REAFEEBUKNSFY

Tohoku University Repository

Memory Superimposition by Backpropagation
Neural Networks

0d HOMMA Noriyasu, GUPTA Madan M.

journal or OJ000o0ooooooodood = Bulletin of
publication title |College of Medical Sciences, Tohoku University
volume 12

number 2

page range 111-120

year 2003-07-31

URL http://hdl.handle.net/10097/33818




Bull. Coll. Med. Sci. Tohoku Univ. 12(2) : 111~120, 2003

Memory Superimposition by
Backpropagation Neural Networks

Noriyasu HoMMA! and Madan M. GUPTA?

'Department of Radiological Technology College of Medical Sciences, Tohoku University
2Iyntelligent Systems Research Laboratory College of Engineering, University of Saskatchewan

SEMEE R Y N — Ik 2 ERE XTI

A B £ B!, Madan M. GUPTA?

WL RFEEFME RS SERS SRR ER
2R H v F T RETER MY AT AW

Key words: Neural networks, incremental learning, pattern classification and long-term memory

We propose a novel neural network for incremental learning tasks where networks are required
to learn new knowledge without forgetting the old one. An essential core of the proposed neural
learning structure is a transferring scheme from short-term memory (STM) into long-term memory
(LTM) as in brains by using dynamic changing weights. As the number of LTMs increases, a new
network structure is superimposed on the previous one without disturbing the past LTMs by introduc-
ing a lateral inhibition mechanism. Superiority of the proposed neural structure to the conventional

backpropagation networks is proven with respect to the learning ability.

1. Introduction

Incremental learning methods add new
knowledge to the networks without reexamin-
ing the past experiences.
attractive ability, many incremental learning

To achieve this

schemes have been proposed as the conven-
tional learning schemes are not incremental in
nature?.
incremental learning methods.

Conventionally, there are two typical
In the first
method, parameters are adapted by bounded
modification and structural adaptation using
the backpropagation (BP) network®®, while in
the other one for the radial basis function
networks*® it relearns the old memories. The

restriction in the first method might enhance
the local minima problem inherent in the BP
learning. On the other hand, the second
method is not incremental in a strict definition?,
although it can improve the generalization
ability better than the former one.

A possible strict incremental learning
scheme includes the following three strategies :
(i) it may not change the trained weights (learn-
ing strategy), (ii) it may also provide new learn-
able connections to store the new knowledge
(structural adaptation strategy), and (iii) to avoid
disturbing the past knowledge due to the crea-
tion of new connections by the structural adap-
tation, a restoration strategy is also needed.
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To integrate these strategies for the strict
incremental learning tasks, we have proposed a
novel neural model with a general formulation
of dynamic and spatial changing weights
(DSCWs)®.  This model formulates not only its
neural computing process (input-output rela-
tion), but also provides some strength to the
above three strategies. Usefulness of the
proposed model was demonstrated by a system
identification (functional approximation) task.

In this paper, to reduce the computational
complexity a simplified formulation of the
DSCWs neural model is proposed for pattern

networks is proven with respect to the learning
ability. Also, it is demonstrated that the
proposed neural model can add new input pat-

terns to its memory space without disturbing
and re-examining the past patterns.

2. Open-ended Incremental Learning

Synaptic weights are considered to store

knowledge of the past experiences in biological
brains?.

weights. This changing rule for a weight w

may be given by the following difference equa-

classification problems. Superiority of the  tion
proposed neural learning structure to the BP w(k+1)=w(k)+ dw(k) 1)
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Figurel. Two separate phases: learning phase and evaluation phase. x(k) and §(%) denote the
input and output vectors at the £-th iteration, respectively.
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In general, learning algorithms for
neural networks provide how to change the
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Figure 2. A dynamic changing weight by a piece-wise constant reference in the open-ended learning
phase. Using monotonous increment of the time constant, no change in the weight takes
place for a very large time constant (e.g, r— ©0) even if the references for new inputs are
not equal to the weight w(¢), t>kT. The reference »(£T) is stored as LTM in this

example.

where dw(k) is a change of the weight at the £-
th iteration, £=1,2, -+, K, calculated by the
learning schemes for a given input vector x(k)
as in Fig. 1.

