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Abstract—Vector quantization (VQ) is a famous asymmetric
signal compression method. In VQ, the search process to find the
winner for an input vector is extremely time consuming due to a lot
of k-dimensional Euclidean distance computations. This property
of VQ constrains its practical applications to some extent. In
order to speed up the search process of VQ, a unified projection
method is proposed in this letter to reject a candidate code vector
by a lighter computational burden. This method is universal
because it can unify several types of previous works through
suitably selecting a projection axis. Furthermore, two criteria
for how to select an optimal projection axis for a code vector are
proven mathematically, which are most important because they
demonstrate the direction for a potential improvement to the
search efficiency of VQ.

Experimental results of VQ encoding show that the proposed
method is very search effective.

Index Terms—Euclidean distance estimation, fast search, unified
projection method, vector quantization (VQ).

I. INTRODUCTION

VECTOR QUANTIZATION (VQ) [1] is a classical but still
very promising method for signal compression. In order

to use VQ, a codebook is necessary from the very beginning
and it can usually be generated by the famous LBG [2] method.
Once a codebook is available, encoding by VQ is possible. The
search process to find the best-matched item (winner) within the
codebook for a specific input vector is the time bottleneck of VQ
because it needs a lot of Euclidean distance computations.

For an input vector and a code vector
, which is in the codebook

of size , the real distortion between
and is actually a difference vector given as

. For simplicity, this difference is usually
measured by squared Euclidean distance in VQ by using either
the distance definition or the law of cosines as shown in Fig. 1

(1)

where can be defined as a
coupling angle between the intersected and in space
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mathematically. Because and are positive for image data,
holds, where means inner

product. Hence, is true.
Thus, the winner can be determined straightforwardly by

(2)

where is the winner. This is called a full search (FS) over
the whole codebook. FS is extremely time consuming due
to it performing times k-dimensional Euclidean distance
computations. If part of the times distance computations
can be avoided by using some lower dimensional computations
instead but exactly the same winner can be guaranteed, the
method is defined as FS-equivalent. Many FS-equivalent
fast search methods have already been developed to find the
winner [3]–[9]. FS-equivalent methods can be applied to both
codebook generation and VQ encoding in the same way. This
letter will deal with VQ encoding only.

II. PROPOSED FAST SEARCH METHOD

To find the winner in VQ, only the final minimum Euclidean
distance is necessary to be exactly computed. This
potentially provides a possibility for roughly computing other
Euclidean distances or just making estimations for them so as
to make a rejection. During a search process, suppose the min-
imum Euclidean distance found “so far” be . If current

can be evaluated to be larger than by a rough but
lighter computation, then can be rejected safely. In this way,
the exact but heavier computation can be avoided.

The heavy computational burden of VQ mainly comes from
a high dimension of vectors. To make the dimension of a vector
lower, the projection method is a natural consideration. In pro-
jection way, a vector can be expressed by a projection compo-
nent and a corresponding orthogonal component, which implies
a one-to-one mapping from a space to a space. Then it be-
comes possible to roughly measure the difference between two
vectors in this space. There exist two projection ways for VQ
search when considering the physical or geometrical meaning of
the difference between two vectors as illustrated in Fig. 1. The
first way is to individually project and onto a projection
axis to see whether their difference after the projection is suf-
ficiently large to make a rejection or not. The second way is to
directly project to see whether its projection component is
large enough to make a rejection or not. Thus, a projection axis
has to be set up. Let it be .

In the first way, three vectors , and intersect at the
origin and they constitute a tri-hedral angle
in space. Let be the plane angle between and
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Fig. 1. Concept of the difference vector D and the coupling angle �.

be the plane angle between . According to the tri-hedral
theorem in solid geometry that states “of the three plane angles
that form a tri-hedral angle, any two are together greater than
the third,” it is clear that both and hold.
Thus, is identically correct.

Because the cosine function is an even and monotonously
decreasing function within interval, based on (1)
that uses the law of cosines, we have

(3)

On the other hand, based on the concept of vector projection,
for pair (forming a plane), we have
and , where is the projection of onto

, and is its sole orthogonal component. For pair,
and have the

same meaning. Furthermore, any vector can be expanded
with an arbitrary as a projection axis in an orthogonal way
as . Thus, (3) can be rewritten as

(4)

In (4), an estimation is introduced for .
Obviously, once online computation for and that must
use square root operation is required. Then needs one
addition, two subtractions and two multiplications for one re-
jection check. A larger estimated value of is better. If

holds, then can be rejected safely. There-
fore, how to optimally select becomes very important. Ac-
cording to the tri-hedral theorem, holds if and only
if the projection axis lies in the plane determined by and .
Then, becomes true. This must be the
optimal projection axis for because it guarantees a maximum
evaluated value of as but is not sole.

