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The B(r)-function for electrons in solid is a quantity defined by the Fourier inversion of the
momentum density distribution function of the electron system in the field of Compton scattering.
The valence electron B(r)-functions of semiconducting materials Si and Ge have been calculated by
the pseudopotential theory containing the core-orthogonalization effect.

On the B(r) contour map, a pattern reflecting position and size of an intra-unit-cell atom is
observed. It is more sharply enhanced on the contour map of 4B(r), the contribution of the core-
orthogonalization to B(r). It seems as if Compton scattering works as a microscope which detects
local structure and size of the intra-unit cell atom; “Compton microscope”. The appearance of the
image of atomic structure can be explained by the facts that the function B(r) is the autocorrelation
function of valence electron wave function. The image pattern originates from inter-core autocor-
relation part of B(r) through the core-orthogonalization terms in the wave function.

the electron. It is directly connected with the

§1 Introduction density distribution of electron momentum g¢*.

The Compton scattering of y-ray or X-ray
photon from electrons in solid provides us with
information of electronic structure of the
solid’~®. The Compton profile J(g.) is an
experimentally observable function of the elec:
tron momentum component ¢, in the direction
of momentum transferred from the photon to

From the Compton profiles, we can derive vari-
ous quantities on electronic structure in the
momentum space. The most significant one is
the distribution function of electron momentum
density (EMD) o(q)"~®. The two-dimen-
sional integration of EMD on momentum com-
ponents gx and g, defines the Compton profile® ;
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The EMD function describes electron occupa-
tion of the momentum states and, therefore,
plays a fundamental role in discussing electron
behaviour in the momentum space by relating
to the property of electronic bond in the solid.
The EMD function can be Fourier-transform-
ed to a function of positional variable r in the
real space. By introducing the Fourier inver-
sion transform of EMD denoted usually as
B(r)"~'® the transformation is written as

o@)= [B(r)exp(~ig-r)d’r,  (2)
B(r)=% p(q) exp (ig-r)/N. (3)

In the independent electron model, the EMD
function p(q) can be given by

p(q):22n‘.;’/9’fnk(r) exp (—iq-r)d*r/ /N2 2,
(4)

where ¥, is the wave function of an electron
with wave vector k in the nth occupied band
and N is the volume of the crystal with NV unit
cells of volume . Here, spin-state summa-
tion is simply substituted by the factor 2.

As was pointed out previously”®® from a
viewpoint of energy-band-theoretical calcula-
tion, especially, of pseudopotential (PP) theoret-
ical one, it is far favorable in numerical accu-
racy to adopt an indirect derivation of EMD via
B(r)-function based on eq. (2), not on eq. (4).
In previous papers”®, we have performed PP
theoretical calculation of EMD’s and Compton
profiles for valence electron systems of
semiconducting materials Si and Ge on the base
of B(r)-function formalism. In the calcula-
tion, the core-orthogonalization (CO), namely,
the orthogonalization of valence electron state
to inner core-electron ones is taken into

account in order to estimate and discuss the
effect of this higher-order contribution to
EMD’s and Compton profiles quantitatively.

In the PP theory, the valence electron wave
function is composed of two parts.
part is the pseudo-wave function describing a
relatively smooth-varying behaviour of the
The second part describes a spatially
rapid oscillation of the valence electron near

The main

electron.

the atomic core'®. This atomic-electron-like
behaviour is due to the fact that, passing the
vicinity of atom, the valence electron recalls its
native outermost atomic orbitals under a rela-
tively stronger atomic potential near the core.
Quantum mechanically the situation corre-
sponds to the fact that the valence-electron
eigen-state should be orthogonal to the eigen-
states of inner core-electrons. The second
part describes the CO terms in the wave func-
tion of the valence electron eigen-state.
Effects of the CO terms on EMD and Compton
profiles are discussed in detail in refs. 7 and 8.

The purpose of this paper is to discuss CO
effects on the intermediate quantity B(r) in the
real space. In the course of calculation of
EMD’s and Compton profiles of Ge” and Si¥, it
was found that the B(r)-function shows an
interesting atom-like image of CO origin at the
nearest core site around r=0 in the [111] direc-
tion. The centre of the atom-like image is just
on the real core site and the order of its spread
is very similar to the physical core-radius. At
more distant core sites such an image cannot be
observed because of a rapid damping nature of
the B(r)-function. Around the core site at r=
0, such an atom-like image cannot be observed
because it is buried under the large peak of
B(r) with the peak value of uniform density of
valence electrons. It seems as if Compton
scattering works as a microscope detecting
local structure and size of one of the intra-unit
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cell atoms. In the diamond structure of Si or
Ge, the unit cell contains two atoms.

