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SUMMARY
In our previous work, we developed a compact 6-DOF
haptic interface as a master device which achieved an
effective manual teleoperation. The haptic interface contains
a modified Delta parallel-link positioning mechanism.
Parallel mechanisms are usually characterized by a high
stiffness, which, however, is reduced by elastic deformations
of both parts and bearings. Therefore, to design such
a parallel mechanism, we should analyze its structural
stiffness, including elastic deformations of both parts and
bearings. Then we propose a simple method to analyze
structural stiffness in a parallel mechanism using bearings.
Our method is based on standard concepts such as static
elastic deformations. However, the important aspect of our
method is the manner in which we combine these concepts
and how we obtain the value of the elasticity coefficient of
a rotation axis in a bearing. Finally, we design a modified
Delta mechanism, with a well-balanced stiffness, based on
our method of stiffness analysis.

KEYWORDS: Design; Parallel mechanism; Modified Delta
mechanism; Stiffness analysis; Bearing.

1. INTRODUCTION
In our previous work, in order to provide a high-quality
teleoperation environment to an operator, a compact 6-
DOF haptic interface was developed as a master arm of
our teleoperation system.1 The haptic interface, which is
directly accessible to the operator, must be light, have a
high stiffness and operate over a wide workspace. Thus, as
positioning mechanism, we use a modified Delta mechanism,
which is a kind of a parallel mechanism. Other parallel
mechanisms (e.g. Stewart Platform,2 Pantograph Linkage,3

Delta,4 HEXA5), which address the high stiffness of the
tip position, have also been proposed. The modified Delta
mechanism was originally proposed by Tsai in 1995,6

however, the offset direction of the bearings of our modified
Delta mechanism1,7 is a little different from that of Tsai.
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In general, to realize a high stiffness mechanism, many
parts should be large and heavy. However, to achieve a
light and high speed motion, these should be small and
light. Moreover, we should point out that the tip stiffness
is greatly affected by both the positions and the values of
the mechanical parameters of the structural parts, even if the
mechanical structure is the same. Thus, to design a modified
Delta mechanism with these characteristics, we need to
analyze its stiffness including both elastic deformations and
position of its parts.

So far, many researches on parallel mechanisms have been
published, concerning motion analysis and singularity.8−12

Svinin et al.13 studied the static compliant motion of a
serial manipulator with elastic deformations. The stiffness
analysis of a parallel mechanism has been studied by Arai
et al.14 and Oiwa et al.15. Their studies did not include
elastic deformations. Gosselin16 also studied the stiffness
for a parallel manipulator, however, his research considered
only the stiffness of each actuator. Huang proposed a method
of stiffness analysis for a parallel mechanism17 that uses
spherical bearings at the joints, unlike our modified Delta
mechanism, which uses normal bearings (passive axis).
Therefore, the method of Huang’s analysis cannot apply to
our modified Delta mechanism.

Thus, we propose a stiffness analysis method for parallel
mechanisms, which takes into account elastic deformations
of parts and bearings. Our analysis is based on tip position
compliance and can be applied to many elastic deformations.
Moreover, it uses the concept of the stiffness of a static
flexible manipulator proposed by Komatsu.18 The key points
of our method are:

� a new method combining basic concepts on both static
elastic deformation and parallel mechanism,

� a modeling of the value of the elasticity coefficient of a
rotation axis in a bearing.

In order to design a modified Delta mechanism having a
well-balanced tip stiffness, we apply our method of stiffness
analysis for a parallel mechanism to the modified Delta
mechanism and we derive the compliance matrix for this
mechanism. In the following sections we discuss:

� the relation between a singular point and motion area,
� how each elastic deformation of both parts and bearings

influences to the tip stiffness of the modified Delta
mechanism,
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Fig. 1. Model of a serial manipulator.

� the realization of a well-balanced tip stiffness for the
modified Delta mechanism,

� a design guideline for modified Delta mechanisms of
various sizes.

Finally, we carry out stiffness analysis experiments in
which we compare the stiffness of a real modified Delta
mechanism built according to our design to that predicted by
the analysis.

2. STIFFNESS ANALYSIS OF A PARALLEL
MECHANISM
In this section, we present a method to analyze parallel
mechanism stiffness including elastic deformations in the
structure. First, we derive the compliance matrix for a serial
manipulator; second, we derive the compliance matrix for a
parallel manipulator using these results and third, we explain
the modeling of the link and of the bearing.

