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Magnetic tunnel junctions with the structure of Al2O3 s0001d/Pt s111d 20 nm/Ni80Fe20 s111d 50
nm/Al 1.6 nm–O/Co75Fe25 4 nm/Ir22Mn78 10 nm/Ni80Fe20 30 nm were fabricated using UHV
sputtering and photolithography process. As the annealing temperature increased up to 250 °C,
tunnel magnetoresistancesTMRd ratio at 1 mV bias increased from 28% to 43% fortox=180 s
plasma oxidation and theV±1/2, at which the zero bias TMR value is halved, is1640 mV and
2650 mV for positive and negative bias voltages, respectively. The bias-voltage dependence of
TMR could be explained in terms of the relationship withV±1/2 and the interface of the
ferromagnetic electrode and the Al–O insulating layer.V+1/2, which reflects the bottom
ferromagnetic electrode-barrier interface state, changes with plasma oxidation time, whileV−1/2,
which corresponds to top ferromagnetic electrode-barrier interface, hardly changes. ©2005
American Institute of Physics. fDOI: 10.1063/1.1870104g

Magnetic tunnel junctionssMTJsd have been extensively
investigated due to their fertile physics and potential appli-
cations since the discovery of a large tunnel magnetoresis-
tancesTMRd ratio at room temperature.1,2 One of the main
problems in application of MTJs is the dramatic decrease of
TMR ratio with applied bias voltage.2 It is reported that the
decrease of TMR ratio with bias voltage results from
voltage-dependent density of state at the Fermi level,3,4 elec-
tronic structure of ferromagneticsFMd electrode, and mag-
non excitation at the metal-barrier interface.5 Experimental
results show, however, that the oxidation condition of the
tunnel junctions also influences its bias-voltage dependence.
Zhang and White6 explained successfully the voltage and
temperature dependence of TMR through two-step tunneling
via defect states such as magnetic impurities and metal par-
ticles. Conclusively, the bias-voltage dependence of TMR is
strongly related not only to the quality of the interfaces and
barrier but also to the FM electrode.

It is reported that metallic Al layer grows epitaxially on
NiFe s111d layer in spite of the large lattice mismatch
s,12%d,7 which suggests that metallic Al layer can be
grown on NiFes111d without any high-angle grain bound-
aries so that a relatively uniform Al–O insulating layer and
clean FM layer-insulator interfaces can be formed compared
to the polycrystalline MTJs. Therefore, in this work, we aim
at improving the bias-voltage dependence of TMR through
epitaxially grown bottom FM electrode and uniform tunnel
barrier resulting from oxidation of the metallic Al layer de-
posited on the epitaxially grown electrode. Furthermore, we
discuss the changes ofV±1/2, at which the zero bias TMR
value is halved, with plasma oxidation time at different an-
nealing temperatures in terms of interface between FM elec-
trode and Al–O insulating layer, which has not been reported
systematically.

MTJs were prepared by magnetron sputtering on Al2O3
s0001d substrates. The stacking structure of multilayers was

Al2O3 s0001d/Pt s111d 20 nm/Ni80Fe20 s111d 50 nm/Al 1.6
nm–O/Co75Fe25 4 nm/Ir22Mn78 10 nm /Ni80Fe20 30 nm. Prior
to deposition, Al2O3 s0001d substrates were heated up to
850 °C for 30 min to rearrange the surface structure and the
Pt buffer layer was deposited at 300 °C. After cooling down,
the other layers were deposited at room temperaturesRTd.
All the deposition processes were done at a base pressure of
about 1310−6 Pa without breaking vacuum. In order to ob-
tain epitaxially grown films, the buffer layersPtd and the
bottom FM electrodesNi80Fe20d were sputtered at the slow
rate of 0.06 and 0.03 nm/s, respectively. After sputtering of
ultrathin Al layers, the surface was oxidized by inductively
coupled plasma in a mixed atmosphere of 0.25 Pa Ar and
0.75 Pa O2. Plasma oxidation time was changed from 120 to
300 s. Tunnel junctions were fabricated using microfabrica-
tion process combined with Ar ion-beam etching and CHF3
reactive ion etching. Crystallographic properties were exam-
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FIG. 1. sad The f scan andsbd LEED pattern of Al2O3 s0001d /Pt s111d 20
nm/Ni80Fe20 s111d 20 nm.
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ined using x-ray diffractionsXRDd and low energy electron
diffraction sLEEDd. Scanning tunnel microscopysSTMd im-
ages were examined without breaking vacuum in order to
investigate the growth mode, surface morphology, and
roughness. TMR loops and current-voltagesI-Vd curves were
measured at RT by a four-probe method. The bias-voltage
dependence of TMR was obtained fromI-V curves at parallel
and antiparallel magnetization configurations between the
top and bottom FM electrodes.

