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 Dynamic Analysis of Parallel Manipulators under the
 Singularity-Consistent Parameterization
 D . N .  Nenchev ,  S .  Bhattacharya and M .  Uchiyama
 Department of Aeronautics and Space Engineering , Tohoku Uni y  ersity , Aramaki - aza - Aoba , Aoba - ku ,
 Sendai  9 8 0 - 7 7   ( J A P A N )

 SUMMARY
 Based on the singularity-consistent parameterization
 framework ,  we analyze motion at direct kinematics
 singularities for a broad class of parallel manipulators .  It
 will be shown that taking into account the instantaneous
 motion direction of the output link ,  additional insight can
 be gained for the possibility to move through such
 singularities .  We argue that direct kinematics sin-
 gularities should be analyzed over the dual space which ,
 in turn ,  involves the state of the passive joints .  We
 perform such an analysis based on the conditioning of
 the equation of motion .  It is shown that ,  depending on
 the instantaneous motion direction ,  at certain direct
 kinematics singularities it is possible to obtain a
 consistent solution in terms of torque .  This implies that
 in combination with the continuity of the singularity-
 consistent inverse kinematic solution ,  motion through
 such direct kinematics singularities is feasible .

 KEYWORDS :  Parallel manipulators ;  Dynamic analysis ;  Para-
 metrization framework .

 1 .  INTRODUCTION
 The singularity analysis of parallel manipulators has
 drawn considerable attention in literature . 1 – 9  Pierrot et
 al . 2  mentioned two types of singularities ,  called
 o y  ermobility  and  undermobility ,  which correspond to the
 indeterminacy of the direct and inverse kinematics ,
 respectively .  Gosselin and Angeles 4  added a third type ,
 when both the direct and the inverse kinematics become
 simultaneously indeterminate .  To identify any of these
 three types of singularities ,  it is suf ficient to know the
 position of the active joints only .  Recently ,  some other
 classifications appeared which take into account the
 position of the passive joints as well . 6 – 8  The work of
 Zlatanov et al . 7 , 8  is helpful in obtaining additional
 insights into the problem .  Some authors note ,  however ,
 that their classification has an inherent redundancy since
 the various types of singularities occur always in pairs . 9

 Notably ,  all the singularity analysis in literature is
 based on the static state of the manipulator .  On the other
 hand ,  a number of recent studies show that it is possible
 to move through or to initialize a motion in a certain
 direction at a singularity . 10–15  In our opinion ,  there is a
 clear implication for future singularity analysis from
 those studies :   the analysis should be done o y  er the phase
 space rather than o y  er the configuration space .  Although
 such an analysis is not the ultimate goal of our present

 work ,  we shall provide some examples to justify the
 above assumption .  Especially ,  with regard to singularities
 of parallel manipulators ,  it can be shown that some of
 the ‘‘redundant’’ classification groups in the work of
 Zlatanov et al .  have then a distinct meaning .

 The aim of this paper is to present a motion feasibility
 study at and around direct kinematics singularities which
 are relevant to a broad class of parallel manipulators .
 Our study will be based upon our recent work on a new ,
 general method for solving the inverse kinematic
 problem of nonredundant serial-link manipulators .  We
 called the method 16 , 17   singularity - consistent  ( SC ) . *
 Accordingly ,  the kinematic function is parameterized and
 a  nonlinear  inverse kinematics solution is obtained in
 terms of an autonomous dif ferential equation .  Under the
 parameterization ,  some of the kinematic singularities can
 be regarded as regular points .  Thus ,  a stable motion can
 be guaranteed ,  even in the case when the manipulator
 follows a path passing close to ,  or through such
 singularities .  Since the SC approach is general ,  it can be
 applied in a straightforward manner to parallel
 manipulators as well . 1 8  More specifically ,  we have shown
 that by means of a closed-loop command generator type
 controller ,  it is possible to generate feasible paths that
 would reconfigure the mechanism ,  moving thereby
 through a so-called  instantaneous self  - motion  singularity .
 This has been also experimentally verified at our lab 1 9

 with a six degree-of-freedom parallel robot HEXA . 2 , 20

 Other types of singularities ,  such as  dual self  - motion  and
 bifurcation ,  have been also discussed ,  but the motion
 feasibility remains to be studied .