2.1. Tip compliance of a serial manipulator
In this subsection, we derive the tip compliance matrix for
a serial manipulator.18 A serial manipulator consists of m
elastically deformable elements and n joints, as shown in
Fig. 1. Forces and moments elastically deform the positions
and joints of each element and elastic deformations are
written as follows:

ei = [δxi δyi δzi φxi φyi φzi]
T (1)

where ei is the elastic deformation vector of each element.
δxi , δyi and δzi are the elastic linear deformations respectively.
φxi , φyi and φzi are the elastic rotation deformations
respectively.

e, the elastic deformation vector for all the elements is
given by:

e = [
eT

1 eT
2 · · · eT

n

]T
. (2)

Here, forces and moments act on each element. The elastic
deformation vector at all the elements can be rewritten as
follows:

e = Ce

[
f T

l1 f T
l2 · · · f T

lm

]T
(3)

Ce = diag [Ce1 Ce2 · · · Cem] (4)

Fig. 2. Model of a parallel manipulator.

where Ce is the compliance matrix which is defined by the
structural charcteristics of all the elements. Cei is the local
compliance matrix of each element. fli are the forces and
moments acting on each element.

Cs is the tip compliance matrix which is defined by the
structural characteristics of all the elements and is given by

Cs = Je(θ, 0) Ce J T
e (θ, 0) (5)

where θ is the joint angle vector. Je(θ , e) are the jacobian
matrices for each joint and each elastic deformation.

2.2. Tip compliance of a parallel manipulator
In this subsection, we derive the tip compliance matrix for a
parallel manipulator using the compliance matrix of a serial
manipulator presented in Section 2.1.

A model of parallel manipulator is shown in Fig. 2. This
parallel manipulator consists of t serial manipulators. Point
O is the origin and point P is the tip position of each
serial manipulator. Cp, the tip compliance matrix of a serial
manipulator is given by:

C−1
p = C−1

s1 + C−1
s2 + · · · + C−1

st (6)

where Csi (i = 1, · · · , t) is the compliance matrix of each serial
manipulator. The elastic deformations of both traveling plate
and base are ignored in this paper.

2.3. Modeling of the link
Forces and moments elastically deform the tip positions and
joints of each link as shown in Fig. 3 and elastic deformations

Fig. 3. Deformation at the tip of the link.
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at the tip of the link are written as follows:

δxi = L3

3EIx

Fxi

δyi = L3

3EIy

Fyi + L2

2EIz

Mzi

δzi = L3

3EIz

Fzi − L2

2EIy

Myi

φxi = L

GIp

Mxi

φyi = − L2

2EIz

Fzi + L

EIy

Myi

φzi = L2

2EIy

Fyi + L

EIz

Mzi

(7)

where L is link length, E is the modulus of the longitudinal
elasticity, G is the modulus of the transverse elasticity. Ix, Iy

and Iz are the geometrical moment of inertias respectively.
Ip is the polar moment of inertia. Then, Cei, the compliance
matrix of the link i is given by:

Cei =




L3

3EIx
0 0 0 0 0

0 L3

3EIy
0 0 0 − L2

2EIz

0 0 L3

3EIz
0 L2

2EIy
0

0 0 0 L
GIp

0 0

0 0 L2

2EIz
0 L

EIy
0

0 − L2

2EIy
0 0 0 L

EIz




. (8)

2.4. Modeling of the bearing
Cei is the compliance matrix of bearing i and is given by

Cei =




1
ka

0 0 0 0 0

0 1
kr

0 0 0 0

0 0 1
kr

0 0 0

0 0 0 � 0 0

0 0 0 0 1
km

0

0 0 0 0 0 1
km




(9)

where ka is the coefficient of elasticity in the axial direction.
kr is the coefficient of elasticity in the radial direction. 1

�

is the coefficient of elasticity for axial rotation. km is the
coefficient of elasticity for radial rotation. The direction of
the x axis is chosen as the rotation axis.

If the rotation axis is passive, the coefficient of elasticity
for axial rotation is almost zero and � is close to infinity.
However, if � is chosen close to infinity, the numerical
calculation becomes unstable. Therefore, for the numerical
calculation to remain stable, � should not be chosen close to

Fig. 4. Overview of the modified Delta mechanism.

infinity. A detailed discussion of the effects of the value of
� on the calculation is presented in Section 4.2.

3. COMPLIANCE MATRIX OF THE MODIFIED
DELTA MECHANISM
In this section, we explain how to use our stiffness analysis
method.

First, we describe the modified Delta mechanism to which
our stiffness analysis is applied. Next, we explain the
modeling of bearing pairs and the modeling of the modified
Delta mechanism. Finally we derive the compliance matrix
of the modified Delta mechanism.