The rocking curves measured for the Pts111d and the
Ni80Fe20 s111d peaks showed the full width at half maximum
of 0.04° and 0.4°, respectively. Figure 1 shows x-ray diffrac-
tion f scansad and LEED patternssbd of the Al2O3 s0001d/Pt
s111d 20 nm/Ni80Fe20 s111d 20 nm. From the peak positions
of Pt s111d and Ni80Fe20 s111d with respect to those of Al2O3
s0001d and their LEED patterns, it is confirmed that Pts111d
and NiFe s111d ffcc structureg grow epitaxially on Al2O3
s0001d fcorundrum structureg. However, the sixfold symme-
try from Pt s111d and Ni80Fe20 s111d observed from the x-ray
diffraction f scansfFig. 1sadg indicates twin epitaxy with
some grains rotated by 180° about thef111g pole with respect
to others.8

Figure 2 shows STM images and their cross section pro-
files of sad Pt, sbd Ni80Fe20, and scd Al with structure of the
Al2O3 s0001d /Pt s111d 20 nm/Ni80Fe20 s111d 50 nm/Al 1.6
nm without breaking vacuum. As can be seen in Fig. 2sad, Pt
s111d grew in layer-by-layer mode on Al2O3 s0001d substrate
and its surface roughness is 0.3 nm. On the other hand, the
roughness of Ni80Fe20 s111d deposited on Pts111d increased
to 0.9 nmfFig. 2sbdg. This abrupt increase is probably due to
the large difference of lattice parametersaNiFe

=0.355 nm,aPt=0.392 nmd. The roughness of Al 1.6 nm,
which is shown in Fig. 2scd, is almost the same as that of
Ni80Fe20 s111d. It is noted that the Al layer is grown densely
on Ni80Fe20 s111d and its morphology is similar to that of
Ni80Fe20 s111d.

The changes of TMR ratio, barrier widthsdd, average
barrier heightsFd, and barrier height symmetrysDfd with
oxidation time at different annealing temperatures are shown
in Fig. 3sad. For a sample oxidized fortox=120 s, the in-
crease of TMR ratio was small and average barrier height
and barrier width could not be deduced because itsI-V curve
was not able to be fitted by Brinkman’s equation, which sug-
gests that metallic Al remains at interface between the bot-
tom FM electrode and the Al–O insulating layer before and
after annealing. As the annealing temperature increased up to
250 °C for 1 hfFig. 3sadg, the TMR ratio increased from 28%

to 43% for tox=180 s oxidation time. An average barrier
height sFd increased from 2.4 up to about 3 eV and the
differenceDf between bottom barrier heightsf1d and top
barrier heightsf2d decreased, which means that the barrier
shape becomes near to a rectangular potential barrier after
annealing. The effective barrier thickness decreased from 1.0
to 0.9 nm, which suggested homogeneity of Al–O layer and
sharpening of the FM/I interfaces due to the annealing. For
samples oxidized fortox=240 and 300 s, smaller TMR ratios
and largerDf were observed compared to those of a sample
for tox=180 s due to the oxidized FM which might cause a
decrease in spin polarization of the bottom FM electrode and
barrier height at interface between the bottom FM electrode
and Al–O insulating layer.

The normalized resistance-voltage curves with oxidation
time are described in Fig. 3sbd. The left column and right one
represent curves of before and after annealing, respectively.
In our experiments, the direction of current is from the bot-
tom electrode to the top electrode when the positive bias
voltage is applied. Therefore, it is worth noting that, consid-
ering the report of Brinkman, Dynes, Rowell,9 the positive
bias region reflects bottom barrier heightsf1d while the
negative bias region reflects top barrier heightsf2d. The oxi-
dation condition can be estimated by the shape of conduc-
tance or resistance curve10 as well as by the TMR ratio and
barrier height symmetryDf; the strong plasma oxidation can
produce magnetic oxide at the interface between the bottom
FM layer and Al–O layer, so that bottom barrier heightsf1d
decreases. Similarly, when it is under oxidized and the Al
layer is not fully oxidized, the right side of resistance is

FIG. 2. STM images ofsad Pt, sbd Ni80Fe20, and scd Al surfaces and cross
section profiles of the Al2O3 s0001d/Pt s111d 20 nm/Ni80Fe20 s111d 50 nm/Al
1.6 nm. The scan area is 200 nm3200 nm.