 The paper is organized as follows :  In section 2 we
 present some background on the singularity-consistent
 parameterization for a parallel manipulator .  Section 3
 provides some new insight regarding singularities of the
 direct kinematics .  In section 4 ,  analysis based on the
 equation of motion is performed .  Illustrative examples
 are presented in section 5 .  Finally ,  the conclusions can be
 found in section 6 .

 2 .  PRELIMINARIES :  THE SINGULARITY-
 CONSISTENT PARAMETERIZATION OF THE
 KINEMATICS
 In this paper ,  we consider a  n  dof nonredundant parallel
 manipulator which consists of two rigid bodies ,  one fixed

 *  ‘‘SC’’ will be used below as an acronym for ‘‘singularity-
 consistent . ’’
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 another mobile ,  connected in parallel by a number of
 serial sub-chains .  The kinematics of the parallel
 manipulator can be represented by the following
 nonlinear homogeneous equation :

 f  ( x ,  u a )  5  0  (1)

 which reflects the physical phenomenon of a closed
 kinematic chain . 4 , 21  In the above notation  u a  P  R n

 denotes the position of the active joints (the actuated
 joints) ,   x  P  R n   stands for the output-link coordinates i . e .
 the coordinates of the mobile body ,  and  f  :  R n

 5  R n   is a
 smooth vector-valued function .  The subscript  a ,  as in the
 above notation ,  will be used throughout the paper to
 denote an active joint variable .  This is to be distinguished
 from passive joint variables which will be denoted by the
 subscript  p .

 Velocity-based control of a parallel manipulator
 utilizes the following equation ,  obtained after
 dif ferentiation of equation (1) :

 $ x  f  ( x ,  u a ) x Ù  1  $ θ  f  ( x ,  u a ) u Ù  a  5  0  (2)

 where  $ ( + )  denotes the dif ferentiation with respect to (  +  ) .
 In coordinate form ,  both dif ferential mappings  $ x  f  and
 $ θ  f   are represented by  n  3  n  matrices .

 Note that the last equation is valid for any type of
 parallel manipulator .  In our further discussion ,  we shall
 make several assumptions regarding the parallel
 manipulator’s structure .  These assumptions will gradually
 restrict the scope but mainly from a theoretical
 viewpoint .  Many parallel manipulators existing in
 practice will be covered by our framework .  In such a
 sense ,  the first and weakest assumption we make is that
 the inverse kinematics of the parallel manipulator is
 solvable in closed form .  Then ,  the following proposition
 establishes an important property of one of the above
 mappings :

 Proposition  1 :  The mapping  $ θ  f  is block-diagonal .

 Proof :  Since the inverse kinematics of the parallel
 manipulator is solvable in closed form ,  we can express
 equation (1) in more explicit separable form as follows :

 e i ( u a i )  5  h i ( x )  (3)

 where  u a i   is the vector of the active joint angles in the  i th
 serial sub-chain ;   e i   and  h i   are nonlinear vector-valued
 functions of appropriate dimensions .  Note that at this
 stage we make no assumption about the number of active
 joints per serial sub-chain .  The above form of equation
 (1) clearly indicates that it is possible to express equation
 (2) in such a way that there is no term in  $ θ  f
 cross-coupling the active joint angles of dif ferent
 sub-chains ,  which in turn implies  D θ  f  is block diagonal .

 Q . E . D .
 The second assumption regarding the parallel

 manipulator’s structure is that it comprises one active
 joint per serial sub-chain .  A large class of parallel-link
 manipulators including spatial ,  such as the HEXA
 robot , 2 , 20  as well as planar ones ,  such as the five bar
 mechanism and the 3 dof manipulator used as illustrative

 examples below , * is covered by this assumption .  For this
 class ,  the mapping  $ θ  f  can be written in a diagonal form :

 $ θ  f  5  diag  [  j aa 1  j aa 2  ?  ?  ?  j aan ] .

 Here ,  a double  a  subscript has been used to express the
 fact that the active joint space is mapped onto itself .