3.1. The modified Delta mechanism
A overview of the modified Delta mechanism is shown in
Fig. 4 and a schematic of this mechanism is shown in Fig. 5.
This mechanism is made of a base, bearing 0, an arm, bear-
ing 1, bearing 2, a rod, bearing 3, bearing 4 and a traveling
plate. The rotation axis of the motor is inserted in bearing 0.
The rod part which includes a planar parallel-link mechanism
is made of bearing 2, two parallel rods and bearing 3. The
passive joints are equipped with conventional bearings that
are mounted in pairs (see Fig. 5).

3.2. Modeling of a pair of bearings
We now consider the compliance matrix for a pair of
bearings mounted in parallel as shown in Fig. 6. The
coefficients of elasticity in the axial and radial directions
are multiplied by 2. The coefficient of elasticity for axial
rotation is also multiplied by 2. However, the case of the
coefficient of elasticity for radial rotation is different. The
elastic deformation model of a pair of bearings is shown in
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Fig. 5. Schematics of the modified Delta mechanism.

Fig. 6. Model of two bearings.

Fig. 7. Elastic deformation model of two bearings.

Fig. 7. δx is the elastic deformation in the radial direction.
The moment M becomes

M = 2
(
Km θ + a

2
δx Kr

)

= 2
(
km θ + a

2

a

2
θ Kr

)
(10)

= 2

(
Km +

(a

2

)2
Kr

)
θ.

Therefore, the compliance matrix of the two bearings Cei

takes the following form:

Cei=




1
2ka

0 0 0 0 0

0 1
2kr

0 0 0 0

0 0 1
2kr

0 0 0

0 0 0 �
2 0 0

0 0 0 0 1
2(km + ( a

2 )2Kr ) 0

0 0 0 0 0 1
2(km + ( a

2 )2Kr )




.

(11)

3.3. Modeling of the rod part with a parallel mechanism
We derive the compliance matrix of the rod part which is
made of a planar parallel-link mechanism. This parallel-
link mechanism is constituted by two parallel rods and bear-
ings 2 and 3 as shown in Fig. 5. We consider separately the
two rods (Rod L and R) as shown in Fig. 8 and calculate first
the compliance matrix for each rod; the final matrix for the
complete rod is calculated from these two matrices.

According to equation (4), the compliance matrices CeL

and CeR as shown in Fig. 8, are given by

CeL = diag[Cb2L CrL Cb3L] (12)

and
CeR = diag[Cb2R CrR Cb3R] (13)

for rod L and R, respectively. Where Cb2L, Cb2R , Cb3L and
Cb3R are the compliance matrices of bearing 2L, 2R, 3L and
3R, respectively. CrL and CrR are the compliance matrices
of rod L and R, respectively.

JeL(θ, 0) and JeR(θ, 0) are written as

JeL(θ, 0) = [Jb2L(θ, 0) JrL(θ, 0) Jb3L(θ, 0)] (14)

and

JeR(θ, 0) = [Jb2R(θ, 0) JrR(θ, 0) Jb3R(θ, 0)] (15)

for rod L and R, respectively. Where Jb2L(θ, 0), Jb2R(θ, 0),
Jb3L(θ, 0) and Jb3R(θ, 0) are the jacobian matrices of bearing
2L, 2R, 3L and 3R, respectively. JrL(θ, 0) and JrR(θ, 0) are
the jacobian matrices of rod L and R, respectively.

The compliance matrices (Crod L and Crod R) of each part
can be written as

Crod L = JeL(θ, 0) CeL J T
eL(θ, 0) (16)

and
Crod R = JeR(θ, 0) CeR J T

eR(θ, 0) (17)

for rod L and R, respectively. C2r3 is the compliance matrix
of the rod part and can be written as

C−1
2r3 = C−1

rod L + C−1
rod R. (18)

3.4. Modeling of the modified Delta mechanism
In this subsection, we derive the compliance matrix of the
modified Delta mechanism.

The modified Delta mechanism consists of three arms, as
shown in Fig. 4. Each serial manipulator is connected to
the same traveling plate which does not deform elastically.
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Fig. 8. Modeling of the rod part.

Moreover, a position on the traveling plate corresponds to a
common tip position for the three serial manipulators.

We first derive the compliance matrix for a single serial
manipulator, which consists of the base, one arm, one rod
part, bearings 0, 1, 4 and the traveling plate (see Fig. 5). Then,
the compliance matrices of the three arms are combined to
obtain that of the modified Delta mechanism.

