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Tensile and compressive stress–strain characteristics for Ni–Ga–Fe ferromagnetic shape memory
alloys at several temperatures were investigated by mechanical test and a critical stress versus
temperature diagram was obtained. The crystal structure of the martensite phase obtained by
tensile-stress-induced martensitic transformation was estimated from the degree of the
transformation strain. Stress-induced martensite transformed from the parent phase with an L21

structure showed a 14M structure by tensile stress and by further applying stress, the 14M structure
martensitically was transformed into an L10 structure. Moreover, it was found in the compressive
test that variant rearrangement occurred by very low compressive stress less than 3 MPa, which is
similar to the phenomenon seen in Ni–Mn–Ga alloys. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1642277#

Ferromagnetic shape memory alloys~FSMAs! such as
Ni–Mn–Ga,1 Fe–Pd,2 Fe–Pt,3 Ni–Mn–Al,4,5 Co–Ni–Ga,6

and Co–Ni–Al7,8 are drawing strong attention as a new class
of magnetically controlled actuator materials. They show a
large magnetic-field-induced strain~MFIS! due to the variant
rearrangement in the martensite phase. Especially in the Ni–
Mn–Ga FSMAs, giant MFISs of 6% and 9.5% in the mar-
tensite phase with a five-layered and a seven-layered modu-
lated structure, respectively, have been reported.9 However,
the Ni–Mn–Ga single crystals fabricated by the Bridgman
method show significant macroscopic segregation of Ni and
Mn in the direction of growth of the crystal and the overall
compositions in the grown crystal shift from the nominal
ones, which is caused by the loss of Mn due to evaporation.10

Recently, Oikawaet al. have found the Ni–Ga–Fe al-
loys to be a promising FSMA candidates.11,12 According to
their study, the parent phase with the B2 and/or the L21

structure martensitically transforms into a seven-layer modu-
lated structure~14M! and a five-layer modulated~10M!
structure upon cooling. More recently, some additional in-
vestigations have been reported.13–15

In the present study, the stress–strain characteristics in
the parent and the martensite phases for Ni–Ga–Fe single-
crystals were investigated by tensile and compressive testing,
and very low compressive stress for variant rearrangement
was obtained. Therefore, the possibility of the appearance of
a large MFIS for Ni–Ga–Fe alloys can be expected.

The alloys Ni54Ga27Fe19 and Ni54.1Ga26.9Fe19 were pre-
pared by induction melting under an argon atmosphere. The
obtained ingots were cast in an alumina crucible and then
single-crystal specimens 50 mm in length and 15 mm in
diameter were grown in a Bridgman crystal growth furnace
under an argon atmosphere. The single-crystal specimens

were homogenized at 1170 °C for 1 day and then quenched
in water. The crystallographic orientation of the high-
temperature cubic phase (L21 structure! was determined by
electron backscatter diffraction~EBSD!. Single-crystal speci-
mens for differential scanning calorimetric~DSC! measure-
ment and tensile and compressive testing were cut by a
spark-cutting machine. Finally, the specimens were wet pol-
ished and electropolished before the mechanical test.

Figure 1 shows the typical tensile stress–strain curves of
a Ni54Ga27Fe19 single crystal at several temperatures at a
strain rate of 0.5 mm/min, where the size of the tensile speci-
men in the gauge-length portion was 2.030.6315.0 mm3

and the tensile direction was an orientation of nearly^100& as
indicated in the stereographic triangle inserted in Fig. 1~a!. It
was detected from DSC measurement that the martensitic
transformation starts atMs54.7 °C and finishes at
M f50.2 °C, and that the reverse transformation starts at

a!Electronic mail: ishida@material.tohoku.ac.jp

FIG. 1. Tensile stress–strain curves at~a! 60 °C,~b! 24 °C,~c! 9 °C, and~d!
224 °C for the Ni54Ga27Fe19 single crystal:~a! shows the stereo triangle of
the parent phase indicating the direction;@105#L21

