spectra of deflection n
vibration of a cantilevef. The stored modulus can be calcu- CS,+SGC,+2aCCG,

lated using the resonance frequency obtained from the peak D(w)= — ,
frequency of a spectruf® and the loss modulus is calcu- (1+CCy+a(C—SG)

lated using the Q factor defined as the ratio of the peakyhere 7 is the deflection of cantilevew, is the vibration

. . -5 .
frequency to its widtH® For more complete analysis, the amplitude of cantilever base, is the angular frequency, is
torsion vibration can be used to separate Young's modulugpe length of the cantilever, an8=sinb, S,=sinhb, C

the shear modulus, and Poisson’s rdtfo. —cosb, Cp=coshb, a=—1b3(3s/k+ivirbd), b

However, measurement of spectra takes a long time. 31411, The factorQ=w/K/M is the normalized fre-
(typically 5 s for one point for an average of 10 times quency andl'= /MK is the normalized damping coeffi-
Consequently, mapping of the resonance frequency and thgent, whereM is the mass of cantilevek is the cantilever
Q factor takes a very long time-91h for a 256<256 pixel  stiffness,s and y are the contact stiffness and damping co-
image. Recently, Kobayashi and co-workers proposed &fficient between tip and sample. Because the slope is pro-
resonance-tracking scheme to reduce the time required fQfortional to the signal measured by optical-deflection AFM,
mapping the resonance frequeﬁdyut did not realize the Q  g£q (1) is an analytical expression of the UAFM spectrum at
factor mapping. Nevertheless, if we use the analytical relaz given locatiorx of the laser beam spot.
tionship between the peak height of resonance and the Q Figure 1 shows spectra calculated using Bq.with T
factor obtained by the theory of UAFM}*®we should be  _ ./ #Mk=0.5, 1, 2, 5, and 10 ang/k=200, for the laser

able to measure the Q factor from the vibration amplitude apggm spot at the end of cantilever<L). The Q factor is
resonance. Based on this idea, we developed a UAFM for

mapping both the resonance frequency and Q factor of the

sample. Similar technique has been reported in the field of
macroscopic contact acoustic impedance measureh#gnt. 60 1
ter describing the principle and instrumentation, we present o
clear images of carbon-fiber-reinforced plagt@-RP com- © 50 |
posites. ~
In a model of UAFM cantilever with distributed mass, g
the slope of the cantilever is given by 'g 40 i
<
Y, 92(x) /2b ot sinhb— — sinb~ — B
X)= =(Up/2) —e'“!| sinhb——sinb——
(X)=— = (Ud/2) | - —sinb - —B(w) % |
X X X
X smbE+smth +D(w) cost L s
8.6 8.8 9 9.2
—Coshbi Normalized frequency @
L L
FIG. 1. Relation between the Q factor and the maximum peak h¥ight
of a peak formed arounfl ~0.87 when and/k=200. Five different values
¥Electronic mail: yamanaka@material.tohoku.ac.jp of I'=y/ MK were assume@.5,1,2,5, and 10
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FIG. 2. Block diagram of the UAFM for resonance frequency and Q factor
mapping.

calculated as the ratio of peak frequen@Qy to the 3 dB
width AQ. Inset of Fig. 1 shows the relation between the Q
factor and the peak height of resonantg,,, showing clear
linearity between them. Though the linearity is an approxi-
mate relation, it holds over a reasonably wide range of nor-
malized damping coefficienf. For example, the ratio be-
tween the Q factor and the maximum peak heiyht,,,
Q/Vax, remains almost constani0.413-0.422 over a
range ofl" from 0.1 to 10.0 for the normalized contact stiff-
nesss/k of 200. Fors/k larger than 200, the variation of
Q/Vax is even smaller. Thus, the peak height of resonance
can be employed as a measure of the Q factor. The analysis
can be further improved by considering the lateral stiffress,
tilt of the cantileve? and shape of the tif.

The contribution to the Q factor in this model is from the
internal frictionof the sample and from the water or contami-
nant film on the sample. Although other factors such as the
air damping, clamp of cantilever base to the ultrasonic trans-
ducer, and defects within the cantilever change the Q factor,
their effect is usually small or uniform, and therefore, does
not significantly affect the contrast in the image.