CeSi (i = 1, 2, 3) of three serial manipulator given in
equation (4) is rewritten as

CeSi = diag[Cb0i Cai Cbli C2r3i Cb4i] (19)

where Cb0i , Cb1i and Cb4i are the compliance matrices of
bearing 0, 1, and 4 respectively. Cai is the compliance matrix
of the arm. C2r3i is the compliance matrix of the rod part.

JeSi(θ, 0) can be rewritten as

JeSi(θ, 0) = [Jb0i(θ, 0) Jai(θ, 0) Jb1i(θ, 0) J2r3i(θ, 0)

× Jb4i(θ, 0)] (20)

where Jb0i(θ, 0), Jb1i(θ, 0) and Jb4i(θ, 0) are the jacobian
matrices of bearings 0, 1 and 4 respectively. Jai(θ, 0) is the
jacobian matrix of the arm. J2r3i(θ, 0) is the jacobian matrix
of the rod part.

Csi is the compliance matrix of each serial manipulator
and is written as

Csi = JeSi(θ, 0) CesiJ
T
eSi (θ, 0). (21)

We consider the modified Delta mechanism as made of
three serial manipulators and thus compliance matrix Cp can
be written as:

C−1
p = C−1

s1 + C−1
s2 + C−1

s3 . (22)

4. PARAMETERS OF THE MODIFIED
DELTA MECHANISM
In this section, we define the parameters of the parts which
form the modified Delta mechanism. In order to carry out
a numerical calculation based on our stiffness analysis, we
discuss the modeling of the value of the elasticity coefficient
of a rotation axis in a bearing. Finally, we calculate the tip
compliance matrix value of the modified Delta mechanism.

4.1. Parameters of the parts of the mechanism
A schematic of the modified Delta mechanism identifying
the parameters is shown in Fig. 9. Point O is the origin and
point T is the tip position. L is the arm length, M is the rod

Fig. 9. Schematics of the modified Delta mechanism for parameters.

length, R is the base radius, r is the traveling plate radius and
z is the traveling plate height which is the distance between
points O and S. Here, the distance between points S and T
is 15.0 mm and the distance between the two parallel rods
which form the rod part is 31.0 mm.

The value of the fixed parameters of the modified Delta
mechanism are given in Table I. More specific details on the
parts of the modified Delta mechanism are given below.

� The arm is a hollow pole, made of A7075 material, with
an internal diameter of 8 mm and an external diameter of
12 mm.

� The rod is a prismatic beam, made of SUS304 material,
one side measure 5 mm and another side measure 6 mm.
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Table I. Base parameters of the modified Delta mechanism.

Parameter [mm]

M (Rod length) 110.0
L (Arm length) 110.0
R (Radius of base) 40.0
r (Radius of traveling plate) 40.0

� Bearing 0 is a model F688A made by NSK.
� Bearing 1 and 4 are models MR128 made by NSK.
� Bearing 2 and 3 are models F684 made by NSK.
� The motor is a model A-max 26 (11 W) made by Maxon.

The compliance matrix of the arm defined in equation (8) is written as

Cai =




0.0050 × 10−6 0.0 0.0 0.0 0.0 0.0
0.0 4.4176 × 10−6 0.0 0.0 0.0 60.2 × 10−6

0.0 0.0 4.4176 × 10−6 0.0 −60.2 × 10−6 0.0
0.0 0.0 0.0 0.0014 0.0 0.0
0.0 0.0 −60.2 × 10−6 0.0 0.0010 0.0
0.0 60.2 × 10−6 0.0 0.0 0.0 0.0010




.

The compliance matrix of rods L and R defined in equation (8) are written as

CrL = CrR =




26.4607 × 10−6 0.0 0.0 0.0 −0.0003608 0.0
0.0 38.1034 × 10−6 0.0 0.0005195 0.0 0.0
0.0 0.0 0.0196 × 10−6 0.0 0.0 0.0
0.0 0.0003608 0.0 0.0094 0.0 0.0

−0.0005195 0.0 0.0 0.0 0.0065 0.0
0.0 0.0 0.0 0.0 0.0 0.0126




.

The compliance matrix of bearing 0 defined in equation (11) is written as

Cb0i =




0.4081 × 10−6 0.0 0.0 0.0 0.0 0.0
0.0 0.0892 × 10−6 0.0 0.0 0.0 0.0
0.0 0.0 0.0892 × 10−6 0.0 0.0 0.0
0.0 0.0 0.0 0.0058 0.0 0.0
0.0 0.0 0.0 0.0 0.0006 0.0
0.0 0.0 0.0 0.0 0.0 0.0006




.