of the applied tensile
stress.
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As54.7 °C and finishes atAf59.6 °C. It can be seen from the
stress–strain curves tested aboveAf that the stress-induced
martensitic transformation occurs by applying the tensile
loading and that nearly perfect reverse transformation occurs
with unloading as shown in Figs. 1~a! and 1~b!. Figure 1~b!
shows that the martensite phase stress induced from parent
phase transforms into another phase by further tensile load-
ing. This two-step transformation is considered to be a
martensite-to-martensite transformation. At 9 °C in Fig. 1~c!,
although a two-step transformation due to loading is also
observed, the initial stress-induced martensite phase remains
after unloading because the testing temperature is nearAf .
In the low temperature region underMs , three plateaus ap-
pear and only the final stress-induced martensite phase re-
verse transforms by unloading as shown in Fig. 1~d!. These
two- and three-step transformations have also been reported
for the Ni–Mn–Ga alloys.16,17

In order to estimate the kind of crystal structure of the
stress-induced martensite phase, the transformation strains
represented by the length of the plateaux of L21–10M,
L21–14M, and L21– L10 transformations which were ob-
served in the present Ni–Ga–Fe alloys calculated by using
the lattice deformation.18,19The lattice parameters of the L21

and the 14M structures were obtained by x-ray diffraction
and those of the 10M and L10 structures were estimated
from the 14M structure by using methods reported in the
references.20,21 The lattice parameters used for the calcula-
tions are summarized in Table I, where the lattice parameters
of the martensite structure were determined by assuming lat-
tice correspondence with the B2 structure for the parent
phase.

Table I lists the orientation dependence on the transfor-
mation strainecal. in ^100&, ^110&, ^111&, and ^105& tensile
directions for each transformation and the observed strain
eobs. of 249, 224, 9, 24, and 60 °C. Theecal. in the ^105&
tensile direction is the same as that of the tested specimen. It
can be seen that the maximum transformation strain is ob-
tained near thê105& tensile direction for the 10M and the
14M and in the^100& tensile direction for the L10 , while
very small transformation strain is obtained in the^111& ten-
sile direction. It is deduced from the observed transformation
strain eobs. that the martensite structure stress induced from

L21 at 60 °C is the L10 and that the initial stress-induced
martensite structure and the second one observed at 9 and
24 °C would be the 14M and the L10 , respectively. At249
and224 °C, it is inferred from the observed straineobs. that
in the initial plateau region, the variant reorientation of the
thermally induced martensite phase with the 10M structure
proceeds due to the loading and that the 10–14M stress-
induced transformation followed by the 14M–L10 stress-
induced transformation subsequently occurs. From these re-
sults, the critical stress versus temperature diagram can be
drawn as shown in Fig. 2. This kind of critical stress versus
temperature diagram is very similar to that reported in the
Cu–Al–Ni SMAs.22 In the Ni54Ga27Fe19 alloy, the 14M mar-
tensite is stress induced from the parent with the L21 struc-
ture and then the L10 martensite is stress induced from the
14M martensite by further tensile loading at temperatures
betweenMs and 40 °C. At above 40 °C, the L10 martensite
may be directly stress induced from the parent with L21 .
One of the characteristic features of the stress–strain curve
of this temperature region is that the stress drastically de-
creases just after the onset of the stress-induced martensitic
transformation and then enters a steady state. If the highest
critical stress is plotted in a critical stress versus temperature
diagram, the critical stress indicated as the AB line exists on
the extension line of the boundary for the L21–14M stress-
induced transformation, while the lower stress indicated as
the ac line should correspond to the critical stress for the
stress-induced L10 structure. This suggests that the L10

structure cannot be directly stress induced from L21 , being
only stress induced from L21 via 14M. In other words, the
habit plane which is the undistorted plane between L21 and
14M is more easily created than that between L21 and L10 ,
because the 14M structure includes high density microtwins
with an ordered stacking structure whose introduction would
make the formation of an undistorted plane easy. On the
other hand, at temperatures belowMs , three plateaus which
correspond to the variant reorientation of the 10M and the
10–14M and the 14M–L10 transformations were observed
as previously mentioned. It is noteworthy that three plateaus
do not appear in the stress-induced transformation at tem-
peratures aboveMs , because the 10M martensite appears
from the L21 only by thermal-induced transformation on

TABLE I. Lattice parameters for each structure, the calculated transformation strainecal. by using the lattice
deformation and the observed transformation straineobs. in tensile test shown in Fig. 1, where the lattice
parameters of the martensite structure for 14M, 10M, and L10 were determined by assuming the lattice corre-
spondence with the B2 parent structure.