In this paper, it will be shown that the appear-
ance of the atom-like image can be explained
by using the fact that the B(r)-function is
represented”'” in terms of the integration of
the autocorrelation function of the electron
wave function over the occupied electron
states. Autocorrelation component due to the
CO terms in the valence electron wave function
plays an essential role.

In § 2 the method of calculation is outlined,
and results are given in §3. We will discuss
properties of the atom-like image and its origin
in § 4.

§ 2 Outline of Method of Calculation

In the PP framework, the valence electron
wave function ¥, orthogonalized to the inner
core electron wave functions { ¥¢:} is given by*®

w‘nk(r):Nnk[Q)nk(r)_§< v, ‘ D > wck(r)]y
(5)

where @.. is the pseudo-part of the valence
electron wave function, ¥.. is the wave func-
tion of the cth core electron state and N, is the
normalization constant. We approximate ¥
by the Bloch sum of the ionic core orbitals @.
(tight-binding-limit approximation) as'®

chk(r)
=§é¢c(r—Rm— 7;)exp [ik(Rn+1;)]//sN,
(6)

where R, is the primitive translational vector
pointing the mth unit cell in the crystal, and z;
is the non-primitive one within the unit cell
with s atoms. For the diamond structure of Si
and Ge, s=2. We define a plane wave expan-
sion of @ as

Du(r) =2 C**(Gexp [i(k+ G) 1]/ /NG,
(7)

where G is the reciprocal lattice vector. By
transforming ¢.(r) into ¢.(q), we will have

Va(r)=2ba(G) exp [i(k+ G) -]/ /N (8)

where
be(G)=S(G)¢(k+ @), 9)

in which
b(@)=V51D [$r) exp (—ig-r)d°r, (10)

and S(G) is the structure factor
S<G>=gslexp<—z'a-rj)/s. (11)

Substitution of egs. (7) and (8) into eq. (5) yields
Wnk(r):ZGank(G) exp [i(k+G) r]/ /N,

(12)
Cun(G)
= N CR( @)
-3 b&(G ") bex(G) CRE(G)]. (13)

Substituting eq. (12) into eq. (4) and its result
into eq. (3), we will obtain the key expression
for B(r) as follows,

B(r)
=2223 | Cu(G) Pexpli(k+ G)- r]/NG.

(14)
Contribution of the CO terms is defined by
AB(r)=B(r)— B*"“(r), (15)

where BP**"®(r) is the B(r)-function of the
pseudo valence electron system described by
the pseudo wave functions with no CO terms,
then is calculated by using {Cx°"(@®)} in eq.
(14).

In a practical calculation, we will employ the
crystal cubic harmonics expansion of B(r)!"® .

— 13 —
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B( r) = 2121 Bli(r)Kli(‘Qr)s

16
Bu(r)= f B(r)Ki*(2,)d®., (16)

where K/ is the crystal cubic harmonics of the
/th order and ¢ distinguishes the different in-
dependent harmonics of the same /. Details of
the expansion method, the energy band calcula-
tion for obtaining a set of {C5*"(G)} and the
determination of a set of {ba(G)} for core
orbitals are given in refs 7. and 8.

8§83 Results

The functions B(r), B***"(r) and 4B(r) of
Si with 1s, 2s and 2p inner cores and of Ge with
1s, 2s, 2p, 3s, 3p and 3d inner cores are calcu-
lated. The atomic configuration of the dia-
mond structure with tetrahedral bond is shown
in Fig. 1(a). The cube shown in Fig. 1(a) has 4
times the volume of the unit cell. We have two
atoms per unit cell. The intra-unit-cell atoms
are, for example, atoms A and B in Fig. 1(a).

Calculations in three dimensional zone of r are

concentrated on the (110) plane containing the
high-symmetry directions of [001], [112], [111],
[221] and [110] shown in Fig.1(b). The bond
between the nearest neighbour atoms A and B
is along the [111] direction. The bond length is
(V3/4)a, where a is the lattice constant (a=
10.26327 a.u. for Si and ¢=10.67715 a.u. for Ge).