The compliance matrix of bearings 1 and 4 defined in equation (11) are written as

Cb1i = Cb4i =




0.2551 × 10−6 0.0 0.0 0.0 0.0 0.0
0.0 0.0918 × 10−6 0.0 0.0 0.0 0.0
0.0 0.0 0.0918 × 10−6 0.0 0.0 0.0
0.0 0.0 0.0 �/2 0.0 0.0
0.0 0.0 0.0 0.0 0.0003 0.0
0.0 0.0 0.0 0.0 0.0 0.0003




.

The compliance matrix of bearings 2L, 2R, 3L and 3R defined in equation (11) are written as

Cb2L = Cb2R = Cb3L = Cb3R =




0.4081 × 10−6 0.0 0.0 0.0 0.0 0.0
0.0 0.1020 × 10−6 0.0 0.0 0.0 0.0
0.0 0.0 0.1020 × 10−6 0.0 0.0 0.0
0.0 0.0 0.0 �/2 0.0 0.0
0.0 0.0 0.0 0.0 0.0254 0.0
0.0 0.0 0.0 0.0 0.0 0.0254




.

All bearings are used in pairs. From the values of Table I
and the characteristics of the above parts, we calculate the
compliance matrix of each part.

For the linear parts, we set the x direction axis along the
length direction of the arm, of the rod R and L. The rotation
axis is defined as the x axis direction for bearings 0, 1, 2,
3 and 4. All the elastic deformation data of the bearings
are obtained from NSK. Here, we should take into account
the value of � for bearing 0 since the rotation axis of the
motor is inserted into this bearing. The compliance of this
rotation axis might depend on the performance of the motor,
the control rule, etc. Therefore we got the value of 0.0058
rad/Nm for this axis measured directly in real conditions of
movement.
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The units of these compliance matrix elements are as
follows:




m/N m/N m/N 1/N 1/N 1/N
m/N m/N m/N 1/N 1/N 1/N
m/N m/N m/N 1/N 1/N 1/N
rad/N rad/N rad/N rad/Nm rad/Nm rad/Nm
rad/N rad/N rad/N rad/Nm rad/Nm rad/Nm
rad/N rad/N rad/N rad/Nm rad/Nm rad/Nm




.

4.2. Elastic coefficient of a rotation axis in a bearing
If a bearing is used in a passive axis joints, � (the value of the
passive axis compliance) is close to infinity. However if � is
chosen close to infinity, the numerical calculation becomes
unstable. Therefore, for the numerical calculation to remain
stable, � should not be chosen close to infinity.

When � is changed from zero to infinity, the passive axis
condition of the bearing is changed from rigid to passive.
Since to be able to carry out our analysis, the calculation
must remain stable, we must choose a value for � that dose
not perturb the calculation but that is much higher than any
other matrix element. We will address this question in the
next paragraphs.

The tip of the traveling plate is locked at one position,
whose height (z) is 135.0 mm, in the z axis direction, as shown
in Fig. 9. Figure 10 shows the elements of the tip compliance
matrix (Cp) Curves A to F in the Figure correspond to the
following matrix elements:

Cp =




A 0.0 0.0 0.0 B 0.0
0.0 A 0.0 −B 0.0 0.0
0.0 0.0 C 0.0 0.0 0.0
0.0 −B 0.0 D 0.0 0.0
B 0.0 0.0 0.0 D 0.0

0.0 0.0 0.0 0.0 0.0 E




. (23)

Here the tip compliance matrix (equation (23)) is very simple
because the tip position is set along the z axis direction.

All the matrix elements display two regions of stability
and one region of unstability as a function of �: the first
stable region for � < 10−4, the second one for 10 <� and
the unstable region for 10−4 < � < 10.

The first stable region (� < 10−4) corresponds to a rigid
axis (� is almost zero) whereas the second one (10 <�)
corresponds to a passive axis (� is almost infinity). The
unstable region (10−4 < � < 10) corresponds to an elastic
axis. Here we should notice that the numerical calculation
becomes unstable when the value of � is smaller than 10−10

and larger than 1010. Based on these results, a value of
108 rad/Nm is used for � in this paper, which is much larger
than any other matrix element and is in the stable region for
a numerical calculation. This value of � clearly reflects that
of a bearing passive axis.

4.3. Tip compliance matrix of the modified
Delta mechanism
We can now calculate the tip compliance matrix of the
modified Delta mechanism using the parameters given in
Sections 4.1 and 4.2.

Fig. 10. Calculation results.

