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Fast Encoding Method for Vector Quantization Using
Modified L2-Norm Pyramid

Zhibin Pan, Member, IEEE, Koji Kotani, Member, IEEE, and Tadahiro Ohmi, Fellow, IEEE

Abstract—The 2-norm pyramid has already been investigated
as a promising data structure for the fast search of vector quanti-
zation (VQ) encoding in the previous work. Because the distortion
at the top level is always tested first when using such a conven-
tional 2-norm pyramid, the top level is most important. In order
to enhance the capability of achieving a rejection decision at the top
level, a modification is introduced into the conventional 2-norm
pyramid in this letter by using both the mean and the variance of a
vector simultaneously to replace the 2-norm of the vector for dis-
tortion computation at the top level. Two issues are made clear as
1) why this modification is beneficial to the distortion test is proved
and 2) why only the top level of a conventional 2-norm pyramid
should be modified is interpreted as well. Experimental results con-
firmed that the performance of VQ encoding by using the modified
2-norm pyramid can be improved obviously.

Index Terms—Conventional 2-norm pyramid, fast encoding,
modified 2-norm pyramid, vector quantization (VQ).

I. INTRODUCTION

VECTOR quantization (VQ) [1] is a popular method for
image compression. In a conventional block-based VQ

method, an image is first divided into a series of nonover-
lapping smaller image blocks. Then, for an image block

, , , the distortion between and
a candidate codeword is usually measured by the squared Eu-
clidean distance as

(1)
where , , is the th codeword in the
codebook , and is the codebook
size. It requires addition and
multiplication operations to compute .

Therefore, the winner can be determined directly by

(2)

where the best-matched codeword is called as the winner,
and the subscript “ ” is the winner index. Then, the index “ ”
instead of is transmitted to the receiver for realizing data
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compression because “ ” uses far fewer bits than . This is a
full search (FS) process.

II. RELATED PREVIOUS WORK

Suppose the “so far” minimum real Euclidean distance ob-
tained during a winner search process be . Conventionally,

can be determined by computing , where is
the “so far” best-matched candidate codeword that has already
been found during the winner search process. The previous work
[2] proposed to use -norm information of the -dimensional
( ) original vectors to roughly measure the distortion
between the input vector and a candidate codeword as

(3)

Therefore, if , is true,
it guarantees that , is also true
so that can be rejected safely. When all ,
in a codebook are offline computed and stored, (3) needs one
extra memory to store for each and one “ ,” one “ ,”
and one “Cmp” (i.e., comparison) operation for a rejection test.
This search method is FS equivalent.

Then, in order to use -norm information in a more detailed
or a finer way, a -norm pyramid data structure is proposed in
the previous work [3], as shown in Fig. 1(a). Taking the input
as an example, it is clear that a level -norm pyramid
can be constructed for . The top level is , which stores the
real -norm of . The bottom level actually stores the orig-
inal block . Then, each pixel value at a higher th level
can be computed from the corresponding four pixel values at a
lower th level, as shown in Fig. 1(a), to construct its -norm
pyramid by using (4), shown at the bottom of the next page.

Obviously, the relation in (5) holds according to the definition
of the -norm pyramid given in (4)

(5)

where physically refers to the -norm of the purposely
constructed -dimensional vector at the th level in
a -norm pyramid.

Then, the distortion between and can be measured level
by level from the top level toward the bottom level in-
stead of an immediate real Euclidean distance computation by
using (1). Because all levels of , above
the bottom level have a much lower and exponentially de-
creasing dimension of compared to the original dimen-
sion of , the distortion computation at these levels of ,
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Fig. 1. Concept to show how to construct (a) a conventional L -norm pyramid data structure and (b) a modified L -norm pyramid data structure for the input x.

must be computationally inexpensive. If a rejec-
tion decision to can be made before the distortion test reaches
the bottom level , the computational cost can be reduced in
practice. According to the concept of Euclidean distance, a di-
rect definition of the distortion for the th level between two
pyramids of and should be

(6)

Equation (6) requires addition and
multiplication operations.