The actual changes in weights are carried
out by an accumulation of changes for all the
sample data during the learning phase, while

there is no change of any weight in the evalua-

tion phase as shown in Fig. 1. After learning is
completed, the trained weights should form
long-term (sfable) memories which represent
knowledge stored in the brain for a long time or
permanently. However, the weights trained
by the conventional BP algorithm might not
form long-term memories (LTMs) for in-
cremental learning tasks because the memories
may be disturbed by the additional learning of
new data.

On the other hand, in the brain any stimuli
are sustained temporary as short-term mem-
ories (STMs), and most of them are forgotten
as new stimuli are inputted, but some of very
impressive or rehearsed ones are stored as
LTMs”. These biological neural Ilearning
processes seem to be carried out in an open-

ended (not separated) learning phase, and thus
the neural learning is naturally incremental.
Therefore, a possible set of the three strategies
for incremental learning tasks should provide
how to transfer STM into LTM in the open-
ended learning phase.

In the following we will first propose a
basic concept of the learning strategy to solve
this problem. The detail of the three strat-
egies will be presented in the next section.

2.1. Short-term and Long-term Memories by
Dynamic Changing Weights

As a novel learning strategy for the in-
cremental learning tasks, a simple dynamic
changing weight is defined.

rdbfTit)z—w(t)—i— 7 (1) 2)

where 7 (>0) is a time constant, and 7(?) is a
reference or target value. If biochemical
changes of synaptic weights are dynamic®, then
this continuous-time changing rule with a rea-
sonable time constant is more natural than the
conventional discrete-time algorithm.

In this dynamic system, it is well known
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that the different time constants yield mem-
ories with different durations. That is, STM
becomes LTM when a small time constant is
changed into larger ones as illustrated in Fig. 2.
Note that, by using different time constants, the
proposed method can provide the transferring
scheme from STM into LTM* which cannot be
realized by conventional learning schemes in-
cluding other incremental learning schemes.
2.2. Problem Definition

A training set of input vectors {x;:€ R", i=
1,2, -, N} and the corresponding desired out-
put signals {y;€®", i=1,2, -, N} is consid-
ered. N is the number of the training vectors,
n the number of inputs, and » the number of
outputs. Let # denote continuous time in the
k-th iteration, AT <#t<(k+1)T, k=0,1, -
Here, T is a sampling period. During the £-th
iteration, the networks are required to learn a
given pair of the inputs and the desired signals,
(.I‘(tk), y(lfk))=(.1'i, yi), 1€ {1, 2, N}

For an input vector x(#)=x: at the k-th
iteration, a square error measure is defined as

E{k)= lim || §(t)—y:l| 3)

te=(k+1)T

where 7€ R™ is the network output vector.
Note that the network outputs may be changed
by the dynamic weights even if the input vector
is unchanged for the iteration.

Here, when the input x(#)=x; is learned
successfully within an error tolerance y >0, i.e,
E{k)<y, this knowledge is supposed to be

stored stably as LTM in the open-ended learn-

ing phase where additional learning continues
to be carried out as in the learning phase in Fig.
1. Thus the network is required to minimize

! This neural model does provide a relation
between STM and LTM, however, it does not
have positive and reliable biological evidences.
The relation seems to be not very clear yet in
biological processes.

the following evaluation error for LTMs
Ni
T(B)= S ES™(k+j) @

where N, is the number of LTMs at the k-th
iteration, and EF™ is the error for the input
pattern corresponding to the j-th LTM, xi™,
7=1,2,--, Nx. Note that, this evaluation is
carried out by using the input series correspond-
ing to the LTMs as {@(tes1)=2t™, -+, 2(tesn)
=x%™} in the open-ended learning phase of the

incremental learning task.

3. Memory Superimposition

3.1. Back-propagated Errors as Reference
Values
Three-layer feedforward neural networks
are considered here, but it can be applied to the
feedforward networks with more than three
layers as well. The number of neurons in the
input (1st), the hidden (2nd) and the output (3rd)
layer are #n, ng, and m, respectively. The
outputs of the input layer is equal to the neural
inputs y¥=x € " and the network outputs 7 €
R™ are the outputs of the output layer y®=
[y yDe-yD]T € R™ defined as

v =79 B wnre (B wie,+ 68)+09)
®

where f and 6 represent a nonlinear function
and a neural threshold or bias, respectively. In
the following, for simplicity the superscripts
denoting the layer number are omitted unless
the layer number is important.

