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Quantization Method Using the Law of Cosines

Zhibin Pan, Member, IEEE, Koji Kotani, Member, IEEE, and Tadahiro Ohmi, Fellow, IEEE

Abstract—Vector quantization (VQ) is a well-known signal com-
pression method. In VQ, the search process to find the winner for
an input vector either at the codebook generation stage or the VQ
encoding stage is extremely time consuming. By using the law of
cosines to estimate the Euclidean distance first, Mielikainen has
developed a highly efficient full-search-equivalent algorithm. How-
ever, some computational redundancies still exist in it. In this letter,
we introduce an additional new estimation for the Euclidean dis-
tance and then optimize the computing way given by Mielikainen.
Mathematical analyses show that our proposed search method can
improve Mielikainen’s method. And experimental results of VQ
encoding demonstrate that the proposed method is very search
effective.

Index Terms—Euclidean distance estimation, fast search, the law
of cosines, vector quantization (VQ).

I. INTRODUCTION

VECTOR QUANTIZATION (VQ) [1] is a classical but still
very promising method for signal compression, especially

for images such as computer graphics or digitized documents
that have many abrupt discontinuities. In order to use VQ, a
codebook is necessary from the very beginning, and it can usu-
ally be generated by the famous Linde–Buzo–Gray method [2].
Once the codebook is available, encoding by VQ is possible.
The search process to find the closest item (winner) for a spe-
cific input vector via a large amount of Euclidean distance com-
putation becomes the time bottleneck of VQ.

For an input vector and a code vector
, which is in the codebook C of size ,

the difference between and can be measured by squared
Euclidean distance as

(1)

(Note: instead of is used to represent the
squared Euclidean distance for convenience.)

Therefore, the winner can be determined straightforwardly by

(2)
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where is the winner. This is called a full search (FS) over the
whole codebook. FS is extremely time consuming due to per-
forming times Euclidean distance computation. If part of the

times distance computation can be avoided by using some
lighter computations instead but exactly the same winner can
be guaranteed, the method is defined as FS-equivalent. Many
FS-equivalent fast search methods have already been developed
to determine the winner [3]–[6]. FS-equivalent methods can be
applied to both codebook generation and VQ encoding in the
same way. This letter will deal with VQ encoding only.

II. PREVIOUS WORK

In [4], an FS-equivalent search method is proposed. By the
law of cosines, can be expressed as

(3)

where is the angle between and . Since all elements of or
are positive for image vectors, 0 90 holds. From (3),
it is clear that the difference vector is coupled by that
makes the offline computation for impossible. To solve
this problem, Mielikainen [4] has set up a fixed reference vector

so as to decouple the effect of . This purposely generated is
the key point in [4]. Because and intersect at the origin,
and is generally not within the plane determined by and ,
then a trihedral angle is formed by and in space. By
introducing , two additional angles between the ( ) pair and
( ) pair can be obtained. Let be the angle between ( )
and be the angle between ( ). Mielikainen [4, pp. 175,
line 19 on the right-hand side] shows an observation that says

. Therefore, holds because
the cosine is an even function and monotonically decreases over
0 90 . Based on the discussions above, Mielikainen [4] pro-

posed a very computationally light estimation of as

(4)
During the winner search process, suppose the achieved min-

imum distance “so far” is . If ,
then holds definitely. Thus, the current
code vector cannot be a winner and can be rejected safely.
Equation (4) can be expanded into

(5)
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where

and means the inner product. According to (5), the coupling
between ( ) can be released by introducing ( ) and ( )
pairs and the offline computation becomes possible.

For a code vector, , , , and can be
computed offline, and they are saved using four extra memories.
For the input vector in VQ encoding, , , , and

are computed online but just once. From (5), it is clear
that needs four multiplication ( ) and three addition
( ) operations online. It is still more complex.

III. IMPROVED SEARCH METHOD

First, for a trihedral angle constituted by and , the tri-
hedral theorem in solid geometry states that “of the three plane
angles that form a trihedral angle, any two are together greater
than the third.” Therefore, the observation that
is the core of [4] can be proven mathematically. Because both

and hold, is identically
correct.