 2 . 1  The nonlinear in y  erse kinematic solution
 Recall that closed-loop velocity-based control of
 mechanical manipulators usually relies upon both the
 inverse kinematics and the direct kinematic solutions .  In
 the case of a parallel manipulator ,  these solutions are
 derived in a straightforward manner from equation (2) .
 A problem arises ,  however ,  when any of the mappings
 $ x  f ,  $ θ  f ,  or both become ill-conditioned .  This is the
 well-known singularity problem .  In our further discussion
 we shall refer to the singularities of  $ x  f  and  $ θ  f  as the
 singularities of the direct and the inverse kinematics ,
 respectively .  In the case when both of these mappings
 are singular ,  we shall speak about simultaneous
 singularities of the inverse and direct kinematics .  This
 notion is in accordance with the three types of
 singularities defined by Gosselin and Angeles . 4

 To alleviate the above mentioned singularity problem ,
 we proposed a reformulation of the kinematics under the
 assumption that the output-link path can be
 parameterized . 1 8  Suppose that  x  5  g ( s ) is the para-
 meterization ,  where  g  :  R  5  R n   is a smooth function and
 the parameter  s  is not time .  We will assume that the
 parameterizations does not induce singularities and
 hence ,   $ s g  ?  0  along the path .  Then ,  the kinematic
 function is rewritten as :

 f  ( g ( s ) ,  u a )  5  0 .  (4)

 After dif ferentiation ,  we obtain

 $ s  f  ( g ( s ) ,  u a ) s ~  1  $ θ  f  ( g ( s ) ,  u a ) u Ù  a  5  0  (5)

 where the mapping  $ s  f  5  [  j s 1  j s 2  ?  ?  ?  j s n ] T   is an
 n -dimensional vector-valued function .  It is apparent that
 with this representation ,  the system’s dimension is
 decreased ,  as compared to the dimension of the
 ‘‘conventional’’ equation (2) .

 Besides decreased dimension ,  the parameterization
 yields another significant advantage :  at some kinematic
 singularities a continuous inverse kinematic solution can
 be obtained .  This can be explained as follows .  First ,  we
 augment the active-joint space by the path parameter  s :

 q  5  [ s ,  u  T
 a  ] T .  (6)

 Equation (4) can be rewritten as

 h ( q )  5  0  (7)

 where  h  :  5 n 1 1
 5  5 n   is smooth because it is composed of

 *  See reference 4 for other examples .
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 two smooth mappings .  Next ,  we introduce a linear local
 model at  q :

 $ q h ( q ) q Ù  5  0  (8)

 where the tangential space mapping  $ q h  is composed of
 $ s  f   and  $ θ  f ,  and can be represented as

 $ q h ( q )  5 3
 j s 1

 j s 2

 ?  ?  ?

 j s n

 j aa 1

 0

 j aa 2
 ?  ?  ?

 0

 j a a n

 4 .

 Equation (8) denotes a homogeneous  n  3  ( n  1  1)-
 dimensional system .  A set of solutions exists that can be
 written as follows :

 q Ù  5  b n ( q )  (9)

 where  b  is an arbitrary scalar and  n  P  R n 1 1  is the
 so-called  null space function .  This function can be written
 as

 (10)

 n ( q )  5  [ y  0  y  1  ?  ?  ?  y  n ] T ,

 y  0  5  P n
 k 5 1

 j a a k  ,  y  i  5  2 j s i  P n
 k 5 1
 k ? i

 j a a k  ( i  5  1 ,  .  .  .  ,  n ) .

 The system (9) represents an autonomous dynamical
 system . 2 2  This formulation is easily implemented for path
 planning and control purposes ,  as shown in our previous
 work . 16–18  Since  b  is arbitrary ,  at regular points of the
 kinematic function ,  it can be determined from the
 desired motion velocity as a function of time .  Around
 and at kinematic singularities ,   b  is modified to yield a
 feasible joint velocity .  Note that thereby ,  the direction of
 motion is preserved continuously ,  as long as the null
 space function does not vanish .