Furthermore, in order to simplify the derivation and com-
putation, the previous work [3] defined another new distortion
measurement at the th level by subtracting the common term

from (6) and using ,
to get

(7)

Because , can be offline computed and
stored, (7) needs addition

and multiplication operations because the
coefficient “2” in (7) can be realized by one addition instead
of one multiplication operation.

Then, the previous work [3] proved a progressive rejection
test condition, as given in (8), based on the new distortion def-
inition in (7) as

(8)

where and
. Then, the rejection test is conducted from the level

first. If at a certain th level becomes true,
it guarantees that or is

also true so that the current codeword cannot be the winner.
Therefore, the distortion tests can be terminated for all of the
following th level, th level, and so on to save
computational cost. Equation (8) is the core of the previous
work [3]. Obviously, it is equivalent to use either(3) or (8) at
the top level . This search method is also FS equivalent.

It is obvious that (8) needs
extra memories to store the -norm pyramid for each .

Meanwhile, (8) needs
“ ”, “ ,”

and “Cmp” operations for a complete rejection test till the
th level. For the most common block

size, it needs five extra memories for each . Also, it needs
seven “ ”, five “ ,” and two “Cmp” for a complete rejection
test till the level.

It is clear that (3) and (8) only use -norm information for
rejection tests. However, for an original -dimensional vector,
there are three characteristic values as the mean, the variance,
and -norm to statistically describe the property of the vector.
Independently, the previous work [4] proposed another code-
word rejection rule by using both the mean and the variance of
a vector simultaneously as

(9)

where ,

is the mean and the variance of an input , respectively.
,

means the same for . If
holds, then reject safely. In practice, (9) uses a two-

step test flow to check 1) first and
2) in order to avoid a

(4)
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possible computational overhead of accumulating
at the first step because a lot of codewords can simply be rejected
by the first check. Equation (9) needs two extra memories to
store and for each . Meanwhile, (9) needs three “ ,”
two “ ,” and two “Cmp” operations for a complete two-step
rejection test.

III. MODIFIED -NORM PYRAMID DATA STRUCTURE

In the previous work [3], two facts are essential. The first fact
is that the rejection tests always start from the most inexpensive
top level according to (8), which implies that the level
is most important. If a rejection test becomes successful at the

level, it becomes unnecessary to conduct all the following
tests at , anymore. In addition, the second fact
is that the rejection tests at any , are completely
independent to each other according to (8). This fact provides a
possibility to use different rejection tests at different levels. In
other words, it is unnecessary to always use the same -norm
information at all levels for rejection tests as given in (8). Any
information, such as the mean and the variance of a vector, can
also be integrated into a conventional -norm pyramid. Then,
a natural consideration could be to combine these two facts to
find out a new and more powerful rejection test at the level
instead of using -norm information only.

Therefore, the first key problem in this letter is whether it is
valuable to integrate the mean and the variance of a vector by
using (9) into the top level of a conventional -norm pyramid to
realize a new rejection test. It can be proved (see the Appendix)

(10)

Because the left-hand term is larger, (10) guarantees that it
is really more powerful to use (9) for a rejection test to replace
(8) at the top level. Equation (10) is the core of this letter be-
cause (10) can answer why the modification at the top level is
profitable by using both the mean and the variance of a vector
simultaneously. As a result, a conventional -norm pyramid
shown in Fig. 1(a) can be modified to the data structure given
in Fig. 1(b). Clearly, only the top level has been modified,
which stores the mean and the variance instead of the -norm
of an original -dimensional vector.