Let Adwso(kT) denote the changes in
weights wse(AT) € {w$), w3} given by the dis-
crete-time BP algorithm at the £-th iteration,
and wii(k) denote the resulting weights at the
k-th iteration such that

wE (k) £ wea(kT)+ dwsa kT) (6)
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Using this notation, for AT <#<(k+1)T, the
references in (2) are defined as

Voa(tr) L wiB (K ult—kT) (7

where wuo is the unipolar unit step function.
Substituting the references for (2), and solving
the differential equation (2) piece-wisely for £T
<t,<(k+1)T, we have

woa( )= wie (k) —Awba(/fT>eXp< _I%L>

Obviously, if 7s— 0, this dynamic change is
equivalent to the discrete-time BP scheme (Fig.
2).

The proposed updating scheme of the time
constants 7, is defined as

oa((A+1) T)=10a(kT) + d70a(kT) ~ (8)

Here, to transfer STM into LTM for x; such
that E.<y
1. All the initial values are zero: 7,2(0)=0;
2. The following monotonous change is used

0, (Ek)>7)

o, (E(K)<7) ©)

ATba(kT)Z{
The dynamic changing rule for biases 6% and
09? is the same as that for the weights wye.
3.2. Structural Adaptation

Since all the existing weights cannot be
changed after a long-term memory is stored by
using the above updating rule of the time con-
stants, the network is required to create new
learnable connections for new memories.

To reduce the computational complexity of
the neuron with DSCWs®, a simple structural
adaptation strategy is used in this paper. For
an input x; if the square error E; as the
minimum value for several sets of initial values
on the learnable parameter space is not less
than the tolerance 7, a new hidden layer neuron
with all the available connections from the
input layer and to the output layer is added to

the network. That is, when a new hidden
neuron is added at the end of the /£-th iteration,
nuy(k+1)=ny(k)+1, otherwise nu(k+1)=
nH(/C).
3.3. Restoration of the Past Knowledge by
Lateral Inhibition

Synapses with respect to a newly added
hidden neuron are needed for new memories.
However, since the new synapses do not store
the past LTMs, the network output correspond-
ing to one of the past LTMs may be disturbed
by the output of the newly added neuron.
Thus, the output of the new neuron should be
inhibited only when the one of the past LTMs is
recalled.

To implement this restoration mechanism,
a lateral inhibition mechanism is introduced in
the hidden layer. We assume that neurons
cannot fire when they receive signals not
greater than a negative threshold, Na(<0),
whose absolute value is large but bounded, | Nu|
<co. Then inhibitory weights from the /-th
neuron, /=1, 2, -+, nu(k), to the A-th neuron in
the hidden layer are initialized by

Nen, (I>h)

0. (I<h) (10)

w&f)(o):{
and they are fixed by m— 0, ie, w(t)=
w$(0). Therefore, when a new hidden neuron
is added, all the possible inhibitory connections
from the existing neurons to the new learnable
neuron w', [ <h, are created.

On the other hand, to decide whether the
input is corresponding to the LTM or not, the
inner product of the weights and the inputs, s,=
w;-x, is used. The inner product correspond-
ing to LTM, s7, is stored by the same dynamic
rule as that of the weights

Tsi dsfi(ttk) = _S%(tk) +Sl(kT)u0(tk— kT) (11)
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where /=1, 2,-, nu(k). The updating rule is
similar to that of e : d7s,— ©© when a LTM is
formed (E«{k)<1y), and otherwise drs,=0.

Then the lateral inhibitory signals, s, are
~ defined as '

Nw, (I<h and |str) —si(te)| <e&)
0, (otherwise)

Shz( tk)={
(12)

where >0 is a sensitivity parameter. The
recall decision is more sensitive to the input
noise for smaller &, while for larger & the
decision is more robust to the noise. The
robustness often causes incorrect decision, but
contributes to the generalization ability of the
network.

These inhibitory signals are summed as an
external signal to the neuron in the hidden
layer. Using this inhibitory signal, newly
added hidden neurons cannot fire when the past
LTMs are recalled. Thus a new memory is
superimposed on the current network structure
without disturbing the past LTMs by the newly
added neurons.

4. Learning Ability

We evaluate learning ability of the memory
superimposition neural network (MS-NN)
compared with the conventional BP neural
network (BP-NN). For this evaluation, let
{x}x 2 {x(h), x(#), -, x(t)} denote an input
series, and {x}% be a homogeneous input series
consisting of only one vector x;, i.e, x(f)= -
x('tk,)Exi;

We' consider a BP-NN trained with the
homogeneous input series {x}i: and denote such
BP-NN as NN* ({x}i). On the other hand,
let NN* 2 NN™ ({x}+) denote a proposed MS-
NN trained with an arbitrary (heterogeneous)
input series.

