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SUMMARY

Based on the singularity-consistent parameterization
framework, we analyze motion at direct kinematics
singularities for a broad class of parallel manipulators. It
will be shown that taking into account the instantaneous
motion direction of the output link, additional insight can
be gained for the possibility to move through such
singularities. We argue that direct kinematics sin-
gularities should be analyzed over the dual space which,
in turn, involves the state of the passive joints. We
perform such an analysis based on the conditioning of
the equation of motion. It is shown that, depending on
the instantaneous motion direction, at certain direct
kinematics singularities it is possible to obtain a
consistent solution in terms of torque. This implies that
in combination with the continuity of the singularity-
consistent inverse kinematic solution, motion through
such direct kinematics singularities is feasible.

KEYWORDS: Parallel manipulators; Dynamic analysis; Para-
metrization framework.

1. INTRODUCTION
The singularity analysis of parallel manipulators has
drawn considerable attention in literature.”” Pierrot et
al> mentioned two types of singularities, called
overmobility and undermobility, which correspond to the
indeterminacy of the direct and inverse kinematics,
respectively. Gosselin and Angeles* added a third type,
when both the direct and the inverse kinematics become
simultaneously indeterminate. To identify any of these
three types of singularities, it is sufficient to know the
position of the active joints only. Recently, some other
classifications appeared which take into account the
position of the passive joints as well.°® The work of
Zlatanov et al.”® is helpful in obtaining additional
insights into the problem. Some authors note, however,
that their classification has an inherent redundancy since
the various types of singularities occur always in pairs.’
Notably, all the singularity analysis in literature is
based on the static state of the manipulator. On the other
hand, a number of recent studies show that it is possible
to move through or to initialize a motion in a certain
direction at a singularity.'®"* In our opinion, there is a
clear implication for future singularity analysis from
those studies: the analysis should be done over the phase
space rather than over the configuration space. Although
such an analysis is not the ultimate goal of our present

work, we shall provide some examples to justify the
above assumption. Especially, with regard to singularities
of parallel manipulators, it can be shown that some of
the “redundant” classification groups in the work of
Zlatanov et al. have then a distinct meaning.

The aim of this paper is to present a motion feasibility
study at and around direct kinematics singularities which
are relevant to a broad class of parallel manipulators.
Our study will be based upon our recent work on a new,
general method for solving the inverse kinematic
problem of nonredundant serial-link manipulators. We
called the method'™"” singularity-consistent (SC).*
Accordingly, the kinematic function is parameterized and
a nonlinear inverse kinematics solution is obtained in
terms of an autonomous differential equation. Under the
parameterization, some of the kinematic singularities can
be regarded as regular points. Thus, a stable motion can
be guaranteed, even in the case when the manipulator
follows a path passing close to, or through such
singularities. Since the SC approach is general, it can be
applied in a straightforward manner to parallel
manipulators as well."® More specifically, we have shown
that by means of a closed-loop command generator type
controller, it is possible to generate feasible paths that
would reconfigure the mechanism, moving thereby
through a so-called instantaneous self-motion singularity.
This has been also experimentally verified at our lab"
with a six degree-of-freedom parallel robot HEXA.>*
Other types of singularities, such as dual self-motion and
bifurcation, have been also discussed, but the motion
feasibility remains to be studied.

The paper is organized as follows: In section 2 we
present some background on the singularity-consistent
parameterization for a parallel manipulator. Section 3
provides some new insight regarding singularities of the
direct kinematics. In section 4, analysis based on the
equation of motion is performed. Illustrative examples
are presented in section 5. Finally, the conclusions can be
found in section 6.

2. PRELIMINARIES: THE SINGULARITY-
CONSISTENT PARAMETERIZATION OF THE
KINEMATICS

In this paper, we consider a n dof nonredundant parallel
manipulator which consists of two rigid bodies, one fixed

*4“SC” will be used below as an acronym for ‘singularity-
consistent.”
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another mobile, connected in parallel by a number of
serial sub-chains. The kinematics of the parallel
manipulator can be represented by the following
nonlinear homogeneous equation:

fx, 6,)=0 (1

which reflects the physical phenomenon of a closed
kinematic chain.**' In the above notation 6, € R”
denotes the position of the active joints (the actuated
joints), x € N" stands for the output-link coordinates i.e.
the coordinates of the mobile body, and f: )" — NR" is a
smooth vector-valued function. The subscript a, as in the
above notation, will be used throughout the paper to
denote an active joint variable. This is to be distinguished
from passive joint variables which will be denoted by the
subscript p.