The tip of the traveling plate is locked at one position,
whose height (z) is 135.0 mm, in the z axis direction, as
shown in Fig. 9. Under these conditions, the tip compliance
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matrix is calculated as follows:

Cp =




0.000087 0.0 0.0 0.0 −0.000094 0.0
0.0 0.000087 0.0 0.000094 0.0 0.0
0.0 0.0 0.000032 0.0 0.0 0.0
0.0 0.000094 0.0 0.003133 0.0 0.0

−0.000094 0.0 0.0 0.0 0.003133 0.0
0.0 0.0 0.0 0.0 0.0 0.001912




.

5. DESIGN OF A MODIFIED DELTA MECHANISM
BASED ON OUR STIFFNESS ANALYSIS
Several different methods could be used to transfer the results
of our numerical analysis into the mechanical design of
modified Delta mechanism with a well-balanced tip stiffness.
We have adopted the following sequence:

(i) We first consider the relation between the singular point
and motion area.

(ii) We identify the parts having a large influence on the
reduction of tip stiffness.

(iii) We discuss how each elastic deformation of both parts
and bearings influences the tip stiffness of the modified
Delta mechanism.

(iv) We discuss the parameters that are important to realize
a well-balanced tip stiffness.

(v) Finally, we propose a design guideline common to
modified Delta mechanism of various sizes and design
a new modified Delta mechanism.

5.1. Singular point and motion area in a Delta mechanism
A singular point called the under mobility and the
over mobility within the motion area exists in parallel
mechanisms,19 such as HEXA and Delta mechanisms.
Tsumaki et al. discussed the relation between singular point
and motion area in the modified Delta mechanism,7 and based
on their results, we chose to make the base radius and the
traveling plate radius identical in our design.

5.2. Influence on the tip stiffness from the stiffness
of each part
In the following discussion, since the motion area is set
as a sphere of 75 mm radius, we set the sum of the arm
length and of the rod length to 220 mm, and the minimum
height to 50 mm in order to avoid the under mobility, and
the maximum height to 200 mm in order to avoid the over
mobility. According to Section 5.1, the traveling plate radius
and the base radius are both set to 40 mm. Point O is the origin
and point U is the tip position. Here, the distance between
points S and T is 15.0 mm and the distance between point T
and U is 63.5 mm.

In this paper, it is assumed that the arms, rods, motor axes,
bearings 0, 1, 2, 3 and 4 deform elastically.

The stiffness of the tip position (point U, see Fig. 9)
of the modified Delta mechanism changes strongly with
the position of a traveling plate. Therefore, it is necessary
to design the mechanism taking into consideration the tip
stiffness in all the positions of the motion area. However,
the evaluation method becomes complicated and it is very
difficult to evaluate all the elements (36 pieces) of the tip
compliance matrix at many points. In this paper, we simplify

the evaluation by considering only movements in the z
direction, with no movement of the traveling plate in the
(x, y) plane. Thus, the effect on the tip stiffness of moving
the height of the traveling plate from z = 50 mm to 200 mm
along the z axis is evaluated.

5.2.1. Influence on the tip stiffness from the each
individual part. We first assume that each part deforms
elastically individually. For instance, we consider that only
the arm deforms elastically while other parts do not deform.
From this study, we will be able to find the part the stiffness
of which has a large influence on the tip stiffness.

The changes of the elements of the tip compliance matrix
(Cp) due to individual elastic deformation of each part using
the base parameters are shown in Fig. 11.

In this Figure, all the matrix elements are plotted as a
function of α which is the joint between the rod and the
traveling plate. The reason for this choice is that α will be one
of the major elements of the design guideline of the modified
Delta mechanism as shown by the following arguments.
Curves A to E in the Figure correspond to equation (23). Here
we can evaluate the stiffness easily since the tip compliance
matrix (equation (23)) becomes very simple.

According to Fig. 11, the stiffness of bearings 0, 2, and 3
affects the tip stiffness mostly through elements A and B of
the compliance matrices, and the stiffness of the arm affects
the tip stiffness mostly through elements C, D and E.

The stiffness of the rotation axis of the motor is included
in the stiffness of bearing 0, and this stiffness increases the
value of elements A and B. Althoug these elements can be
decreased by the stiffness of the rotation axis of the motor
and by a change of the motor control, we do not consider
such a change of the motor and the control in this paper.
Therefore, we do not consider this stiffness in the following
arguments.

From the above results, the influence on elements A and
B of bearings 2 and 3 can be decreased by changing F648
steel bearings to F684 ceramic bearings. The influence on
elements C, D and E of the arm can be decreased by
increasing the arm radius.