Second, from (3), it is easy to get another estimation
before by letting

(6)
is proposed as an additional new estimation in this

letter. It is much lighter computationally than . Com-
bining (6) with (4), it is clear that

(7)

Equation (7) is the key to the fast search method in this letter.
Both and are kept online. The search is
executed as follows. 1) If , which is a
new check, then reject current code vector safely. 2) Else, check
whether holds, which is the same as [4].
If this inequality holds, then reject current code vector safely as
well. 3) When both and checks fail, compute
squared Euclidean distance . If
holds, then reject the current code vector. Otherwise, update the
winner index and , accordingly.

is very light computationally. Then, the third
problem is how to compute more efficiently with less
memory. Based on the concept of vector projection, for the
( ) pair, we have and ,
where is the projection of to , and is the orthog-
onal component. For the ( ) pair, and

imply the same thing. Thus, (5) can be
reformed as

(8)

Furthermore, any vector can be expanded with as a ref-
erence vector in an orthogonal way as .
Therefore, (8) can be rewritten as

(a) (b)

Fig. 1. (a) Concept of code vector decomposition. (b) How f(a) varies with
the angle a in a symmetric way.

(9)

Because is only used for generating the two angles
and , any length for it is allowed. Without losing gen-
erality, can be selected as the th standard basis vector

, . Then, (9)
becomes

(10)

where and are the th element of and (i.e., their
projections to ), respectively. and

are their orthogonal components. In
this way, only has to be computed offline and saved for
the code vector . just needs two multiplication ( ),
three addition ( ) operations and one extra memory. In addition,
(10) avoids using the cosine and sine functions that will affect
computation precision near zero very much. Equation (10) is
computationally lighter (about half) and more memory efficient
(1/4) than (5) as suggested in [4].

Finally, the fourth problem is how to choose optimally
from the set of standard basis vectors . The
object is to let the value of become as large as possible
so as to reject a candidate code vector more easily. Returning to
(8) for , only is changeable re-
garding . If is smaller, will
be larger. Because and are independent and randomly dis-
tributed in space, it is very difficult to deal with them simul-
taneously to reach a global optimization. In this letter, we just
take and components of the known code vector into
account while treating and as their random weights for
simplicity, i.e., let be smaller so that on average

could also be smaller statistically.
Suppose is the angle between and . Because both of

them are positive vectors, 0 90 holds. Then
normalized by is

(11)

How is decomposed into , is demonstrated in
Fig. 1(a). The function that is mirrored with the 45
line is plotted in Fig. 1(b).

From Fig. 1(b), it is clear that when 0 or 90 ,
reaches min, and when 45 ,
reaches max. Therefore, in order to let

, it is necessary to let 0 or 90
that are symmetric mathematically. Because 0 means
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or equivalently for but ,
it is a very unlikely event in practice. While for 90 , it just
implies to let but does not concern other , it is usually
a higher possibility event. As a result, the criteria for choosing

in this letter is proposed as

(12)

Thus, one more extra memory is needed to keep selected
for each code vector. However, for each selected standard basis
vector , has to be computed once online. The square
root computation is time consuming. In practice, there exists a
tradeoff between how many various reference vectors to choose
totally and how much computational burden can be reduced ac-
cordingly. This tradeoff depends on how large the ratio is for
the cost of one square root computation and the cost of one Eu-
clidean distance computation. Generally speaking, the number
of reference vectors could be larger when the dimension of a
vector is high. In practice, a threshold value can be set up for

by experiment, but it strongly relies on the codebook
itself. If the threshold value is not sufficiently small, a fixed
(e.g., ) is used instead to avoid the corresponding computation
for .

IV. FURTHER DISCUSSION

By using the projection axis, a very fast encoding method for
VQ has been proposed in [5]. The method in [5] originates from
the concept of the central axis in space, the mean, and the
variance of a vector. According to [5], the central axis is defined
as follows: if any point on a line satisfies

, then is called the central axis of
space. For a vector , its projection onto
will be the point , where is the mean
of . Then, three points , , and the origin
constitute a triangle in space. Clearly, the projection of
onto is , and its orthogonal

component is .
By using the information of the mean and the variance together,
Baek and Jeon [5] developed a very powerful inequality

(13)

The right-hand term of (13) is computationally light. If it is
larger than , the code vector can be rejected safely.
On the other hand, if we use the central axis as the reference
vector , based on the discussions above, it is clear that (9) be-
comes

(14)

Therefore, it reaches the conclusion that (9) based on the law
of cosines is the general version of (13) proposed in [5] for