Velocity-based control of a parallel manipulator

utilizes the following equation, obtained after
differentiation of equation (1):
@xf(x) au)"': + @9f(x) oa)éa =0 (2)

where 9., denotes the differentiation with respect to (°).
In coordinate form, both differential mappings &, f and
Dof are represented by n X n matrices.

Note that the last equation is valid for any type of
parallel manipulator. In our further discussion, we shall
make several assumptions regarding the parallel
manipulator’s structure. These assumptions will gradually
restrict the scope but mainly from a theoretical
viewpoint. Many parallel manipulators existing in
practice will be covered by our framework. In such a
sense, the first and weakest assumption we make is that
the inverse kinematics of the parallel manipulator is
solvable in closed form. Then, the following proposition
establishes an important property of one of the above
mappings:

Proposition 1: The mapping Jaf is block-diagonal.

Proof: Since the inverse kinematics of the parallel
manipulator is solvable in closed form, we can express
equation (1) in more explicit separable form as follows:

€:(0.;) = mi(x) (3)

where 6, is the vector of the active joint angles in the ith
serial sub-chain; e; and m; are nonlinear vector-valued
functions of appropriate dimensions. Note that at this
stage we make no assumption about the number of active
joints per serial sub-chain. The above form of equation
(1) clearly indicates that it is possible to express equation
(2) in such a way that there is no term in Duf
cross-coupling the active joint angles of different
sub-chains, which in turn implies Dyf is block diagonal.
Q.E.D.
The second assumption regarding the parallel
manipulator’s structure is that it comprises one active
joint per serial sub-chain. A large class of parallel-link
manipulators including spatial, such as the HEXA
robot,>* as well as planar ones, such as the five bar
mechanism and the 3 dof manipulator used as illustrative
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examples below,* is covered by this assumption. For this
class, the mapping Z,f can be written in a diagonal form:

@ef = dlag [jaal jaaZ jaan]'

Here, a double a subscript has been used to express the
fact that the active joint space is mapped onto itself.

2.1 The nonlinear inverse kinematic solution

Recall that closed-loop velocity-based control of
mechanical manipulators usually relies upon both the
inverse kinematics and the direct kinematic solutions. In
the case of a parallel manipulator, these solutions are
derived in a straightforward manner from equation (2).
A problem arises, however, when any of the mappings
9.f, Dof, or both become ill-conditioned. This is the
well-known singularity problem. In our further discussion
we shall refer to the singularities of %, f and Jyf as the
singularities of the direct and the inverse kinematics,
respectively. In the case when both of these mappings
are singular, we shall speak about simultaneous
singularities of the inverse and direct kinematics. This
notion is in accordance with the three types of
singularities defined by Gosselin and Angeles.*

To alleviate the above mentioned singularity problem,
we proposed a reformulation of the kinematics under the
assumption that the output-link path can be
parameterized.'® Suppose that x =g(s) is the para-
meterization, where g:9 — N" is a smooth function and
the parameter s is not time. We will assume that the
parameterizations does not induce singularities and
hence, %,g #0 along the path. Then, the kinematic
function is rewritten as:

f(g(s), 6.)=0. “4)
After differentiation, we obtain
DS (8(s), 6.5 + Daf (g(s), 6.)0, =0 )

where the mapping 9.f =[ja Jo jwm]" is an
n-dimensional vector-valued function. It is apparent that
with this representation, the system’s dimension is
decreased, as compared to the dimension of the
“conventional” equation (2).

Besides decreased dimension, the parameterization
yields another significant advantage: at some kinematic
singularities a continuous inverse kinematic solution can
be obtained. This can be explained as follows. First, we
augment the active-joint space by the path parameter s:

q=1s, 0:]". (6)
Equation (4) can be rewritten as
h(g)=0 7

where h: #"*'— ®" is smooth because it is composed of

* See reference 4 for other examples.
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two smooth mappings. Next, we introduce a linear local
model at q:

Z,h(q)g =0 @®)

where the tangential space mapping %,k is composed of
9.f and Y,f, and can be represented as

jsl jaul 0
js2 jaa2

Z,h(q) =
jsn 0 jaan

Equation (8) denotes a homogeneous n X (n +1)-
dimensional system. A set of solutions exists that can be
written as follows:

4 =bn(q) )

where b is an arbitrary scalar and n e W' is the
so-called null space function. This function can be written

as
T

n(g)=[ve vi -+ wv],

n ) ) n ] ) 10

Vo = ]_[ ]uak) v; = _]Si ]_[ ]aak (l = 1) ceey I’l). ( )
k=1 k=1
k##i

The system (9) represents an autonomous dynamical
system.?” This formulation is easily implemented for path
planning and control purposes, as shown in our previous
work.'®"® Since b is arbitrary, at regular points of the
kinematic function, it can be determined from the
desired motion velocity as a function of time. Around
and at kinematic singularities, b is modified to yield a
feasible joint velocity. Note that thereby, the direction of
motion is preserved continuously, as long as the null
space function does not vanish.

Equation (9) will be used below in the analysis of
kinematic singularities. We emphasize that this equation
incorporates the instantaneous motion of the output link.
This will help us in gaining important additional
information regarding the behavior at kinematic
singularities.

2.2 The kinematic singularities under the SC
parameterization

In our previous work we described a classification of
kinematic singularities within the framework of the SC
parameterization.'”® The classification is based on the
analysis of the elements of the null space function n.
These elements represent the relation between the
output-link and the active-joint velocities, for the given
instantaneous motion direction of the output-link. We
will show below that at some specific kinematic
singularities there is always a velocity relation that
guarantees the continuity of the inverse kinematic
solution. This, in turn, is related to the controllability of
the parallel manipulator at kinematic singularities and is
therefore motivated from a practical viewpoint.

There are generally two large classes of velocity
relations at a kinematic singularity which we called Type
A and Type B velocity relation, respectively.'® Type A
relation yields a “‘self-motion.” This term is familiar from
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studies on serial kinematically redundant manipulators.
It is used to describe the state when the output link is
motionless while one or more of the other links are
moving continuously. Below we shall apply this term in a
broader sense, to cover also the state of motionless
output-link and instantaneously moving intermittent
links. The type of self-motion just described will be
refered to as a trivial self-motion. Next, we note that in
the case of parallel manipulators, there is another,
“dual” type self-motion. It is characterized by a motion
of the output link (either instantaneous, or continuous)
while all the active joints are immobilized."® This state
will be called dual self-motion.

The two types of self-motion can be distinguished by
analyzing the elements of the null space function. In the
case of trivial self-motion, from the definition (10) it is
apparent that the first element of n vanishes, and there is
exactly one nonzero element among the rest. This state
occurs due to the vanishing of one of the diagonal
elements j,,; The inverse kinematics becomes inde-
terminate, with codimension one. We have an ‘“‘under-
mobility” at hand. On the other hand, in the case of a
dual self-motion, the analysis of the null space function
reveals that the first element (i.e. the determinant of the
diagonal matrix) is nonzero. Hence, the inverse
kinematics is solvable. The rest of the elements of the
null space function vanishes, which is due to the
vanishing of all of the path-related elements j;,. This
indicates the indeterminateness of the direct kinematics,
and hence, shows the state of ‘“overmobility.” It is
interesting to note that the two types of self-motions can
be defined as Boolean functions over the elements of Zf
and yf, when their nullity is expressed in binary form.
Trivial self-motion is a logical “or” over the elements of
Dyf, while dual self-motion is a logical “and” over the
elements of 9, f.

In the case when Type B velocity relation is
established at a kinematic singularity, the null space
function vanishes entirely. This is a stationary point of
the autonomous system (9). It is possible to distinguish
further between two types of bifurcations: one of them
occurring at specific simultaneous singularities of both
the inverse and the direct kinematics, and the
other —due to inverse kinematic singularities with
codimension over one.'® Such analysis goes, however,
beyond the scope of the present work.

The important result is that, under any of the two
types of self-motion, a smooth path leading through the
kinematic singularity can be obtained via the inverse
kinematics solution (9).

3. THE SINGULARITIES OF THE DIRECT
KINEMATICS

From the discussion in the previous section it is clear that
dual self-motion occurs at specific singularities of the
direct kinematics. Because of the continuous inverse
kinematic solution obtained under the SC parameteriza-
tion, we are motivated to analyze the motion also at
other types of direct kinematic singularities. We shall
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exclude, however, the case of simultaneous inverse and
direct kinematics singularities yielding a bifurcation-type
velocity relation, since motion fades out.

The following proposition shows that dual self-motion
occurs at a specific subset of direct kinematics
singularities.