The expansion of B(r) in terms of the crystal
cubic harmonics is very convenient to draw the
contour map of the B(r)-function. As de-
scribed in refs. 7 and 8, a full convergence of the
expansion was attained by inclusion of compo-
nents of /=22, in which the first sixteen har-
monics belonging to the I'j-representation of
the O, group are contained [/=0, 4, 6, 8, 10, 12
(=1, 2), 14,16 (=1, 2),18 (=1, 2), 20 (=1, 2)
and 22 (i=1, 2)]. The term of /=0 corre-
sponds to the spherical component, and the sum
of terms over /=4 describes the anisotropic
behaviour of B(r).

Figures 2 and 3 show the contour maps of
B(r) of Si and Ge, respectively. In Figs. 2 and

foo1]

[1121//

[111}//

[221]

[110]

(b)

(a) The atomic configuration of the diamond structure with tetrahedral bond. The side of

cube is lattice constant ¢. The two intra-unit-cell atoms are indicated by A and B.
(b) The (110) plane containing the five high-symmetry directions. The bond between the
nearest neighbour atoms A and B is along the [111] direction.
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Contour map of B(r) of Ge on the (110) plane: (a) Total B(r) including the spherical

Fig. 3.
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3, (a) shows the whole behaviour of B(r) includ-
ing the spherical component and (b) shows the
anisotropic part. The distance parameter 7 is
in units of @. The contour spacing in (a) is 0.1
and 0.01 in (b) in units of 2/£. Details of
directional variation along the five directions
are given in refs. 7 and 8. For the purpose of

(b) The Anisotropic part.

(b) The Anisotropic part.

L

Contour map of B(r) of Si on the (110) plane: (a) Total B(r) including the spherical
A local pattern around the point (1,1,1)a/4 is
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A local pattern around the point (1,1,1)a/4 is

this paper, only the variation along the [111]
direction is given. In Fig.4 for Si and Fig. 5
for Ge, the sections of B(r) and of its
anisotropic part along the [111] direction are
shown in (a) and (b), respectively.

Figures 6 and 7 show the contour maps of the
CO contributions 4B(r) of Si and Ge, respec-
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Fig.4. Directional variation of B(r) of Si along the [111] direction: (a) Total B(r) including the
spherical component. (b) The anisotropic part. The local pattern arrowed in Fig. 2(b) is
observed as a shoulder structure.
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Fig.5. Directional variation of B(r) of Ge along the [111] direction: (a) Total B(r) including the
spherical component. (b) The anisotropic part. The local pattern arrowed in Fig. 3(b) is
observed as a shoulder structure.

tively, in which the whole behaviour is present-
ed in (a) and the anisotropic one is in (b). The
contour spacing is 0.005. In Fig.8 for Si and
Fig. 9 for Ge, the sections of 4B(r) and of the
anisotropic part along the [111] direction are
shown in (a) and (b), respectively.

— 16 —

5



Fig. 6.

Image of Intra-Unit-Cell Atom in Compton B(r)-Function

2.00

1.50
S
—1.00
(@]
()
0.00 K ‘
0.00 0.50 1.00 1.50 2.00

[110](a)

.00

[001] (a)

0.00 E
0.00 0.50 1.00 1.50 2.00

[110](a)

Contour map of the CO contribution to B(r), 4B (r), of Si on the (110) plane: (a) Total
AB(r) including the spherical component. (b) The anisotropic part.

The local pattern arrowed in Fig. 2 (b) appears as a clear contour-circle centred on the point
(1,1, 1) a/4.
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[001](a)
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[110](a)

Contour map of the CO contribution to B(r), 4B(r), of Ge on the (110) plane: (a) Total
4B(r) including the spherical component. (b) The anisotropic part.

The local pattern arrowed in Fig. 3(b) appears as a clear contour-circle centred on the point
(1,1,1) a/4.
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Fig.8. Directional variation of 4B (r) of Si along the [111] direction: (a) Total 4B(r) including
the spherical component. (b) The anisotropic part.
The contour-circle arrowed in Fig. 6 shows a sharp structure with a peak at » = (V3/4) a.
e
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Fig.9. Directional variation of 4B(r) of Ge along the [111] direction: (a) Total 4B (r) including

the spherical component.

(b) The anisotropic part.

The contour-circle arrowed in Fig. 7 shows a sharp structure with a peak at »=(V3/4) a.