Based on (7)–(10), the rejection tests in this letter for all levels
can be summarized in (11). If (11) becomes true at any th
level, reject safely

.
(11)

Then, the second key problem in this letter is whether it is
valuable to continuously integrate the mean and the variance
into the remaining , levels to replace the

-norm. From Fig. 1(a) and (7), it is clear that the extra
memory requirement and the computational cost until the
level increase exponentially like ,

. Because it doubles the extra memory require-
ment and the computational cost further at each level if
the mean and the variance of a vector are used to replace
the -norm, it is impractical to integrate them into (8)

TABLE I
COMPARISON OF THE REDUCED SEARCH SPACE OR THE REMAINING REAL

EUCLIDEAN DISTANCE COMPUTATIONS PER INPUT VECTOR

for the remaining , levels. The mod-
ification to the top level, as given in (11), is sufficient.
Because only the top level in (8) is modified, (11) needs

extra memories
to store the modified -norm pyramid for each . Meanwhile,
(11) needs
“ ,” “ ,” and

“Cmp” operations for a complete rejection test until
the th level. For the most common
block size, it needs six extra memories for each . Meanwhile,
(11) needs nine “ ,” six “ ,” and three “Cmp” operations at
maximum for a complete rejection test until the level.

IV. EXPERIMENT RESULTS

Simulation experiments are conducted to compare the per-
formance of VQ encoding by using a conventional -norm
pyramid (i.e., - NP or a modified -norm pyramid (i.e.,

- NP . Four typical 8-bit, 512 512 standard images are
used. The block size is . The codebook size
(i.e., CB) is chosen as 256, 512, and 1024, which are gener-
ated with the Lena image as a training set. The search flow
is similar to that used in [3] except the top level, which uses
a two-step rejection test as given in (9). In the case of using
a - NP data structure, the codebook is offline rearranged
along -norm values of all codewords that are already sorted
in an ascending order. For an input , the search process starts
from the initial best-matched codeword , which is found
by a binary search to let . Also, in
the case of using a - NP data structure, the codebook is
similarly offline rearranged along the mean values of all code-
words that are already sorted in an ascending order. Then, for an
input , the search process starts from the initial best-matched
codeword , which is determined by a binary search to let

.
The computational complexity is evaluated by two kinds of

assessments in this letter, which are 1) the reduced search space
after completing each rejection test and 2) the total computa-
tional cost in arithmetical operations per input vector.
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TABLE II
COMPARISON OF THE TOTAL COMPUTATIONAL COST BY ARITHMETICAL

OPERATIONS PER INPUT VECTOR

Obviously, the final reduced search space is a key factor to the
encoding efficiency because real Euclidean distance computa-
tions must be conducted in this space. A smaller reduced search
space is better. For convenience, let the first test condition of

at level be “TC-1” and the second
test condition of at
level be “TC-2” when using a - NP data structure. The re-
duced search spaces per input vector are summarized in Table I.

From Table I, it is obvious that at the top level , the re-
jection test by using -norm information of a vector like

and the rejection test of “TC-1” by using the mean informa-
tion of a vector like can achieve almost
the same reduced search space, which can also be observed in
[5]. However, the “TC-2” rejection test like

is extremely effective so that the final
search space can be reduced obviously by using the - NP
data structure. This is because the rejection test by using (11) is
much more powerful than using (8) at the top level .

Then, from Table II, it is clear that the total computational cost
can be reduced obviously by using the - NP data structure.
This is because (11) can lead to a much smaller reduced search
space at the top level to guarantee much less real Euclidean
distance computations.

V. CONCLUSION

In this letter, two contributions are made. First, a new in-
equality of (10) is proved, which states that it is more powerful
to use the mean and the variance of a vector simultaneously for
rejection tests than to use the -norm of the vector. Equation
(10) is important because it gives out a guideline on how to use
the three popular statistical values of the mean, the variance, and

-norm of a vector for rejection tests more effectively. Second,
when it is necessary to introduce a modification to a conven-
tional -norm pyramid by using the mean and the variance of
a vector simultaneously to replace the -norm of the vector, it
is sufficient to only conduct this modification at the top level
because the pyramid data structure features an exponentially in-
creasing extra memory requirement and computational cost for
each of the following , levels.

APPENDIX

In statistics, the relations and
are true. Based on the basic in-

equality , the following relation can be derived,
which completes the proof of (10):
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