FIG. 4. The normalized TMR ratio vs dc bias-voltage curves measured at
RT with annealing forsad tox=120 s andsbd tox=180 s.

FIG. 3. sad The changes of TMR ratio, barrier width, average barrier height,
and barrier height symmetry with annealing temperature.sbd The normalized
resistance-bias voltage curve before and after annealing for three junctions
with different oxidation time.
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higher. When over oxidized, the right side is lower. As can be
seen in the left column of Fig. 3sbd, the right side of resis-
tance curve is higher than the corresponding left side for
tox=120 s while the right side is lower fortox=300 s. After
annealing for the sample oxidized fortox=300 s, asymmetry
of resistance curve is reduced, which also means that the
annealing improves the quality of barrier and interface.
Therefore, in this experiment, we can regardtox=180 s as the
proper oxidation time, for which the normalizedR-V curve is
the most symmetric.

Figure 4 represents the normalized TMR ratio vs dc bias-
voltage curves measured at RT with annealing fortox
=120 s andtox=180 s. In general, TMR decay can be evalu-
ated with the voltageV±1/2, at which the zero bias TMR
value is halved. In particular, the changes ofV±1/2 with an-
nealing for tox=120 s were unique;V−1/2 increases while
V±1/2 does not change due to under oxidation. For proper
oxidation timetox=180 sfFig. 4sbdg, theV±1/2 was1640 mV
and 2650 mV for positive and negative bias voltages, re-
spectively, when annealed at 250 °C. These values ofV±1/2
were enhanced results compared to those of polycrystalline
MTJs which have been reported.11–14

Similar to f1 and f2, we could assume thatV+1/2 and
V−1/2 also reflect the bottom FM layer-insulator interface
sbottom interfaced and the top FM layer-insulator interface
stop interfaced, respectively. Figure 5 shows the changes of
V±1/2 and barrier heightf1s2d as a function of annealing tem-
perature for various plasma oxidation conditions. From Fig.
5sad, it can be seen thatV+1/2 hardly changed whileV−1/2
increased with increasing annealing temperature when under
oxidized stox=120 sd. This may suggest that in the under-
oxidized barrier, due to oxygen deficiency, oxygen cannot
diffuse to thebottom interfacewhen annealed, leaving me-
tallic Al residue at thebottom interfaceeven after annealing.
Therefore,V+1/2, which is related to the quality of thebottom
interface, did not improve. As plasma oxidation time be-
comes longer than proper oxidation time, values ofV+1/2
become smaller both before and after annealingfFigs.
5sbd–5sddg. From this observation, we can conclude that oxi-
dized FM exists at thebottom interfacein case of over-
oxidized tunnel barrier even after annealing so that these
defect states become the cause of spin-independent tunnel-
ing. It can also be seen that values ofV−1/2 and their depen-
dence on annealing temperature remain more or less un-
changed regardless of different plasma oxidation times,
suggesting that the quality of thetop interfaceremained un-
affected by different plasma oxidation conditions. This result
could be ascribed to characteristics of the plasma oxidation,
which oxidizes the metallic Al layer after sputtering. Finally,

the increase ofV±1/2 corresponds to the increase in average
barrier heightf1s2d, which means that barrier height is also
strongly related to the bias-voltage dependence of TMR.

Considering the abovementioned results synthetically,
we could conclude that metallic Al layer deposited on epi-
taxially grown bottom FM layer grows uniformly so that
oxygen diffuses into Al layer in order during plasma oxida-
tion. Consequently, the aspect ofV±1/2 is distinct according to
plasma oxidation conditions. In addition,V+1/2 is enhanced
compared to that of polycrystalline MTJss,500 mVd fabri-
cated with same plasma oxidation condition due to epitaxi-
ally grown bottom FM electrode by which the clean FM
electrode-insulator interface with little spin-scattering state is
formed.

In summary, expitaxially grown tunnel junctions were
fabricated on Al2O3 s0001d substrates using UHV sputtering
and lithography process. The large values ofV±1/2
s,650 mVd and barrier heights,3 eVd were obtained after
annealing at 250 °C. Furthermore, we could explain the re-
lation betweenV±1/2 and the degree of plasma oxidation
based on the qualities of the top and bottom FM layer Al–O
layer interfaces.
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FIG. 5. The changes ofV±1/2 and barrier heightf1s2d with annealing temperature for four junctions with different oxidation time.
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