§4 Discussion

As we can be seen from Figs. 2(a)~5(a), the
B(r)-function has a large spherically symmet-
ric part around r=0 and it sharply damps
outward. Anisotropic behaviour of B(r) is
enhanced in Figs. 2(b)~5(b) by subtraction of
the spherical component from B(r). We
notice a local structure of contour being around
the point at r=(1, 1, 1)a/4 in the [111] direction,
arrowed in Figs. 2(b)~5(b). The point is the
atomic position of one of the two intra-unit-
cell atoms shown in Fig. 1. If we put the atom

A on r=(0, 0, 0)g, the atom B is on r=(1, 1,
1)a/4 by the bond length (V3/4)a (=0.4330a)
apart. The small local pattern is enhanced in
the CO contribution to B(r), 4B(r), as Figs. 6
~9 show. On the contour map of 4B(r), the
pattern appears clearly as a small circle
centred on the point (1, 1, 1)a/4. In Figs. 8 and
9, it appears as a sharp peak at »=0.433a.
The radius of the circle is roughly equal to 0.1a.
This is nearly equal to the physical core radius
R.; an example of estimated value' of R. is
0.41A =0.076a for Si**, and is 0.53 A =0.094 4 for
Ge**. We can conclude that we observe a kind
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of image of one of the intra-unit-cell atoms
through the weak but characteristic pattern in
A4B(r) or in B(r), as if we use the Compton
scattering process as a microscope. In the
following, the reason why an image of intra-
unit-cell atom appears as a local pattern in
B(r) or in 4B(r) is explained.

The B(r)-function can be written in the form
of autocorrelation function of electron wave
function integrated all over the occupied states

aSQ)l?)

B(r)=2 ;Ek}/ TE(r)U.(r +r)d3r NG
17

For the sake of simplicity we consider the one
dimensional system of N atoms with one core
state per atom. The pseudo valence electron is
assumed to be in a single plane wave state.

The orthogonalized valence electron wave
function is

wk(x)
= N.[exp(ikx)/ /L — ¢*(k)%‘.exp (ikRn)
X ¢(x —Rn)//N], (18)

where ¢(x) is a core orbital function satisfying
[ ¢ (= Ru)d(x — R)ds=Semre (19)

Rn=ma is the mth atom position (a: inter-
atom spacing) in the system of length L= Na,

#()= [ $(x) exp (~ikx)ax/ Va,  (20)
and N, is the normalization constant

Ne=1/[1—| ¢(k) " (21)

All x-integrations are taken over the length of
L.

After lengthy but exact derivation for B(x)
in the one dimensional system, namely,

B(x)=2% [ TH(x) Wlo + 1) L, (22)

we obtain
B(x)=223 Niexp (ikx)[1-2| ¢(%) [ *]/L
+23 Ni| ¢(k) \22 exp (#kR;) 6x,z./L.
(23)

At the origin x=0, it is clearly seen that B(x)
is equal to the uniform density of electrons.
The first term in the right side makes a bulk
peak around x=0 and sharply damps outside,
because the structure of k-integration over the
occupied states is similar to that of

G
[ "exp (ikx)dk

=2 sin (Gx) /x =2Gj(Gx)
-278(x) (G- ), (24)

where j, is the Oth-order spherical Bessel func-
tion and &8(x) is Dirac’s 8-function. The sec-
ond term in the right side of eq. (23) comes
from the autocorrelation within the CO terms
and is of higher order contribution.
Kronecker’s d-function on the discrete atom
position. At the atom position x=R,, it gives
the contribution of
23 Ni| ¢(k) | *2 exp (ikR:)/L

to B(x) and more clearly to 4B(x) as informa-
tion of core. The value of this k£-integral also
damps rapidly with increase of x. As we have
seen above, at x=0 the contribution of the
second term is absorbed to reproduce the peak
value of B(0), the uniform density of electrons.
These facts explain why the atom-like pattern
appears and why it is limited on the atom sites
close to the origin.

Experimentally, the EMD function p(q) can
be reconstructed from a set of Compton profiles
{J(g)}, and B(r) from p(q). For one dimen-
sional case, for example, along the [111] direc-
tion, more directly we can obtain B(z) from
J(gz). However, 4B(r) itself is not an experi-
mental product, as eq.(15) of its definition

It contains
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shows. By combining experimental BP*¢“%(r)
with theoretical B(r), we will obtain semi-
experimental 4B(r).
cleared to observe the fine CO effect experimen-
tally. Problems are in experimental resolu-
tion, in procedure of various deconvolutions, in

Many problems must be

selection of a set of {/(g:)} in direction and
gz—size, in reconstruction procedure and so on.
First of all, high resolusional power in experi-
ments is most desirable. Test of observation
of the CO effect may be an interesting problem
in Silicon Project®?V.