In the present instrumentation, the mapping of resonance
frequency and Q factor is realized by the phase-locked loop
circuit depicted in Fig. 2, where the cantilever vibration is
excited by a voltage-controlled oscillatfvCO). The input
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voltageV of the VCO is adjusted to realize resonance wherFIG. 4. Images of CFRRa) Topography(maximum height difference of
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500 nn). (b) Resonance frequency image with a gray scale from 170 to 180
kHz. (c) Q factor image with a gray scale from 70 to 250.

the tip is in contact with the sample. Then, the cantilever

deflection signal detected by the photodiode is split into two

parts and one part is low-pass filtered to control zhgosi-

tion of the sample. The other part is band-pass filtered and its
phase is compared with that of the VCO output signal. The

phase difference between them is adjusted with a variable
phase shiftek to equate the phase comparator oufygtto

a reference voltag¥s.

After connecting the switch, we start raster scanning of
sample. If the resonance frequency is changed, the phase
signal is also changed. Then, the outpfgt of the error am-
plifier caused by the phase change is added to the VCO input
in order to recover the resonance. In this manner, the canti-

FIG. 3. Typical power spectra of cantilever deflection vibration for the IEVEr IS always vibrated at the resonance frequency and the

carbon fiber and epoxy resin on a cross section of CFRP.
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vibration amplitude represents the Q factor.
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3 Figures 4b) and 4c) are the resonance frequency and Q
§ 17gF T T T T T T T T T T T factor images obtained at a contact force of 200 nN corre-
g 1761 ] spor_nding the topography in Fig(a}. Conversion fro_m the
oL 1740 ] maximum peak height to the Q factor was experimentally
ox b - performed using power spectra obtained at the carbon and
g—7er ] epoxy area such as those shown in Fig. 3.
q% 170—6: S S '1|0' L |1'5|— The images in Figs. ) and 4c) showed that epoxy
o« I e e e e e ML B e was much softer and more viscous than the carbon. Within
_ ; ] the carbon and epoxy areas, the brightness was almost uni-
£ 200;_ E form. However, we noted a small but reproducible variation
8 . within the carbon area. As shown in the frequency and Q
c ; factor profiles in Fig. 5 obtained along the vertical lines in
1007| N Fig. 4, the resonance frequency at the core was lower than
6 5 10 15 that at the rim by 0.5—-1 kHz. Similarly, the Q factor at the
Distance x, 4 m core was lower than that at the rim by 20—40. These differ-
FIG. 5. Profiles of resonance frequency and Q factor obtained along th&NCEes are p_rObabIY due to the radial d'ﬁe“?”ce in the degree
vertical lines in Fig. 4. of stabilization during heat treatment, an important param-

eter for achieving high strengt.Although the qualitative
, . difference has been indicated in a previous UAFM im3ge,
Whereas the resonance frequency tracking describeganitative mapping was carried out for the first time in this
above is similar to that of the frequency modulation mode Ofstudy.
noncontact AFM(NC-AFM),!! the vibration amplitude of In conclusion, we developed an improved UAFM, where
the cantilever is quite different. Although it is very large he resonance frequency and Q factor at a local area in the
(>10nm) in NC-AFM, it should be small<{1 nm) in sample are mapped at a reasonable speed, by tracking the

UAFM,”in order to keep the tip always in linear contact with \osonance and measuring the frequency and amplitude of
the sa_lmple, .namely the contact stiffnesshould not deviate ., niilever vibration.
from its static value. Thus, we should carefully control the
driving power of the cantilever in UAFM. To determine the This work was supported by the Grant-in-Aid for Scien-
optimum driving power, we monitor the vibration spectrum tific ResearchNo. 10450015 and by the Grant-in-Aid for
and find the largest possible power where the spectrum stilCOE ResearckNo. 11CE2003 The Ministry of Education,
remains symmetrical and sharp, immediately before becomScience, Sports and Culture.
ing asymmetrical and broadThus, both a good signal-to-
noise ratio and linear contact are realized.
As an application, we imaged a carbon fiber and epoxy
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