 Equation (9) will be used below in the analysis of
 kinematic singularities .  We emphasize that this equation
 incorporates the instantaneous motion of the output link .
 This will help us in gaining important additional
 information regarding the behavior at kinematic
 singularities .

 2 . 2  The kinematic singularities under the SC
 parameterization
 In our previous work we described a classification of
 kinematic singularities within the framework of the SC
 parameterization . 1 8  The classification is based on the
 analysis of the elements of the null space function  n .
 These elements represent the relation between the
 output-link and the active-joint velocities ,  for the given
 instantaneous motion direction of the output-link .  We
 will show below that at some specific kinematic
 singularities there is always a velocity relation that
 guarantees the continuity of the inverse kinematic
 solution .  This ,  in turn ,  is related to the controllability of
 the parallel manipulator at kinematic singularities and is
 therefore motivated from a practical viewpoint .

 There are generally two large classes of velocity
 relations at a kinematic singularity which we called  Type
 A  and  Type B  velocity relation ,  respectively . 1 6  Type A
 relation yields a ‘‘self-motion . ’’ This term is familiar from

 studies on serial kinematically redundant manipulators .
 It is used to describe the state when the output link is
 motionless while one or more of the other links are
 moving continuously .  Below we shall apply this term in a
 broader sense ,  to cover also the state of motionless
 output-link and  instantaneously  moving intermittent
 links .  The type of self-motion just described will be
 refered to as a  tri y  ial self  - motion .  Next ,  we note that in
 the case of parallel manipulators ,  there is another ,
 ‘‘dual’’ type self-motion .  It is characterized by a motion
 of the output link (either instantaneous ,  or continuous)
 while all the active joints are immobilized . 1 8  This state
 will be called  dual self  - motion .

 The two types of self-motion can be distinguished by
 analyzing the elements of the null space function .  In the
 case of trivial self-motion ,  from the definition (10) it is
 apparent that the first element of  n  vanishes ,  and there is
 exactly one nonzero element among the rest .  This state
 occurs due to the vanishing of one of the diagonal
 elements  j aai .  The inverse kinematics becomes inde-
 terminate ,  with codimension one .  We have an ‘‘under-
 mobility’’ at hand .  On the other hand ,  in the case of a
 dual self-motion ,  the analysis of the null space function
 reveals that the first element (i . e .  the determinant of the
 diagonal matrix) is nonzero .  Hence ,  the inverse
 kinematics is solvable .  The rest of the elements of the
 null space function vanishes ,  which is due to the
 vanishing of all of the path-related elements  j s i  .  This
 indicates the indeterminateness of the direct kinematics ,
 and hence ,  shows the state of ‘‘overmobility . ’’ It is
 interesting to note that the two types of self-motions can
 be defined as Boolean functions over the elements of  $ s  f
 and  $ θ  f ,  when their nullity is expressed in binary form .
 Trivial self-motion is a logical ‘‘or’’ over the elements of
 $ θ  f ,  while dual self-motion is a logical ‘‘and’’ over the
 elements of  $ s  f .

 In the case when Type B velocity relation is
 established at a kinematic singularity ,  the null space
 function vanishes entirely .  This is a stationary point of
 the autonomous system (9) .  It is possible to distinguish
 further between two types of bifurcations :  one of them
 occurring at specific simultaneous singularities of both
 the inverse and the direct kinematics ,  and the
 other  –  due to inverse kinematic singularities with
 codimension over one . 1 8  Such analysis goes ,  however ,
 beyond the scope of the present work .

 The important result is that ,  under any of the two
 types of self-motion ,  a smooth path leading through the
 kinematic singularity can be obtained via the inverse
 kinematics solution (9) .

 3 .  THE SINGULARITIES OF THE DIRECT
 KINEMATICS
 From the discussion in the previous section it is clear that
 dual self-motion occurs at specific singularities of the
 direct kinematics .  Because of the continuous inverse
 kinematic solution obtained under the SC parameteriza-
 tion ,  we are motivated to analyze the motion also at
 other types of direct kinematic singularities .  We shall
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 exclude ,  however ,  the case of simultaneous inverse and
 direct kinematics singularities yielding a bifurcation-type
 velocity relation ,  since motion fades out .