References

1) Compton Scatterig, ed. Williams, B., McGrow-
Hill, New York, 1977

2) Extended Abstracts of the 11th SAGAMORE
Conference on Charge, Spin and Momentum
Densities (held at Brest, France, August 7-12,
1994) ed. by Loupias, G. and Rabii, S., 1994

3) Informal Proceedings of the 2nd International
Workshop on Compton Scattering and Fer-
miology (held at Tokyo, Japan, August 28-31,
1995) ed. by International Organizing and Pro-
gram Committee of the Workshop, 1995

4) Platsman, P. and Tzoar, N.: Theory, Chap. 2 in
ref. 1, pp. 28-42

5) Timms, D.N., Cooper, M.J., Holt, R.S. et al.:
Compton Scattering Studies of the Valence
Electron Density Distribution in GaAs, J. Phys.:
Condens. Matter, 2, 10517-10528, 1990

6) Nara, H., Kobayasi, T., Takegahara, K. et al.:
Optimal Number of Directions in Reconstruct-
ing 3D Momentum Densities from Compton
Profiles of Semiconductors, Comp. Mat. Sci., 2,
366-374, 1994

7) Kobayasi, T., Nara, H., Timms, D.N. and Coo-
per, M.J.: Core-Orthogonalization Effects on
the Momentum Density Distribution and the
Compton Profile of Valence Electrons in Semi-
conductors, Bull. Coll. Med. Sci. Tohoku Univ.,
4, 93-104, 1995

8) Kobayasi, T.: Core-Orthogonalization Effect
on the Compton Profiles of Valence Electrons in

9

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

— 91 —

Si, Bull. Coll. Med. Sci. Tohoku Univ., 5, 149-
164, 1996

Cooper, M.J.: Compton Scattering and Elec-
tron Momentum Determination, Rep. Prog.
Phys., 48, 415-481, 1985

Mijnarends, P.E.: Reconstruction of Three-
Dimensional Distributions, Chap. 10 in ref. 1, pp.
323-345

Pattison, P. and Williams, B.: Fermi Surface
Parameters from Fourier Analysis of Compton
Profiles, Solid State Commun., 20, 585-588, 1976
Mueller, F.M.: Anisotropic Momentum Den-
sities from Compton Profiles: Silicon, Phys.
Rev., B15, 3039-3044, 1977

Kobayasi, T.: Fourier Inversion Formalism for
the Calculation of Angular Correlation of
Positron Annihilation Radiation of Semicon-
ductors, Bull. Coll. Med. Sci. Tohoku Univ., 3,
11-22, 1994

H., Shindo, K. and Kobayasi, T.:
Pseudopotential Approach to Anisotropies of
Compton-Profiles of Si and Ge, J. Phys. Soc.
Jpn, 46, 77-83, 1979

H., Kobayasi, T. and Shindo, K.:
Anisotropies of Compton Profiles of Tetra-
hedrally Bonded Semiconductors, J. Phys. C:
Solid State Phys., 17, 3967-3974, 1984
Callaway, J.: Quantum Theory of the Solid,
Part A, Academic Press, New York, 1974, Chap.
4 Energy Bands, pp. 242-351

Kobayasi, T.: Coupling of Positron Annihila-

Nara,

Nara,

tion and Compton Scattering : A Proposal of a
Positron Autocorrelation Function with Reduc-
tion of the Effect of Electron Distribution, Bull.
Coll. Med. Sci. Tohoku Univ., 5, 87-90, 1996
Mueller, F.M. and Priestley, M.G. : Inversion of
Cubic de Haas-van Alphen Data, with an Appli-
cation to Palladium, Phys. Rev., 148, 638-643,
1966

Pauling, L.: The Nature of the Chemical Bond
and the Structue of Molecules and Crystals (3rd
ed.), Cornell University Press, Ithaca, 1960,
Table 13-3 in Chap. 13, p.514

Schiilke, W.: The Status of the Silicon Project
and Lessons Learnt from It: Experiment, pp.



Teiji KOBAYASI

97- 106 in ref. 3 Project, pp. 107-116 in ref. 3
21) Blaas, C.: A Theoretical Survey on the Si

— 99