Lattice parameter

Transformation strain~%!
ecal. eobs.

100 110 111 105 105

Structure ~nm! 249 °C 224 °C 9 °C 24 °C 60 °C

L21(B2) a050.576~0.288!
10Ma a50.424,b50.269,

c52.088,b591.49°
4.6 4.0 0.6 4.8 3.9 3.7

14M a50.424,b50.269,
c52.927,b593.18°

6.2 4.0 0.6 6.2 6.2 6.7 6.1 6.3

L10
b a50.381,c50.327 13.6 4.0 0.6 12.9 12.3 12.5 12.6 11.9 11.0

aEvaluated from the lattice parameter of the 14M structure by considering the stacking order of the 10M
structure.

bEstimated from the 14M structure by using equationsaL10
5A2b14M andcL10

5Aa14M
2 2b14M

2 .
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cooling. Actually, it has been confirmed by transmission
electron microscopy~TEM! that the L21 parent phase trans-
forms into the 10M martensite phase upon cooling in the
Ni54Ga27Fe22 alloy.11 Therefore, at temperature belowMs ,
growth and reorientation of the 10M martensite variant ini-
tially occur by tensile loading. Subsequently, by further ten-
sile loading, growth of the 14M martensite and its variant
rearrangement occur. These stress- and thermal-induced
transformation behaviors are very similar to those of the
Ni2MnGa FSMAs.16

Finally, the result of the compressive test in the marten-
site phase is shown. A single crystal of Ni54.1Ga26.9Fe19 alloy
with Ms547.2, M f520.0, As525.1, andAf556.1 °C was
used for the compressive test, where the size of specimen
was 3.733.735.0 mm3 and the compressive test was carried
out at a strain rate 0.5 mm/min at 24 °C, which is just below
As . Figure 3 shows the compressive stress–strain curve ob-
tained by applying a compressive stress to the direction in-
dicated in the stereographic triangle in Fig. 3~b!, where a
compressive stress had been previously applied to the direc-
tion indicated in the stereo triangle Fig. 3~a! in order to ob-
tain a single-variant structure. In the previous deformation,
the compressive stress required for variant reorientation was
over 10 MPa. In the second deformation, however, two pla-
teau regions appeared, the stress level of the first plateau
being about only 2–3 MPa as shown in Fig. 3. It is supposed
that the variant rearrangement of the 14 and/or 10M structure
occurred and then the L10 structure was stress induced from
the 14 or 10M structure. This very low compressive stress of
about 2–3 MPa is almost the same level as those of the 14
and 10M martensites of the Ni–Mn–Ga alloys.9

In conclusion, superelasticity can be obtained in the
tensile test aboveMs for the Ni54Ga27Fe19 alloy. The parent
phase with L21 transforms into the stress-induced marten-
site phase with 14M by tensile stress and subsequently,
the 14M stress-induced martensitically transforms into L10

by further applying stress. On the other hand, belowMs ,
the variant rearrangement of the thermally induced marten-
site phase with the 10M proceeds due to the tensile stress
and then the 10–14M stress-induced transformation followed
by the 14M–L10 stress-induced transformation subsequently
occurs. Moreover, in the compressive test, the variant re-
arrangement proceeds by very low compressive stress less
than 3 MPa.
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FIG. 2. Critical stress vs temperature diagram obtained from the tensile test
in the Ni54Ga27Fe19 single crystal. The inset shows the stereo triangle of the
parent phase indicating the direction of the applied tensile stress.

FIG. 3. Compressive stress–strain curves at 24 °C for the Ni54.1Ga26.1Fe19

single crystal. The insets show the stereo triangle of the parent phase indi-
cating the directions of the applied tensile stress;~a! predeformation direc-
tion, and~b! test direction.
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