Proposition 2: Dual self-motion occurs only at those
singularities of the direct kinematics, at which the
output-link velocity ¥ # 0 belongs to the kernel of 9, f.

Proof: The direct kinematics singularities are defined
as det Z.f=0. On the other hand, the state of dual
self-motion is characterized with &, fs =0, s #0. From
the two kinematic equations (2) and (5) it follows then
that 9, f¥ = 0 must hold. Q.E.D.

It is apparent that the SC parameterization ‘“‘masks” a
large class of direct kinematics singularities, i.e. all those
direct kinematics singularities at which the instantaneous
motion of the output link is out of Ker & f. At such
singularities, the velocity relation implies neither a
self-motion nor an equilibrium. In other words, the first
element of the null space function is nonzero, and in
addition, there is at least one other nonzero element.
This means that, similarly to the case of self-motion, the
solution (9) will yield a smooth path through the
singularity at hand.

4. ANALYSIS BASED ON THE EQUATION OF
MOTION

Inspite of the continuity of the inverse kinematics
solution at the direct kinematics singularities discussed in
the previous section, it would be appropriate to analyze
for possible problems with regard to the torque
requirement.

First, recall that under dual self-motion the output-link
moves due to the motion in the passive joints only. This
means that the analysis should include the state of the
passive joints and a relation of this state to the already
known quantities such as the mappings %, f and %,f.

4.1 Passive joint kinematics

At this point we make the third and final assumption
regarding the parallel manipulator’s structure. Namely,
we shall assume that each of the n serial subchains has k
dof, kK — 1 among them being passive, and such that the
system is statically determined at a non-singular
configuration. Let ¢; be the coordinates of all active and
passive joints of the ith serial sub-chain. Similarly to the
kinematic relations shown at the beginning in section 2,
we can write

¢i(xy ¢z) :0’ (11)

where ¢; € W* is a vector-valued nonlinear function.
Differentiating equation (11) with respect to time, we
obtain:

DX + 9¢,-€0i (i’i =0. (12)

Without any loss of generality, we can assume that 6,; is
the first element of ¢, i.e., ¢; = [6,;, 6)]". Then, the two

Dynamic analysis

mappings Z.¢, € " and ¢ € #* can be written
in a partitioned form, by employing equation (3):*

jxai
@X ; = |: :| 13
@ 1, 13)
and
jaai 0
@@%’ = [ . J ] (14)

api pp

where j,,; denotes the ith row of %f, J,, € R D",
Jupr € BV and I, e GEDRED,

4.2 The equation of motion
The unconstraint equation of motion of each serial
sub-chain can be written as:

[ cmerm=[ oo [0 )]

[

where M, ¢ and g denote parts of the inertia matrix, the
vector of Coriolis and centrifugal forces, and the gravity
forces at the respective serial sub-chain. Vector w;
denotes the Lagrange multiplier vector. 7, is the joint
torque which is to be determined.

Next, assuming that the mass of the output link is
distributed and attached to each of the serial sub-chains,
the constraint equation imposed over their motion can be
written as:

(15)

> (Do) w; = 0. (16)
i=1
Note that the above form of the equation of motion is
typical for under-actuated manipulators. The constraint
(16) renders the system “regularly” actuated. Our goal,
however, is to represent the above equation of motion in
such a form which helps explicitly displaying the
potential problems arising at the direct kinematics
singularities under consideration.

Vector w; can be partitioned similarly to the
partitioning of ¢;: w; = [w,w.]". Then, we solve for w,,
from the last k — 1 equations of equation (15), as follows:

(17)
(18)

Substitute w,; from equation (17) into the equation of
motion (15) and combine all n equations to obtain

T+ Ypfw,=d,,
T ={Tah, W = wah, dy = {dait,
doi = Myihi + Cai + 8ai = Japid ppithpi
i=1,...,n).

Wy =J ;Jdpi
where
dpi = Mpid)i + cpi + gpi-

(19)

The form of the equation of motion, as in equation (19),
is suitable for the analysis. First of all it is seen that the

*This equation becomes scalar under the assumption one
active joint per sub-chain.
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inverse kinematics cannot deteriorate the dynamics, since
the mapping %,f does not appear in an inverse form. In
order to conclude about the role of the direct kinematics,
consider the vector w,. From the constraint equation (16)
and equation (17), we obtain:

(@xf)Twa + E eri-’;p?dpi = 0 (20)
i=1

It is apparent that w, will be feasible as long as the last
equation is solvable. In any other case, an infeasible
torque will be produced through the equation of motion
(19).