 The following proposition shows that dual self-motion
 occurs at a specific subset of direct kinematics
 singularities .

 Proposition  2 :  Dual self-motion occurs only at those
 singularities of the direct kinematics ,  at which the
 output-link velocity  x Ù  ?  0  belongs to the kernel of  $ x  f .

 Proof :  The direct kinematics singularities are defined
 as det  $ x  f  5  0 .  On the other hand ,  the state of dual
 self-motion is characterized with  $ s  f s ~  5  0 , s ~  ?  0 .  From
 the two kinematic equations (2) and (5) it follows then
 that  $ x  fx Ù  5  0  must hold .  Q . E . D .

 It is apparent that the SC parameterization ‘‘masks’’ a
 large class of direct kinematics singularities ,  i . e .  all those
 direct kinematics singularities at which the instantaneous
 motion of the output link is out of Ker  $ x  f .  At such
 singularities ,  the velocity relation implies neither a
 self-motion nor an equilibrium .  In other words ,  the first
 element of the null space function is nonzero ,  and in
 addition ,  there is at least one other nonzero element .
 This means that ,  similarly to the case of self-motion ,  the
 solution (9) will yield a smooth path through the
 singularity at hand .

 4 .  ANALYSIS BASED ON THE EQUATION OF
 MOTION
 Inspite of the continuity of the inverse kinematics
 solution at the direct kinematics singularities discussed in
 the previous section ,  it would be appropriate to analyze
 for possible problems with regard to the torque
 requirement .

 First ,  recall that under dual self-motion the output-link
 moves due to the motion in the passive joints only .  This
 means that the analysis should include the state of the
 passive joints and a relation of this state to the already
 known quantities such as the mappings  $ x  f  and  $ θ  f .

 4 . 1  Passi y  e joint kinematics
 At this point we make the third and final assumption
 regarding the parallel manipulator’s structure .  Namely ,
 we shall assume that each of the  n  serial subchains has  k
 dof ,   k  2  1 among them being passive ,  and such that the
 system is statically determined at a non-singular
 configuration .  Let  f i   be the coordinates of all active and
 passive joints of the  i th serial sub-chain .  Similarly to the
 kinematic relations shown at the beginning in section 2 ,
 we can write

 w i ( x ,  f i )  5  0 ,  (11)

 where  w i  P  R k   is a vector-valued nonlinear function .
 Dif ferentiating equation (11) with respect to time ,  we
 obtain :

 $ x w i x ~  1  $ f i
 w i f Ù  i  5  0 .  (12)

 Without any loss of generality ,  we can assume that  θ a i   is
 the first element of  f i   i . e .,   f i  5  [ θ a i  ,  u  T

 pi ]
 T .  Then ,  the two

 mappings  $ x w i  P  R k 3 n   and  $ f i
 w i  P  5 k 3 k   can be written

 in a partitioned form ,  by employing equation (3) : *

 $ x w i  5 F  j xai

 J x p i
 G  (13)

 and

 $ f i w i  5 F  j a a i

 j a p i

 0
 J p p i

 G  (14)

 where  j xai   denotes the  i th row of  $ x  f ,  J xpi  P  5 ( k 2 1) 3 n ,
 j a p i  P  5 k 2 1   and  J p p i  P  5 ( k 2 1) 3 ( k 2 1) .

 4 . 2  The equation of motion
 The  unconstraint  equation of motion of each serial
 sub-chain can be written as :

 F τ a i

 0
 G  1  ( $ f i w i )

 T w i  5 F M a i ( f i )
 M p i ( f i )

 G f ̈  i  1 F c a i ( f i  ,  f ~  i )
 c p i ( f i  ,  f ~  i )

 G
 1 F g a i ( f i )

 g p i ( f i )
 G  (15)

 where  M ,  c  and  g  denote parts of the inertia matrix ,  the
 vector of Coriolis and centrifugal forces ,  and the gravity
 forces at the respective serial sub-chain .  Vector  w i

 denotes the Lagrange multiplier vector .   τ a i   is the joint
 torque which is to be determined .