In the second way to directly project onto an arbitrary
, although and are two noncoplanar straight lines as

defined in solid geometry, the concept of inner product and
a projection operation is still applicable. Therefore, it is clear
that and
holds. When parallels to , the equality holds. However, be-
cause and are not intersected, the orthogonal component

cannot be used because it is not a sole value. Therefore,
we have

(5)

In (5), another estimation is introduced for
. Obviously, just once online computation for but

is required. Then needs one subtraction, one
multiplication for one rejection check. A larger estimated value
of is better. If holds, then can
be rejected safely as well. Based on the analysis above, the
optimal must be the one that parallels to and it guarantees
a maximum estimated value of as .

Comparing (4) with (5), it is obvious that (4) will become (5)
if the term is discarded or (4) is more gen-
eral. In addition, both (4) and (5) can approach the
as an upper bound, which implies that and
potentially are the same powerful as for rejection. But
(4) and (5) have very different physical meaning and they re-
sult in a different criterion for optimally selecting the projection
axis .

Then, a search flow is suggested as follows: (1) Set up an
appropriate projection axis . (2) Compute off-line.
Rearrange the codebook along the sorted in ascending
order. If using (4) check, compute the corresponding
off-line as well. (3) For , compute its and (if neces-
sary) once online. Find the code vector that is closest to
in terms of a minimum difference and compute
the “so far” . (4.1) Continue the search up
and down around . If , then terminate the
search for the remaining upper part of codebook when
or for the remaining lower part of codebook when . If the
search in both upper and lower directions has been terminated,
search is complete. The current best-matched code vector
must be the winner. Then go to Step (3) for encoding another
new . (4.2) Else, if and only if using (4), check whether

holds or not. If this inequality holds, then
reject current safely. (5) When both and
(if used) checks fail, compute squared Euclidean distance

. If holds, then reject . Otherwise,
update the winner index and accordingly. Then go to Step
(4.1) for checking another new code vector.

III. RELATED PREVIOUS WORKS

In this letter, (4) together with (5) are proposed as a unified
projection method for VQ search. Some of previous works can
be unified by them as explained below.

CASE 1: In previous work [3], (3) is straightforwardly
used for estimating the real in order to make
a rejection. [3] needs four memory units for storing

and needs four multiplica-
tion and three addition operations online for each code
vector. Besides, and have to be computed once
online as well for , which implies once rather heavy square
root operation. [3] is still more complex. On the other hand, (4)
is exactly equivalent to (3) but (4) needs only two memory units
for and and two multiplication and three
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addition operations online for each code vector. Similarly,
once and computation online is necessary for . It
concludes that (4) reaches the exact same results as [3] but it
is more efficient than [3].

CASE 2: In previous work [4], the concept of a central axis
in space is introduced as: if any point
on a line satisfies , then is called a
central axis of space. For a vector ,
under the constraint of the central axis, its projection onto will
be the point , where is the mean of

. Then, three points and the origin
constitute a triangle in space. Clearly, the projection of
onto is and its orthogonal component

is, where is the
variance of . Then a powerful inequality is developed by [4]
as for rejection. On the
other hand, if is selected in (4), we have

. Obviously,
holds. For , it is the same. Then (4) will become

. It concludes that (4)
is a general version of [4].

CASE 3: In previous work [5], the concept of a general-
ized central axis in space is introduced as: if any point

on a line L satisfies the condition
, then is defined as a generalized

central axis in . Under the constraint of a generalized
central axis, let be the projection point of onto , [5]
concluded that , where .
Note: is not a conventional projection here. For , it is
the same. Then a powerful inequality is proven in [5] as

for rejection. Because
is very light computationally, it becomes practical to use
multiple projection axes so as to achieve a successful rejection
finally as proposed by [5], in which three projection axes have
been used. On the other hand, if is
selected in (5), we have .
For , it is the same. Then (5) will become

. It concludes that
(5) is a general version of [5]. Of course, (4) is also a general
version of [5].

CASE 4: In previous work [6], the concept of an or-
thogonal transform such as Karhunen-Loeve transform or
Walsh-Hadamard transform are introduced in order to ex-
ploit the energy compaction property of the orthogonal
transform. Suppose a set of orthogonal basis vectors have
been found by using the available codebook information as

, which has already been rearranged
according to the sorted eigen values for in
descending order. Because is an orthogonal basis vector
set, it must satisfy that for and

or are true. Thus, the first eigen-
vector corresponding to the largest is the first principal
axis in a space spanned by . Then, [6] used the first principal
component and and their orthogonal
components for measuring the difference between and .
In this case, is the projection of to and the coordinate
of its projection point is . Therefore, the distance between

and its projection point is . For it is
the same. Then a powerful inequality is proposed by [6] as

. On the other hand,
if the first eigen vector is just viewed as a mathematical
projection axis while not taking its physical meaning into
account, we have . It is clear that

,

. For ,
it is the same. Then (4) will become

. It concludes that (4) is a
general version of [6]. But the deduction method in this letter
is much simpler than [6].