5.2.2. Influence on the tip stiffness from the stiffness of
all the parts together. The changes of the compliance matrix
for the tip position (point U) under elastic deformation of all
the components together (arms, rods, motor axes, bearings
0, 1, 2, 3, and 4) using the base parameters are shown in
Fig. 12. In these calculations, F684 ceramic bearings are used
for bearings 2 and 3 based on the results of Section 5.2.1.
And we set the arm internal diameter to 10 mm and its exter-
nal diameter to 14 mm.
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Fig. 11. Factors of compliance matrices.

According to Fig. 12, when α increases, each of these
elements changes as follows.
� The stiffness (element A) of both x and y axis directions

decreases due to the force.

Fig. 12. Factors of a compliance matrix including all elastic defor-
mations.

� The stiffness (element B) of both x and y rotation axes
increases due to the force.

� The stiffness (element C) of z axis direction increases due
to the force.
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Table II. Parameters of two modified Delta mechanisms.

Parameter [mm] Type 1 Type 2

M (Rod length) 120.0 130.0
L (Arm length) 100.0 90.0
R (Radius of base) 40.0 40.0
r (Radius of traveling plate) 40.0 40.0

� The stiffness (element B) of both x and y axis directions
increases for the most part due to the moment, although it
decreases for a while at about 50 degrees.

� The stiffness (element D) of both x and y rotation axes
increases due to the moment.

� The stiffness (element E) of z rotation axis decreases due
to the moment.

These tendencies of stiffness change were also observed
in an experiment which used the real modified Delta
mechanism.7 As α becomes large, the stiffness of each
element increases or decreases. Therefore, in order to obtain
a well-balanced stiffness against both the force and the
moment, it is necessary to limit the value that α can take
within the motion area.

Here, if the value of β in Fig. 12 is positive within the
motion area, even if the ratio of the base radius to the traveling
plate radius changes and the stiffness of each part changes,
the graph of Fig. 12 shows the same tendency. We conclude
therefore from the above results that α becomes a major
element of the design guideline of a general modified Delta
mechanism.

From the above discussion, we may set α as a design
guideline element while β is not set up as a design guideline
element in this paper. Here, we should notice that the value
of α depends on the base radius, the traveling plate radius,
the arm length and the rod length.

5.2.3. Relation between tip stiffness and α. We will dis-
cuss how the tip stiffness change of the modified Delta
mechanism depends on the value of α which is the joint
between the rod and the traveling plate.

If the arm length is shortened, the rod length should be
lengthened to keep the same full motion area and the value
of α becomes large in this case. To study the change of
tip stiffness under changes of arm length and rod length,
we repeat the calculations with two other values of the
parameters corresponding to the arm and rod lengths as
shown in Table II. Fig. 13 compares the effect on tip stiffness
of the elastic deformation of all the parts, using the base
parameters (Table I) and the parameters of Table II.

According to Fig. 13, we see that the set of parameters
labeled Type 2 in Table II provide the highest stiffness in
all elements except for element E. A value of α in the range
from 40 to 70 degrees is the best range for realizing a well-
balanced tip stiffness. If the value of α is outside this range,
the stiffness of many elements decreases. Therefore, we can
conclude that Type 2 parameters form the better-balanced
set of parameters. Here, we note that the variation of C, D
and E with α does not depend on the set of parameters (Base,
Type 1 or Type 2) and it is easy to calculate. If the tip position
(point U) is set on point S, the variation of A and B does

Fig. 13. Factors of compliance matrices.

not depend either on the set of parameters (Base, Type 1 or
Type 2) like C, D and E.

In general, when z increases, α also increases. However,
when z is between 50 mm and 94 mm, α becomes negative
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Fig. 14. Schematics of the modified Delta mechanism for the ex-
periment.

and α decreases in the Type 2 case. Therefore, the curves for
elements A and B in the Type 2 case are different from the
other curves.

From the above results, the tip stiffness of the modified
Delta mechanism is changed widely even if many parameters
are not changed. It is important to limit the value of α within
the motion area. Then we can conclude that to obtain a
well-balanced tip stiffness in the modified Delta mechanism
studied in this paper, the parameters should be chosen such
that α is in the range from about 40 to 70 degrees. Therefore,
we will decide that the traveling plate and the base radii are
40 mm, the arm length is 93 mm and the rod length is 127 mm
in order to obtain the desired motion area (a sphere of about
150 mm diameter).

6. COMPARISON WITH THE STIFFNESS OF THE
MODIFIED DELTA MECHANISM
We compare the stiffness of the modified Delta mechanism
developed from the results of Section 5 to that predicted
by the analysis. In this experiment, we calculate the elastic
deformation of the tip position using our stiffness analysis
method when we apply a force or a moment at the tip position.
And we compare the result of our numerical calculation to
the result of the real modified Delta mechanism.