 Next ,  assuming that the mass of the output link is
 distributed and attached to each of the serial sub-chains ,
 the constraint equation imposed over their motion can be
 written as :

 O n
 i 5 1

 ( $ x w i )
 T w i  5  0 .  (16)

 Note that the above form of the equation of motion is
 typical for  under - actuated  manipulators .  The constraint
 (16) renders the system ‘‘regularly’’ actuated .  Our goal ,
 however ,  is to represent the above equation of motion in
 such a form which helps explicitly displaying the
 potential problems arising at the direct kinematics
 singularities under consideration .

 Vector  w i   can be partitioned similarly to the
 partitioning of  f i  :   w i  5  [ w a i w

 T
 pi ]

 T .  Then ,  we solve for  w p i

 from the last  k  2  1 equations of equation (15) ,  as follows :

 w p i  5  J  2 T
 ppi d p i  (17)

 where
 d p i  5  M p i f ̈  i  1  c p i  1  g p i  .  (18)

 Substitute  w p i   from equation (17) into the equation of
 motion (15) and combine all  n  equations to obtain

 (19)

 τ  1  $ θ  fw a  5  d a  ,

 t  5  h τ a i j ,  w a  5  h w a i j ,  d a  5  h d a i j ,

 d a i  5  M a i f ̈  i  1  c a i  1  g a i  2  j  T
 api  J

 2 T
 ppi d p i

 ( i  5  1 ,  .  .  .  ,  n ) .

 The form of the equation of motion ,  as in equation (19) ,
 is suitable for the analysis .  First of all it is seen that the

 *  This equation becomes scalar under the assumption one
 active joint per sub-chain .
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 inverse kinematics cannot deteriorate the dynamics ,  since
 the mapping  $ θ  f  does not appear in an inverse form .  In
 order to conclude about the role of the direct kinematics ,
 consider the vector  w a .  From the constraint equation (16)
 and equation (17) ,  we obtain :

 ( $ x  f  ) T w a  1  O n
 i 5 1

 J  T
 xpi  J

 2 T
 ppi d p i  5  0 .  (20)

 It is apparent that  w a   will be feasible as long as the last
 equation is solvable .  In any other case ,  an infeasible
 torque will be produced through the equation of motion
 (19) .

 The general conclusion from this analysis is that for
 parallel manipulators ,  it is insuf ficient to use just the SC
 formulation ,  which in fact provides a singularity-
 consistent solution only with regard to the inverse
 kinematics .  A formulation which includes also the
 singularity-consistency of the direct kinematics is
 desirable .  It must be noted ,  however ,  that the
 consistency of the direct kinematics has to be analyzed
 over the dual space ,  which involves the state of the
 passive joints .  It is impossible to get the necessary
 information just from the mapping  $ x  f  that appears in
 the ‘‘conventional’’ velocity equation (2) .  This conclusion
 confirms our initial assumption that the singularity
 analysis of parallel manipulators should be based on the
 full state space .

 5 .  ILLUSTRATIVE EXAMPLES
 Two planar structures ,  a five-bar mechanism ,  and a
 planar three dof manipulator with revolute actuators will
 be used to illustrate the above theories .  In the
 simulations ,  the desired motion of both the active joints
 and the output link on the path is ensured at velocity
 level ,  by employing the command-generator type SC
 closed-loop controller . 1 8  Positions are derived through
 numerical integration by a fourth-order Runge – Kutta
 method with 0 . 01  s time step .  Accelerations are obtained
 by numerical dif ferentiation .  The passive joint positions
 are calculated from the geometrical relationship and
 thereafter dif ferentiated numerically to obtain the
 respective velocities and accelerations .  The whole set of
 joint variables is then substituted into the equations of

 Fig .  1 .  The five bar mechanism .

 motion (equations (19) and (20)) to finally obtain the
 joint torque .

 Kinematic singularities will be identified by means of
 det  $ x  f   and det  $ θ  f  which will be denoted as DK and IK ,
 respectively .