. In summary, the method using the law of cosines can cover
all fast VQ encoding methods that are based on the concept of
using a projection axis. Thus, the only problem is how to choose
a reference vector or a projection axis optimally. Apparently,
using as the reference vector can save one memory for

TABLE I
RATIO OF REMAINING CODE VECTORS ON AVERAGE AFTER THE d (u; v)

CHECK COMPARED TO FS (100%)

and online projection operation for . It is the simplest way for
choosing . In contrast, the central axis proposed in [5] mainly
exploits the potential power of using the statistical averaging.
Baek and Jeon [5] also concluded that (13) is advantageous in
the case of the input vectors concentrating on the central axis,
which implies that the image is very low-detailed. Otherwise, an
appropriate new projection axis instead of the central axis has
to be found by another method.

Mathematically, if the reference vector is within the plane
determined by the input vector and a code vector , then

holds according to the trihedral theorem. Then,
is true as well. Therefore, this must be the

optimal reference vector for , but it is not the sole one. Un-
fortunately, it is impractical to use online processing to find an
optimal reference vector for each code vector. And the de-
tailed discussion on how to suitably choose a suboptimal that
can approach the optimal one as a limit at a smaller cost is out of
the scope of this letter. As a simplified case, however, a possible
suboptimal choosing way for is given in (12).

V. EXPERIMENTAL RESULTS

In this letter, VQ encoding is implemented to verify the search
efficiency of the improved method. The method can be straight-
forwardly applied to codebook generation. Because [4] has not
shown how is selected, it is impractical to make a direct com-
parison between these two methods. However, it is obvious that
the improved method mathematically outperforms the method
of [4] in principle when computational burden and memory are
taken into consideration.

Simulation experiments with MATLAB are executed on a
personal computer. Four typical eight-bit, 512 512 standard
images (Lena, F-16, Pepper, and Baboon) that feature very dif-
ferent details are used to test the search efficiency of the im-
proved method. Block size is 4 4. A codebook of size 1024
is used that has been developed by Kohonen’s self-organizing
map (SOM) combined with perceptual property of human vi-
sion system in [7]. The search efficiency is evaluated by how
many code vectors are left after rejection check using
and the succeeding for encoding an image. The com-
parison takes FS (100%) as a relative base line.

From Table I, it is clear that the check is most ef-
ficient for rejecting. Depending on image details, it can reject
about 85% or more code vectors by a very light computation.

If the check fails, then the check is used.
According to the discussions for (11), four typical ways of se-
lecting are tested:
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TABLE II
RATIO OF REMAINING CODE VECTORS ON AVERAGE AFTER THE d (u; v)

CHECK DEPENDING ON e SELECTION COMPARED TO FS (100%)

TABLE III
RATIO OF REMAINING CODE VECTORS ON AVERAGE AFTER THE d (u; v)

CHECK COMPARED TO THOSE AFTER THE d (u; v) CHECK

The threshold value constraint for is not incorpo-
rated here. The effect of selection is summarized in Table II.

From Table II, it is true that for search efficiency the best way
is to select using min and the worst way is to select using
median. Equation (12) is a practical choice for .

Therefore, the fixed reference vector (i.e., ) could be
suboptimally selected according to (12) for its simplicity. Under
this condition, the power of check can be evaluated by
the ratio of . A smaller ratio is better.

From Table III, it can be seen that only about 20% to 30%
candidate code vectors that could not be rejected by
are successfully rejected by . This is because the re-
maining candidate code vectors after check are al-
ready very close to the input vector and the rejection becomes
very difficult. Even though what can reject can also
be rejected by , considering the online computational
burden, is good to check before .

VI. CONCLUSION

In this letter, a mathematical explanation to the observation of
using the trihedral theorem is shown. Before the

check, an additional new estimation is sug-
gested that is very light computationally and most search effi-
cient. Concerning about how to compute efficiently, a
suboptimal selection for the fixed reference vector is proposed
as the th standard basis vector , where is
determined by

The experimental results of VQ encoding show that the im-
proved method is very search effective. Furthermore, the pro-
posed method can also be viewed as a general version for any
fast search VQ method based on the concept of projection axis.
And the mathematical criteria for choosing the optimal rather
than suboptimal reference vector is to let it lie within the plane
determined by and . This method can be applied to codebook
generation directly.
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