Fig. 14 shows the schematics of the modified Delta
mechanism for the experiment. All the parts are the same as
in the previous sections and the parameters are those chosen
in Section 5.2.3, and given in Table III. Here, point O is the
origin and point U is the tip position. The distance between
points S and T is 15.0 mm, the distance between point T and
U (Dtu) is 78.0 mm and the distance between points T and V
(Dtv) is 64.5 mm.

The force and the moment at point U (Fu), the elastic
deformation vector of point T (et ) and the elastic deformation

Table III. Parameters of the modified Delta mechanism.

Parameter [mm]

M (Rod length) 127.0
L (Arm length) 93.0
R (Radius of base) 40.0
r (Radius of traveling plate) 40.0

vector of point V (ev) are written as follows:

Fu = [fxu fyu fzu mxu myu mzu]T (24)

et = [δxt δyt δzt φxt φyt φzt ]
T (25)

ev = [δxv δyv δzv φxv φyv φzv]T (26)

where fxu, fyu, fzu, mxu, myu and mzu are the forces and
moments of each axis direction and each axis rotation for
point U, respectively. δxt , δyt , δzt , φxt , φyt and φzt are the
elastic deformations of each axis direction and each axis
rotation of point T. δxv , δyv , δzv, φxv, φyv and φzv are the
elastic deformations of each axis direction and each axis
rotation of point V.

From these equations and equation (22) which is the tip
compliance matrix (Cp), et can be written as follows:

et = Cp Fu. (27)

And the relation between point T and V is written as

δxv = δxt + Dtv (1 − cos φyt )
δyv = δyt

δzv = δzt + sin φyt Dtv

φxv = φxt

φyv = φyt

φzv = φzt.

(28)

The experiment is executed in two steps, as follows. In
experiment (1) we apply a transverse force (Fx = 4.9 N) to
the tip position (point U) in the x direction in the servo and
in experiment (2) we apply a transverse force (Fz = 4.9 N)
to the tip position (point U) in the z direction in the servo.
In each case, a force and a moment are generated on point
T. This experiment is repeated for different values of z along
the vertical direction. The tip stiffness (Cp) changes with
the height of the traveling plate. We can then compare the
calculated values of the elastic deformation at point V to
the values obtained for the real modified Delta mechanism.
The numerical analysis with the conditions of experiment
(1), shows that the elastic deformations are:

δyt = φxt = φzt = 0 (29)
and

δyv = φxv = φzv = 0. (30)

Thus, in experiment (1) we only compare δxv and δzv .
Similarly, in experiment (2), the calculated elastic

deformations are:

δxt = δyt = φxt = φyt = φzt = 0 (31)
and

δxv = δyv = φxv = φyv = φzv = 0. (32)

Thus, in experiment (2) we only compare δzv.
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Fig. 15. Experiment 1.

Fig. 16. Experiment 2.

Figures 15 and 16 show the results of experiments (1) and
(2), respectively. The horizontal axis is the height (between
point O and S) of the traveling plate and the vertical axis is
the elastic deformation. These Figures show that the stiffness
change of the real modified Delta mechanism is predicted
by the numerical analysis. The irregular variation of the
experimental values observed in the Figures seems to be
most likely due to measurements errors and etc in the real
mechanism. From above results, we can conclude that we
have successfully built a modified Delta mechanism which
has a well-balanced stiffness.

7. CONCLUSION
In this paper, we proposed a stiffness analysis method
for a parallel mechanism, which takes into account elastic
deformations in the structure. This method is based on the
tip compliance of the link, and can be applied to both serial
and parallel mechanisms. The key points of our method are:

� a new method combining basic ideas on both static elastic
deformation and parallel mechanism,

� a modeling of the value of the elasticity coefficient of a
rotation axis in a bearing.

Our method was applied to the compact 6-DOF haptic
interface that has been developed in our laboratory and
which includes a modified Delta parallel-link mechanism.
We obtained the following results.

� The stiffness of bearing 2 and 3 is insufficient.
� α will be the design guideline parameter to evaluate the

stiffness of the modified Delta mechanism.

From these results, we proposed that α is restricted to values
from 40 to 70 degrees in order to obtain a well-balanced
stiffness in each axial direction and rotation. Moreover, we
set the base radius and the traveling plate radius to 40 mm,
the arm length to 93 mm and the rod length to 127 mm in
order to increase the tip stiffness and maintain a motion area
to a sphere of about 150 mm diameter.

The experiment showed that the modified Delta
mechanism has a sufficient stiffness as expected from the
analysis. Therefore, we have been able to develop a modified
Delta mechanism with a well-balanced tip stiffness.
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