 5 . 1  The fi y  e - bar mechanism
 The five bar mechanism is shown in Figure 1 .  Point T is
 the output-point ,   a i  , l i   and  m i   denote the distance from
 the origin to the active joint ,  the arm length ,  and the rod
 length ,  respectively .  We shall present the result from
 computer simulated motion through the various types of
 kinematic singularities .  The output-point path is always
 linear .  No specific end-point on the path will be specified .
 The reason is that ,  under the SC parameterization ,  the
 motion is always cyclic .  Note that whenever the
 output-point reaches the workspace boundary ,  its motion
 is ‘‘reflected’’ back on the path and thus stays always
 within the workspace .  The velocity on the path is defined
 under the  natural motion  constraint , 2 3  with  b  5  const  5  1 .
 The derivation of the kinematic relations can be found in
 reference 18 .

 The dynamic parameters are the same in all
 simulations .  We assume that the links do not have any
 moments of inertia ,  and three mass points are assigned to
 the passive joints as :  one at the output-point (1  kg) ,  and
 two at the passive joints (0 . 01  kg) .  We assume also that
 the linkage is in a horizontal plane ,  and thus gravity
 terms are eliminated .

 With the first example ,  the geometry of the mechanism
 is :   l i  5  a i  5  m i  5  1  m .  The output-point moves on a
 horizontal linear path at a distance of 1  m from the
 origin .  Figure 2 shows the data .  The graph of the
 determinants shows that several trivial self-motions occur
 (at the points where the IK graph is zero) ,  and three
 direct kinematics singularities are passed (at the points
 where the DK graph is zero) .  Representative configura-
 tions of the mechanism are attached to the graph .  At one
 of the direct kinematics singularities (at about 9  s) a dual
 self-motion occurs .  This is apparent from the null space
 vector graph which displays the output-point (OP)
 velocity ,  and the two active joint velocities ( 4 2 and  4 3
 standing for the first and second active joint ,
 respectively) .  It is seen that the two active joint velocities
 are exactly zero ,  while the output point velocity is
 nonzero .  At the other two direct kinematics singularities
 no dual self-motion occurs .  From the torque graph it is
 seen that with the dual self-motion ,  the torque
 requirement is very high .  This is due to the
 ill-conditioning of equation (20) ,  and consequently ,  to
 the ill-conditioning of the equation of motion .  Note also
 that the dual self-motion continues for a relatively long
 period of time during which a chattering-type behavior is
 observed .  This means that ,  in practice ,  motion through
 this singularity might be impossible .  To see the torque
 requirement at the other two direct kinematic sin-
 gularities ,  we have to zoom in .  The result shown in
 Figure 3 suggests that again ,  the equation of motion
 becomes ill-conditioned  —  there are high peak torques .
 Notably ,  no chattering occurs ,  however .
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 Fig .  2 .  Motion along a horizontal linear path .

 Fig .  3 .  Zoom in at the two of the DK singularities .

 With the second example ,  the geometry of the five-bar
 mechanism is changed slightly with longer rods :
 m 1  5  m 2  5  1 . 12  m .  The motion is on a vertical path going
 through the origin .  The two sub-chains are moving
 symmetrically .  Figure 4 shows several consecutive
 configurations of the mechanism .  The motion starts at
 the configuration with negative  y  coordinate of the
 output-point .  Very soon a dual self-motion is performed .
 This is seen from the data in Figure 5 .  In fact ,  in order to
 avoid the necessity of zoom-in for the torque ,  the graphs

 Fig .  4 .  Motion of the five-bar mechanism on a vertical path .
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 Fig .  5 .  Motion along a vertical linear path .

 show the data just after the dual self motion .  It is seen
 that besides the dual self-motion ,  another direct
 kinematics singularity is encountered ,  when the two rods
 are aligned (the active joint angles are  2 π   and 0 ,
 respectively) .  At that singularity ,  however ,  equation (20)
 and hence ,  the equation of motion is well-conditioned .
 This can be implied from the smooth torque graph .  Thus ,
 there will be no problem to move through this direct
 kinematic singularity ,  in practice .  Note that finally ,  the
 motion ends up at a stationary point .