The ability to superimpose a new LTM on

the past LTMs will now be discussed. Let

xM je{1,2,+, Ni} denote an input vector

~ corresponding to a LTM. The evaluation -

error by a BP-NN trained with the homogene-
ous input corresponding to a LTM,
NN ({2 ™)), 7€ {1,2, -+, Ni}, is defined as

J¥ £ EX™(k+1, NN ({(x-™}4,))

The sum of such evaluation errors for all the
LTMs by a set of the corresponding BP-NNs,
{NN®? ({x'™},), j=1,2, ---, Ni}, is given as

e g
o 3y

Suppose that the evaluation error by the MS-
NN, J(k, NN™), is equal to the above sum of
evaluation errors by the set of BP-NNs, J2°.
Then it implies that the MS-NN truly includes
all the L'TMs in the set of BP-NNs in its single
MS-NN structure, and that the accuracy of
each LTM in the MS-NN is equal to that of the
corresponding BP-NN. Under the condition
of the error tolerance that y;=J%°, the capabil-
ity to achieve this strict incremental learning is
summarized as follows.

Theorem 1 (Memory superimposition theorem)
V{NNZ({xE™},), =1,2, -+, N}, 3 NN™ such
that

T(k, NN*)— 777, (minMi™ -0} (13)

where M5™ is the number of learning iterations
for the input x%™, and the tolerance is given as
v=J. [

The error tolerance /% can be very small
since the BP-NN learns only one training set,
and thus the sum of evaluation errors by the set
of BP-NNs, J?%, could be smaller than that of
a single BP-NN trained simultaneously with all
the inputs {x}™, j=1, 2, ---, Nr}. Note that we
can have a MS-NN satisfying Theorem 1 as
proved in the Appendix. In this sense, the
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learning ability of the MS-NN for LTMs is
superior to that of the BP-NN.

5. Simulation Example

The proposed MS-NN could directly
implement the pattern classification in the strict
learning tasks. In the following simulation
study, an input vector x;€{0,1}%, 7¢(1,2, -,
26}, consists of 64(=8X8) binary pixels of a
capital letter pattern as shown in Fig.3. The
desired output vectors y:=[vi v5 vi yi yé]” € {0,
1}® are the corresponding binary numbers from
1to 26, i.e, (yi ys vi yi yo)=(2* 2322 2" 2°): for
example, for pattern “A” (==x') the desired
vectoris y1=[00001]7 and ys=[11010]" for
pattern “Z” (=x2). Then, the MS-NN struc-
ture was initially composed of 64-1-5 neurons
in the input-hidden-output layers, respectively.
The number of hidden neurons increased as
they were needed. The nonlinear functions for
all the neurons were the unipolar sigmoidal
function, f»(x)=1/(1+exp(—ux)).

For the %-th iteration, one of the 26 pat-
terns is randomly chosen as the input x(#).
There is no restriction on the input selection,
thus some patterns are allowed to be chosen

jmpw | wm| [ [mw_} L
I D 'WI_II DII_

repeatedly regardless of whether the patterns
are memorized as LTM or not. Indeed, to
transfer STM into LTM, corresponding input
vectors should be rehearsed for enough dura-
tions as in the brain ”

Note that, it is not a very difficult task for
BP-NNs if they were trained with all these 26
patterns simultaneously. However, in the
open-ended learning phase, unlike in a conven-
tional classification task, the network continues
to“learn” the imput pattern series of LTMs
during the calculation of the evaluation error.
Thus, since past LTMs in a BP-NN will be
disturbed by the additional learning, the evalua-
tion error will not be kept small even after each
input pattern is learned completely. On the
other hand, as proved in the Appendix the
evaluation error of the MS-NN is kept small
since LTMs are restored correctly regardless of
whether learning of any patterns, including the
patterns corresponding to LTMs, would be
carried out or not. This advantage of the MS-
NN is confirmed experimentally as shown in
Fig. 4 where the bold and light solid lines show,
respectively, the evaluation error of the MS-
NN and that of the conventional BP-NN.
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Figure 3. 26 alphabet patterns of capital letters.
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Figure4. The evaluation errors as functions of learning iterations. The bold and light solid lines
show the evaluation errors of the proposed MS-NN and the ¢onventional BP-NN, respec-

“tively.