The general conclusion from this analysis is that for
parallel manipulators, it is insufficient to use just the SC
formulation, which in fact provides a singularity-
consistent solution only with regard to the inverse
kinematics. A formulation which includes also the
singularity-consistency of the direct kinematics is
desirable. It must be noted, however, that the
consistency of the direct kinematics has to be analyzed
over the dual space, which involves the state of the
passive joints. It is impossible to get the necessary
information just from the mapping &, f that appears in
the “conventional” velocity equation (2). This conclusion
confirms our initial assumption that the singularity
analysis of parallel manipulators should be based on the
full state space.

5. ILLUSTRATIVE EXAMPLES

Two planar structures, a five-bar mechanism, and a
planar three dof manipulator with revolute actuators will
be wused to illustrate the above theories. In the
simulations, the desired motion of both the active joints
and the output link on the path is ensured at velocity
level, by employing the command-generator type SC
closed-loop controller.'”® Positions are derived through
numerical integration by a fourth-order Runge-Kutta
method with 0.01 s time step. Accelerations are obtained
by numerical differentiation. The passive joint positions
are calculated from the geometrical relationship and
thereafter differentiated numerically to obtain the
respective velocities and accelerations. The whole set of
joint variables is then substituted into the equations of

\
e
(‘{ base X @
B TN
L l
2 b,y b, 'l am
x
0
pl
Wy ™
p2
rod
T

@ actuated joint

Fig. 1. The five bar mechanism.

@ passive joint
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motion (equations (19) and (20)) to finally obtain the
joint torque.

Kinematic singularities will be identified by means of
det 9, f and det 9, f which will be denoted as DK and IK,
respectively.

5.1 The five-bar mechanism

The five bar mechanism is shown in Figure 1. Point T is
the output-point, a;, /; and m; denote the distance from
the origin to the active joint, the arm length, and the rod
length, respectively. We shall present the result from
computer simulated motion through the various types of
kinematic singularities. The output-point path is always
linear. No specific end-point on the path will be specified.
The reason is that, under the SC parameterization, the
motion is always cyclic. Note that whenever the
output-point reaches the workspace boundary, its motion
is “reflected” back on the path and thus stays always
within the workspace. The velocity on the path is defined
under the natural motion constraint,?® with b = const = 1.
The derivation of the kinematic relations can be found in
reference 18.

The dynamic parameters are the same in all
simulations. We assume that the links do not have any
moments of inertia, and three mass points are assigned to
the passive joints as: one at the output-point (1 kg), and
two at the passive joints (0.01 kg). We assume also that
the linkage is in a horizontal plane, and thus gravity
terms are eliminated.

With the first example, the geometry of the mechanism
is: ;=a;,=m;=1m. The output-point moves on a
horizontal linear path at a distance of 1m from the
origin. Figure 2 shows the data. The graph of the
determinants shows that several trivial self-motions occur
(at the points where the IK graph is zero), and three
direct kinematics singularities are passed (at the points
where the DK graph is zero). Representative configura-
tions of the mechanism are attached to the graph. At one
of the direct kinematics singularities (at about 9s) a dual
self-motion occurs. This is apparent from the null space
vector graph which displays the output-point (OP)
velocity, and the two active joint velocities (#2 and #3
standing for the first and second active joint,
respectively). It is seen that the two active joint velocities
are exactly zero, while the output point velocity is
nonzero. At the other two direct kinematics singularities
no dual self-motion occurs. From the torque graph it is
seen that with the dual self-motion, the torque
requirement is very high. This is due to the
ill-conditioning of equation (20), and consequently, to
the ill-conditioning of the equation of motion. Note also
that the dual self-motion continues for a relatively long
period of time during which a chattering-type behavior is
observed. This means that, in practice, motion through
this singularity might be impossible. To see the torque
requirement at the other two direct kinematic sin-
gularities, we have to zoom in. The result shown in
Figure 3 suggests that again, the equation of motion
becomes ill-conditioned — there are high peak torques.
Notably, no chattering occurs, however.
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With the second example, the geometry of the five-bar
mechanism is changed slightly with longer rods:
my, =m,=1.12 m. The motion is on a vertical path going
through the origin. The two sub-chains are moving
symmetrically. Figure 4 shows several consecutive
configurations of the mechanism. The motion starts at
the configuration with negative y coordinate of the
output-point. Very soon a dual self-motion is performed.
This is seen from the data in Figure 5. In fact, in order to
avoid the necessity of zoom-in for the torque, the graphs

configurations

y[m]
<)