CASE 5: In previous work [7], norm difference is used

to make a rejection. For , its norm is .
For it is the same. Then [7] proposed a powerful inequality
(Algorithm 2) as for rejection. On
the other hand, if in a broad sense is se-
lected in (4), we have and

. For , it is the same. Thus, (4) will be-
come . It
concludes that (4) is a general version of [7].

CASE 6: In previous work [8], a temporary difference is
defined as . Then a powerful
inequality is given as

. If holds,
can be rejected safely, where instead of is

used. On the other hand, if is also se-
lected in (4) and is subtracted from both sides of it

, holds as well. It
concludes that (4) is a general version of [8].

Case 7: : In previous work [9], the famous partial dis-
tortion search (PDS) method proposed a powerful inequality
as for rejection, where

. On the other hand, without losing the generality, if
is selected in (5), we

have . For , it is the same.
Then (5) will become .
According to the Cauchy-Schwarz inequality, it is obvious that

is true.
Thus is true.
This implies that the upper limit of rejection power of (5) can
approach the rejection power of PDS but (5) is much lighter
computationally.

IV. EXPERIMENTAL RESULTS

Simulations with MATLAB are executed for four typical
8-bit, 512 512 standard images (Lena, F-16, Pepper, and
Baboon). Image block is 4 4 and its elements are in a raster
order. Codebooks are generated using Lena image as a training
set based on the Kohonen’s self-organizing map (SOM) method
used in [10]. Because how to select an optimal projection axis
for each code vector online is out of the scope of this letter, the
central axis as proposed in [4] is used for
all code vectors as well for simplicity. The reason is that the
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TABLE I
RATIO OF THE REDUCED SEARCH SPACE AFTER

EACH CHECK STEP COMPARED TO FS (100%)

projections of a vector onto have a clear physical meaning
as the mean and the variance. In fact, exploits the potential
power of using the statistical averaging, which is a well-known
and very effective method. When using (4) check for a possible
rejection, two steps are executed sequentially, which are the
step1 (S1) as and the step2 (S2) as

. If S1 check
is successful, S2 check can be skipped to save more compu-
tational burden. However, there exist two problems for the S2
check by using (4), which are the computation in real form and
once square-root operation online for . For comparison,
(5) check can be used twice for a possible rejection with the
same memory requirement. Then, another projection axis can
be selected as , which is
a generalized central axis as proposed in [5] and also exploits
the potential power of the statistical averaging in a different
direction. and are orthogonal. Similarly, two steps are
also executed sequentially as S1:
and S2: . Obviously, the S1 check
in both ways is the exact same but S2 check by (5) is lighter.
The experimental results are summarized in Table I, where
the search efficiency in the form of a ratio is evaluated by
how small the search space can be reduced or how many code
vectors are left after each check step completed with FS (100%)
as a relative baseline rather than encoding time to exclude the
effect of programming skills. A smaller ratio is better.

From Table I, it can be seen that the check using (4) is much
more search-efficient than the check using (5), which comes
from using a different S2 check. A reasonable explanation could
be that is more powerful
than in (4) while is
almost the same powerful as in (5) due
to and are random. But the square root operation for online
computing in (4) is a potential problem.

Based on the analysis in Section II, it is clear that the cen-
tral axis, the generalized central axis or the first principal axis
is generally not an optimal projection axis. And a fixed projec-
tion axis for all code vectors is obviously too coarse. However,
it is impractical to select an optimal projection axis for each
code vector by a lot of online processing. To make a tradeoff,

a promising consideration could be to appropriately divide all
code vectors into several small groups and then to select a sub-
optimal projection axis for each group by a little online cost to
seek for a higher search efficiency.

V. CONCLUSION

In this letter, two contributions are made. First, a unified pro-
jection method is proven mathematically, which can be viewed
as a general version of several types of previous works that used
the projection concept by suitably selecting a projection axis .
As a result, the constraints such as the concept of a central axis
for selecting a projection axis can be completely removed. Any
projection axis is possible to be adopted. Second, two cri-
teria on how to select an optimal for a promising rejection
have also been given as (1) parallels to the difference vector

or (2) lies in the plane determined by and .
These two criteria are most important because they mathemat-
ically show that the upper bound of Euclidean distance estima-
tion that is possible to be achieved by using a vector projection
concept is in fact the real Euclidean distance itself. In order to
obtain a larger estimated value of Euclidean distance for real-
izing a rejection easier, it is clear that the “if and only if” way is
to let approach either of the two criteria described above as
close as possible. Comparing (5) with (4), the former selecting
way is more advantageous for it can avoid computing the dif-
ference between orthogonal components. For practical applica-
tions of VQ, the remaining problem to be resolved is how to
select an optimal or suboptimal by a little online processing.
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