6. Conclusions

In this paper, a memory superimposition
(MS) method for incremental learning tasks has
been developed using a novel learning, struc-
tural adaptation and restoration strategies.
By using a lateral inhibition mechanism, a new
network structure is superimposed on the previ-
ous structure without forgetting the past knowl-
edge. Although the proposed MS-NN requires
more complex structure and more memories,
the MS-NN never forgets the past knowledge.
This is a strict incremental learning that cannot
be achieved by the existing incremental learn-
ing schemes.

Possible extensions to the radial basis func-
tion networks, dynamic networks with feed-
back, and self-learning methods such as Heb-
bian rule should lead to some interesting inves-

tigations in the future work.
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A. Proof for Theorem1

In this appendix we will prove Theorem 1
discussed in Section4. We assume that the
initial weights can be suitable to eliminate the
effects of the initial conditions on the learning
errors. We use the following notations: NN
A NN((k+1)T)=NN({x}«): Neural network
trained with an arbitrary input series {x}:=
{x(t), x(t), -, x(t)}; N and N;: The num-
ber of training sets and long-term memories.

A.l. Proof for the First LTM

First, we consider a learnable parameter
space Q(NN) where the errors as functions of
the network configuration, E:(k, NN) and J(%,
NN), exist. In the case of the first long-term
memory xi™ for any BP-NN trained with
only this input xf™, NN ({x*™},), we can
have a proposed MS-NN, NN™(£'T), k' €{1, 2,
---}, which has the same space (the same number
of learnable hidden neurons) as that of the conven-
tional BP networks. That is, V NN ({x*™}%,),
INN™S(k'T) such that

QINNZ({x"™}1,)=2(NN"™(k'T)) (14)

Local minima of the errors on the space are
not changed during the learning, because the
space (NN ({x*™}%,)) and the error func-
tions are not changed by the conventional
Also the space Q(NN™(k' T)) and the
error functions are not changed by the MS-NN

scheme.

structure unless the learning is trapped in a
local minimum which is larger than the error
tolerance.

Since both the networks use the same refer-
ence value, the MS-NN can reach any local
minimum on the space in (14) as M{™ — oo if
the conventional BP-NNs can. This proves
the theorem for the first LTM. O

A.2. Proof for a Special Type of NNBP

We consider a BP-NN, NN?°-% which has
a restriction of changes in biases of neurons in
the output layer. For N.=1, ws. and 8, stor-
ing LTMs in the MS-NN yield fixed dendrite
potentials or biases on output neurons 8,(z) for
each input x;. Thus the MS-NN is equivalent
to a network with the fixed biases of the output
neurons, 8,(7). Thatis, V{NN({xt™};,), j=
1,2, -+, N}, 305™(j) and INN"(k;T) such
that

Q(NNBP-02™({ L™V V)= Q(NN™(K;T))
j=1,2,--, Nt

where £j.1=£k; In other words, for each
NNEP-64TO({ LT Y 3 single proposed NN
can have the same learnable parameter space at
the corresponding time £; Then, on the basis
of the same reason for the proof for the first
LTM, the MS-NN can reach any local mini-
mum as mjin ME™(;)— oo if each conventional
network NNBF-0¢™O({ g™} 3 can. O
A.3. Complete Proof

The bias vector 84(7) for each input x: is a
disadvantage of the MS-NN, but the fact that
the proposed method is a strict incremental
learning scheme can be a significant advantage
itself. As described in Section 4, it does not
mean that the conventional BP-NNs are supe-
rior to the MS-NNs because in general, a
conventional BP-NN doesn’t satisfy the theo-
rem for any N, =>1.

However, a complete solution is also avail-
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able if we introduce a self inhibition mechanism product s? described in Subsection 3.3.

for the biases of output neurons. ‘ If we use this extra mechanism, Theorem 1
) . is satisfied completely by the MS-NN, although

_[6it), (selte)— sz | <e) JATIIEE COmPIEtey BY ¢ g
Oo(te)= 81 (otherwise) (15) this requires more complicated structures and
GRS ' : memories. The MS-NNs with the extra mech-

Here s} and @} are, respectively, the inner anism are then superior clearly than any con-
product and the bias for the input correspond- ventional BP-NNs in the sense of the learning
ing to the j-th LTM. The s and 6% can be  ability described in Theorem 1. O
memorized by the same dynamics of the inner
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