2 -15 1 05 0 05 1 15 2
x [m]

Fig. 4. Motion of the five-bar mechanism on a vertical path.
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Fig. 5. Motion along a vertical linear path.

show the data just after the dual self motion. It is seen
that besides the dual self-motion, another direct
kinematics singularity is encountered, when the two rods
are aligned (the active joint angles are —7 and 0,
respectively). At that singularity, however, equation (20)
and hence, the equation of motion is well-conditioned.
This can be implied from the smooth torque graph. Thus,
there will be no problem to move through this direct
kinematic singularity, in practice. Note that finally, the
motion ends up at a stationary point.

The third example demonstrates a motion through a
simultaneous singularity of the inverse and direct
kinematics. We note that this singularity does not imply a
bifurcation, and hence, the inverse kinematic solution is
expected not to vanish. The link geometry is
a;=m;=1m, [, =V5m, [, =1 m. The simulation data is
presented in Figure 6. It is seen that the SC inverse
kinematics delivers a smooth solution, however, at the
direct kinematic singularities, the system is ill-
conditioned, and the torque requirement is infeasible.

5.2 The planar three dof manipulator with revolute
actuators

Figure 7 shows a planar three dof parallel manipulator
which contains a mobile plate, a fixed plate and three

4
time 8]

serial sub-chains. The position and orientation of the
frame X,,,, attached to the center of gravity of the mobile
plate, with respect to the frame X,, attached to the
center of gravity of the fixed plate, are considered as the
output. The detailed description of the manipulator
along with the major kinematic relations can be found in
reference 4.

We assume the fixed and the mobile plates of the
planar manipulator to be two isoscales triangles with
sides equal to 2.0 m and 1.0 m, respectively. The mass
and inertia of the mobile plate are assumed to be 10.0 kg
and 10.0 kg m?, respectively. The geometrical parameters
are set as L=m;=07m (i=1,2,3). The mass
corresponding to m; or [; is equal to 10.0kg. The SC
parameterization of the path is linear, and the dynamic
modeling of the manipulator is done considering each
serial sub-chain as lumped mass linkages.

The path chosen for the simulation contains the
rotation of the mobile plate about its own axis while X,
always stays at the origin of X,. The velocity on the path
is defined again under the natural motion constraint, with
b = const = 1. The initial configuration is symmetric, as is
the resultant path (in terms of motions in the three serial
sub-chains). We present therefore the results for a single
sub-chain only (see Figure 8). It is clear from the plot of
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Fig. 6. Motion through simultaneous singularities of the inverse and direct kinematics.

the determinants that the manipulator crossed a direct
kinematics singularity on its path. Note that under
natural motion, the mobile plate’s angular velocity is
proportional to det Yyf. The corresponding velocity plot
implies then that the velocity relation is that of a dual

fixed plate

@ actuated joint e  passive joint

Fig. 7. A three dof planar parallel manipulator.

self-motion (the active-joint velocity #a3 is zero at the
singularity). The plot of the torque at the active joint
shows that the equation of motion is ill-conditioned at
this specific singularity. When zoomed in, a quick change
in the sign of the torque becomes evident across the
singular point, however, no chattering is observed.

6. CONCLUSIONS

Based on the singularity-consistent parameterization
framework, we analyzed the motion at direct kinematics
singularities for a broad class of parallel manipulators.
The result obtained shows that taking into account the
instantaneous motion direction of the output link,
additional insight can be gained for the possibility to
move through the singularity at hand. This complements
a similar result obtained through the analysis of the
inverse kinematics.

We have shown that the singularities of the direct
kinematics affect the conditioning of the equation of
motion. This means that such singularities are to be
analyzed over the dual space, which in turn involves the
state of the passive joints. It is impossible to conclude
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Fig. 8. Motion of the three dof planar parallel manipulator through a DK singularity.

about the consistency of the direct kinematics just from
the velocities of the active joints and at the output link.
More specifically, it was shown that, depending on the
instantaneous motion direction, at certain direct
kinematics singularities it is possible to obtain a
consistent solution in terms of torque. This implies that
in combination with the continuity of the SC inverse
kinematic solution, motion through such direct kinemat-
ics singularities is feasible. The result obtained is useful
for path planners to ensure paths that would cross the
singularity, and hence, to avoid paths that yield the
ill-conditioning of the equation of motion.
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