 The third example demonstrates a motion through a
 simultaneous singularity of the inverse and direct
 kinematics .  We note that this singularity does not imply a
 bifurcation ,  and hence ,  the inverse kinematic solution is
 expected not to vanish .  The link geometry is
 a i  5  m i  5  1  m ,   l 1  5  4 5  m ,   l 2  5  1  m .  The simulation data is
 presented in Figure 6 .  It is seen that the SC inverse
 kinematics delivers a smooth solution ,  however ,  at the
 direct kinematic singularities ,  the system is ill-
 conditioned ,  and the torque requirement is infeasible .

 5 . 2  The planar three dof manipulator with re y  olute
 actuators
 Figure 7 shows a planar three dof parallel manipulator
 which contains a mobile plate ,  a fixed plate and three

 serial sub-chains .  The position and orientation of the
 frame  X m  ,  attached to the center of gravity of the mobile
 plate ,  with respect to the frame  X o  ,  attached to the
 center of gravity of the fixed plate ,  are considered as the
 output .  The detailed description of the manipulator
 along with the major kinematic relations can be found in
 reference 4 .

 We assume the fixed and the mobile plates of the
 planar manipulator to be two isoscales triangles with
 sides equal to 2 . 0  m and 1 . 0  m ,  respectively .  The mass
 and inertia of the mobile plate are assumed to be 10 . 0  kg
 and 10 . 0  kg  m 2 ,  respectively .  The geometrical parameters
 are set as  l i  5  m i  5  0 . 7  m ( i  5  1 ,  2 ,  3) .  The mass
 corresponding to  m i   or  l i   is equal to 10 . 0  kg .  The SC
 parameterization of the path is linear ,  and the dynamic
 modeling of the manipulator is done considering each
 serial sub-chain as lumped mass linkages .

 The path chosen for the simulation contains the
 rotation of the mobile plate about its own axis while  X m

 always stays at the origin of  X o .  The velocity on the path
 is defined again under the natural motion constraint ,  with
 b  5  const  5  1 .  The initial configuration is symmetric ,  as is
 the resultant path (in terms of motions in the three serial
 sub-chains) .  We present therefore the results for a single
 sub-chain only (see Figure 8) .  It is clear from the plot of



 382  Dynamic analysis

 Fig .  6 .  Motion through simultaneous singularities of the inverse and direct kinematics .

 the determinants that the manipulator crossed a direct
 kinematics singularity on its path .  Note that under
 natural motion ,  the mobile plate’s angular velocity is
 proportional to det  $ θ  f .  The corresponding velocity plot
 implies then that the velocity relation is that of a dual

 Fig .  7 .  A three dof planar parallel manipulator .

 self-motion (the active-joint velocity  4 a3 is zero at the
 singularity) .  The plot of the torque at the active joint
 shows that the equation of motion is ill-conditioned at
 this specific singularity .  When zoomed in ,  a quick change
 in the sign of the torque becomes evident across the
 singular point ,  however ,  no chattering is observed .

 6 .  CONCLUSIONS
 Based on the singularity-consistent parameterization
 framework ,  we analyzed the motion at direct kinematics
 singularities for a broad class of parallel manipulators .
 The result obtained shows that taking into account the
 instantaneous motion direction of the output link ,
 additional insight can be gained for the possibility to
 move through the singularity at hand .  This complements
 a similar result obtained through the analysis of the
 inverse kinematics .

 We have shown that the singularities of the direct
 kinematics af fect the conditioning of the equation of
 motion .  This means that such singularities are to be
 analyzed over the dual space ,  which in turn involves the
 state of the passive joints .  It is impossible to conclude



 Dynamic analysis  383

 Fig .  8 .  Motion of the three dof planar parallel manipulator through a DK singularity .

 about the consistency of the direct kinematics just from
 the velocities of the active joints and at the output link .
 More specifically ,  it was shown that ,  depending on the
 instantaneous motion direction ,  at certain direct
 kinematics singularities it is possible to obtain a
 consistent solution in terms of torque .  This implies that
 in combination with the continuity of the SC inverse
 kinematic solution ,  motion through such direct kinemat-
 ics singularities is feasible .  The result obtained is useful
 for path planners to ensure paths that would cross the
 singularity ,  and hence ,  to avoid paths that yield the
 ill-conditioning of the equation of motion .
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